Properties

Label 220.3.h.a.199.6
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.6
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87504 + 0.695850i) q^{2} +2.63169 q^{3} +(3.03158 - 2.60950i) q^{4} +(1.21581 + 4.84993i) q^{5} +(-4.93453 + 1.83126i) q^{6} +12.3259 q^{7} +(-3.86853 + 7.00246i) q^{8} -2.07421 q^{9} +(-5.65453 - 8.24781i) q^{10} +3.31662i q^{11} +(7.97819 - 6.86740i) q^{12} -4.53354i q^{13} +(-23.1116 + 8.57698i) q^{14} +(3.19964 + 12.7635i) q^{15} +(2.38101 - 15.8218i) q^{16} +12.6318i q^{17} +(3.88924 - 1.44334i) q^{18} -16.3321i q^{19} +(16.3417 + 11.5303i) q^{20} +32.4379 q^{21} +(-2.30787 - 6.21882i) q^{22} +11.8230 q^{23} +(-10.1808 + 18.4283i) q^{24} +(-22.0436 + 11.7932i) q^{25} +(3.15467 + 8.50059i) q^{26} -29.1439 q^{27} +(37.3670 - 32.1644i) q^{28} +27.7124 q^{29} +(-14.8810 - 21.7057i) q^{30} +2.38101i q^{31} +(6.54514 + 31.3235i) q^{32} +8.72833i q^{33} +(-8.78983 - 23.6851i) q^{34} +(14.9860 + 59.7797i) q^{35} +(-6.28815 + 5.41266i) q^{36} +59.7221i q^{37} +(11.3647 + 30.6234i) q^{38} -11.9309i q^{39} +(-38.6648 - 10.2484i) q^{40} +16.4324 q^{41} +(-60.8225 + 22.5719i) q^{42} +48.6478 q^{43} +(8.65474 + 10.0546i) q^{44} +(-2.52185 - 10.0598i) q^{45} +(-22.1687 + 8.22706i) q^{46} -80.3163 q^{47} +(6.26608 - 41.6382i) q^{48} +102.928 q^{49} +(33.1264 - 37.4518i) q^{50} +33.2429i q^{51} +(-11.8303 - 13.7438i) q^{52} -66.9744i q^{53} +(54.6461 - 20.2798i) q^{54} +(-16.0854 + 4.03240i) q^{55} +(-47.6831 + 86.3116i) q^{56} -42.9810i q^{57} +(-51.9621 + 19.2837i) q^{58} +12.4898i q^{59} +(43.0064 + 30.3442i) q^{60} +2.82800 q^{61} +(-1.65683 - 4.46450i) q^{62} -25.5665 q^{63} +(-34.0689 - 54.1785i) q^{64} +(21.9873 - 5.51194i) q^{65} +(-6.07361 - 16.3660i) q^{66} -55.3752 q^{67} +(32.9626 + 38.2943i) q^{68} +31.1145 q^{69} +(-69.6971 - 101.662i) q^{70} -124.371i q^{71} +(8.02416 - 14.5246i) q^{72} -130.778i q^{73} +(-41.5576 - 111.982i) q^{74} +(-58.0119 + 31.0361i) q^{75} +(-42.6186 - 49.5121i) q^{76} +40.8804i q^{77} +(8.30210 + 22.3709i) q^{78} -74.9602i q^{79} +(79.6297 - 7.68868i) q^{80} -58.0297 q^{81} +(-30.8116 + 11.4345i) q^{82} -19.8604 q^{83} +(98.3383 - 84.6468i) q^{84} +(-61.2632 + 15.3579i) q^{85} +(-91.2168 + 33.8516i) q^{86} +72.9305 q^{87} +(-23.2245 - 12.8305i) q^{88} -92.5422 q^{89} +(11.7287 + 17.1077i) q^{90} -55.8799i q^{91} +(35.8425 - 30.8522i) q^{92} +6.26608i q^{93} +(150.597 - 55.8881i) q^{94} +(79.2095 - 19.8568i) q^{95} +(17.2248 + 82.4337i) q^{96} +7.08552i q^{97} +(-192.994 + 71.6222i) q^{98} -6.87938i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.87504 + 0.695850i −0.937522 + 0.347925i
\(3\) 2.63169 0.877230 0.438615 0.898675i \(-0.355469\pi\)
0.438615 + 0.898675i \(0.355469\pi\)
\(4\) 3.03158 2.60950i 0.757896 0.652375i
\(5\) 1.21581 + 4.84993i 0.243163 + 0.969986i
\(6\) −4.93453 + 1.83126i −0.822422 + 0.305210i
\(7\) 12.3259 1.76084 0.880421 0.474193i \(-0.157260\pi\)
0.880421 + 0.474193i \(0.157260\pi\)
\(8\) −3.86853 + 7.00246i −0.483567 + 0.875307i
\(9\) −2.07421 −0.230468
\(10\) −5.65453 8.24781i −0.565453 0.824781i
\(11\) 3.31662i 0.301511i
\(12\) 7.97819 6.86740i 0.664849 0.572283i
\(13\) 4.53354i 0.348734i −0.984681 0.174367i \(-0.944212\pi\)
0.984681 0.174367i \(-0.0557879\pi\)
\(14\) −23.1116 + 8.57698i −1.65083 + 0.612641i
\(15\) 3.19964 + 12.7635i 0.213309 + 0.850900i
\(16\) 2.38101 15.8218i 0.148813 0.988865i
\(17\) 12.6318i 0.743046i 0.928424 + 0.371523i \(0.121164\pi\)
−0.928424 + 0.371523i \(0.878836\pi\)
\(18\) 3.88924 1.44334i 0.216069 0.0801856i
\(19\) 16.3321i 0.859584i −0.902928 0.429792i \(-0.858587\pi\)
0.902928 0.429792i \(-0.141413\pi\)
\(20\) 16.3417 + 11.5303i 0.817087 + 0.576515i
\(21\) 32.4379 1.54466
\(22\) −2.30787 6.21882i −0.104903 0.282674i
\(23\) 11.8230 0.514045 0.257022 0.966405i \(-0.417259\pi\)
0.257022 + 0.966405i \(0.417259\pi\)
\(24\) −10.1808 + 18.4283i −0.424199 + 0.767846i
\(25\) −22.0436 + 11.7932i −0.881744 + 0.471728i
\(26\) 3.15467 + 8.50059i 0.121333 + 0.326946i
\(27\) −29.1439 −1.07940
\(28\) 37.3670 32.1644i 1.33454 1.14873i
\(29\) 27.7124 0.955601 0.477801 0.878468i \(-0.341434\pi\)
0.477801 + 0.878468i \(0.341434\pi\)
\(30\) −14.8810 21.7057i −0.496032 0.723522i
\(31\) 2.38101i 0.0768068i 0.999262 + 0.0384034i \(0.0122272\pi\)
−0.999262 + 0.0384034i \(0.987773\pi\)
\(32\) 6.54514 + 31.3235i 0.204536 + 0.978859i
\(33\) 8.72833i 0.264495i
\(34\) −8.78983 23.6851i −0.258524 0.696622i
\(35\) 14.9860 + 59.7797i 0.428171 + 1.70799i
\(36\) −6.28815 + 5.41266i −0.174671 + 0.150352i
\(37\) 59.7221i 1.61411i 0.590476 + 0.807055i \(0.298940\pi\)
−0.590476 + 0.807055i \(0.701060\pi\)
\(38\) 11.3647 + 30.6234i 0.299071 + 0.805879i
\(39\) 11.9309i 0.305920i
\(40\) −38.6648 10.2484i −0.966621 0.256211i
\(41\) 16.4324 0.400791 0.200396 0.979715i \(-0.435777\pi\)
0.200396 + 0.979715i \(0.435777\pi\)
\(42\) −60.8225 + 22.5719i −1.44816 + 0.537427i
\(43\) 48.6478 1.13134 0.565672 0.824630i \(-0.308617\pi\)
0.565672 + 0.824630i \(0.308617\pi\)
\(44\) 8.65474 + 10.0546i 0.196699 + 0.228514i
\(45\) −2.52185 10.0598i −0.0560412 0.223551i
\(46\) −22.1687 + 8.22706i −0.481929 + 0.178849i
\(47\) −80.3163 −1.70886 −0.854429 0.519568i \(-0.826093\pi\)
−0.854429 + 0.519568i \(0.826093\pi\)
\(48\) 6.26608 41.6382i 0.130543 0.867462i
\(49\) 102.928 2.10056
\(50\) 33.1264 37.4518i 0.662528 0.749037i
\(51\) 33.2429i 0.651822i
\(52\) −11.8303 13.7438i −0.227505 0.264304i
\(53\) 66.9744i 1.26367i −0.775104 0.631834i \(-0.782302\pi\)
0.775104 0.631834i \(-0.217698\pi\)
\(54\) 54.6461 20.2798i 1.01196 0.375552i
\(55\) −16.0854 + 4.03240i −0.292462 + 0.0733163i
\(56\) −47.6831 + 86.3116i −0.851485 + 1.54128i
\(57\) 42.9810i 0.754053i
\(58\) −51.9621 + 19.2837i −0.895898 + 0.332478i
\(59\) 12.4898i 0.211691i 0.994383 + 0.105845i \(0.0337549\pi\)
−0.994383 + 0.105845i \(0.966245\pi\)
\(60\) 43.0064 + 30.3442i 0.716773 + 0.505736i
\(61\) 2.82800 0.0463606 0.0231803 0.999731i \(-0.492621\pi\)
0.0231803 + 0.999731i \(0.492621\pi\)
\(62\) −1.65683 4.46450i −0.0267230 0.0720081i
\(63\) −25.5665 −0.405818
\(64\) −34.0689 54.1785i −0.532326 0.846539i
\(65\) 21.9873 5.51194i 0.338267 0.0847991i
\(66\) −6.07361 16.3660i −0.0920244 0.247970i
\(67\) −55.3752 −0.826496 −0.413248 0.910619i \(-0.635606\pi\)
−0.413248 + 0.910619i \(0.635606\pi\)
\(68\) 32.9626 + 38.2943i 0.484745 + 0.563152i
\(69\) 31.1145 0.450935
\(70\) −69.6971 101.662i −0.995673 1.45231i
\(71\) 124.371i 1.75170i −0.482584 0.875850i \(-0.660302\pi\)
0.482584 0.875850i \(-0.339698\pi\)
\(72\) 8.02416 14.5246i 0.111447 0.201730i
\(73\) 130.778i 1.79147i −0.444584 0.895737i \(-0.646648\pi\)
0.444584 0.895737i \(-0.353352\pi\)
\(74\) −41.5576 111.982i −0.561590 1.51326i
\(75\) −58.0119 + 31.0361i −0.773492 + 0.413814i
\(76\) −42.6186 49.5121i −0.560771 0.651475i
\(77\) 40.8804i 0.530914i
\(78\) 8.30210 + 22.3709i 0.106437 + 0.286807i
\(79\) 74.9602i 0.948863i −0.880292 0.474432i \(-0.842654\pi\)
0.880292 0.474432i \(-0.157346\pi\)
\(80\) 79.6297 7.68868i 0.995371 0.0961085i
\(81\) −58.0297 −0.716416
\(82\) −30.8116 + 11.4345i −0.375751 + 0.139445i
\(83\) −19.8604 −0.239282 −0.119641 0.992817i \(-0.538174\pi\)
−0.119641 + 0.992817i \(0.538174\pi\)
\(84\) 98.3383 84.6468i 1.17069 1.00770i
\(85\) −61.2632 + 15.3579i −0.720744 + 0.180681i
\(86\) −91.2168 + 33.8516i −1.06066 + 0.393623i
\(87\) 72.9305 0.838282
\(88\) −23.2245 12.8305i −0.263915 0.145801i
\(89\) −92.5422 −1.03980 −0.519900 0.854227i \(-0.674031\pi\)
−0.519900 + 0.854227i \(0.674031\pi\)
\(90\) 11.7287 + 17.1077i 0.130319 + 0.190086i
\(91\) 55.8799i 0.614065i
\(92\) 35.8425 30.8522i 0.389593 0.335350i
\(93\) 6.26608i 0.0673772i
\(94\) 150.597 55.8881i 1.60209 0.594555i
\(95\) 79.2095 19.8568i 0.833784 0.209019i
\(96\) 17.2248 + 82.4337i 0.179425 + 0.858684i
\(97\) 7.08552i 0.0730466i 0.999333 + 0.0365233i \(0.0116283\pi\)
−0.999333 + 0.0365233i \(0.988372\pi\)
\(98\) −192.994 + 71.6222i −1.96933 + 0.730839i
\(99\) 6.87938i 0.0694887i
\(100\) −36.0526 + 93.2749i −0.360526 + 0.932749i
\(101\) −21.3844 −0.211727 −0.105864 0.994381i \(-0.533761\pi\)
−0.105864 + 0.994381i \(0.533761\pi\)
\(102\) −23.1321 62.3320i −0.226785 0.611098i
\(103\) 0.914076 0.00887452 0.00443726 0.999990i \(-0.498588\pi\)
0.00443726 + 0.999990i \(0.498588\pi\)
\(104\) 31.7459 + 17.5382i 0.305249 + 0.168636i
\(105\) 39.4384 + 157.322i 0.375604 + 1.49830i
\(106\) 46.6042 + 125.580i 0.439662 + 1.18472i
\(107\) 157.292 1.47002 0.735010 0.678056i \(-0.237177\pi\)
0.735010 + 0.678056i \(0.237177\pi\)
\(108\) −88.3521 + 76.0510i −0.818075 + 0.704176i
\(109\) −91.2074 −0.836765 −0.418383 0.908271i \(-0.637403\pi\)
−0.418383 + 0.908271i \(0.637403\pi\)
\(110\) 27.3549 18.7539i 0.248681 0.170490i
\(111\) 157.170i 1.41595i
\(112\) 29.3481 195.018i 0.262036 1.74124i
\(113\) 188.929i 1.67194i 0.548778 + 0.835968i \(0.315093\pi\)
−0.548778 + 0.835968i \(0.684907\pi\)
\(114\) 29.9083 + 80.5913i 0.262354 + 0.706941i
\(115\) 14.3746 + 57.3409i 0.124996 + 0.498616i
\(116\) 84.0126 72.3156i 0.724247 0.623411i
\(117\) 9.40353i 0.0803720i
\(118\) −8.69100 23.4188i −0.0736525 0.198465i
\(119\) 155.698i 1.30839i
\(120\) −101.754 26.9707i −0.847949 0.224756i
\(121\) −11.0000 −0.0909091
\(122\) −5.30262 + 1.96786i −0.0434641 + 0.0161300i
\(123\) 43.2451 0.351586
\(124\) 6.21325 + 7.21824i 0.0501069 + 0.0582116i
\(125\) −83.9971 92.5715i −0.671977 0.740572i
\(126\) 47.9384 17.7905i 0.380463 0.141194i
\(127\) −159.673 −1.25727 −0.628635 0.777700i \(-0.716386\pi\)
−0.628635 + 0.777700i \(0.716386\pi\)
\(128\) 101.581 + 77.8803i 0.793600 + 0.608440i
\(129\) 128.026 0.992449
\(130\) −37.3918 + 25.6350i −0.287629 + 0.197193i
\(131\) 54.1400i 0.413282i −0.978417 0.206641i \(-0.933747\pi\)
0.978417 0.206641i \(-0.0662532\pi\)
\(132\) 22.7766 + 26.4607i 0.172550 + 0.200460i
\(133\) 201.308i 1.51359i
\(134\) 103.831 38.5329i 0.774858 0.287559i
\(135\) −35.4335 141.346i −0.262470 1.04701i
\(136\) −88.4535 48.8665i −0.650394 0.359312i
\(137\) 178.927i 1.30604i −0.757342 0.653018i \(-0.773503\pi\)
0.757342 0.653018i \(-0.226497\pi\)
\(138\) −58.3412 + 21.6511i −0.422762 + 0.156892i
\(139\) 26.3457i 0.189537i 0.995499 + 0.0947687i \(0.0302111\pi\)
−0.995499 + 0.0947687i \(0.969789\pi\)
\(140\) 201.426 + 142.121i 1.43876 + 1.01515i
\(141\) −211.368 −1.49906
\(142\) 86.5434 + 233.201i 0.609460 + 1.64226i
\(143\) 15.0361 0.105147
\(144\) −4.93872 + 32.8179i −0.0342967 + 0.227902i
\(145\) 33.6931 + 134.403i 0.232367 + 0.926920i
\(146\) 91.0017 + 245.214i 0.623299 + 1.67955i
\(147\) 270.874 1.84268
\(148\) 155.845 + 181.053i 1.05301 + 1.22333i
\(149\) −110.908 −0.744346 −0.372173 0.928163i \(-0.621387\pi\)
−0.372173 + 0.928163i \(0.621387\pi\)
\(150\) 87.1784 98.5616i 0.581190 0.657077i
\(151\) 54.2134i 0.359029i −0.983755 0.179515i \(-0.942547\pi\)
0.983755 0.179515i \(-0.0574527\pi\)
\(152\) 114.365 + 63.1813i 0.752400 + 0.415666i
\(153\) 26.2010i 0.171248i
\(154\) −28.4466 76.6525i −0.184718 0.497744i
\(155\) −11.5477 + 2.89487i −0.0745015 + 0.0186766i
\(156\) −31.1336 36.1694i −0.199574 0.231855i
\(157\) 118.752i 0.756383i 0.925727 + 0.378191i \(0.123454\pi\)
−0.925727 + 0.378191i \(0.876546\pi\)
\(158\) 52.1611 + 140.554i 0.330133 + 0.889580i
\(159\) 176.256i 1.10853i
\(160\) −143.959 + 69.8269i −0.899744 + 0.436418i
\(161\) 145.729 0.905152
\(162\) 108.808 40.3800i 0.671656 0.249259i
\(163\) 20.0363 0.122922 0.0614610 0.998109i \(-0.480424\pi\)
0.0614610 + 0.998109i \(0.480424\pi\)
\(164\) 49.8164 42.8805i 0.303758 0.261466i
\(165\) −42.3317 + 10.6120i −0.256556 + 0.0643152i
\(166\) 37.2391 13.8199i 0.224332 0.0832522i
\(167\) −125.020 −0.748622 −0.374311 0.927303i \(-0.622121\pi\)
−0.374311 + 0.927303i \(0.622121\pi\)
\(168\) −125.487 + 227.145i −0.746948 + 1.35205i
\(169\) 148.447 0.878385
\(170\) 104.184 71.4267i 0.612850 0.420157i
\(171\) 33.8762i 0.198107i
\(172\) 147.480 126.947i 0.857442 0.738061i
\(173\) 196.309i 1.13473i −0.823465 0.567367i \(-0.807962\pi\)
0.823465 0.567367i \(-0.192038\pi\)
\(174\) −136.748 + 50.7487i −0.785908 + 0.291659i
\(175\) −271.707 + 145.362i −1.55261 + 0.830639i
\(176\) 52.4751 + 7.89692i 0.298154 + 0.0448688i
\(177\) 32.8691i 0.185701i
\(178\) 173.521 64.3955i 0.974835 0.361772i
\(179\) 128.674i 0.718849i −0.933174 0.359425i \(-0.882973\pi\)
0.933174 0.359425i \(-0.117027\pi\)
\(180\) −33.8962 23.9163i −0.188312 0.132868i
\(181\) −63.3884 −0.350212 −0.175106 0.984550i \(-0.556027\pi\)
−0.175106 + 0.984550i \(0.556027\pi\)
\(182\) 38.8841 + 104.777i 0.213649 + 0.575700i
\(183\) 7.44241 0.0406689
\(184\) −45.7378 + 82.7903i −0.248575 + 0.449947i
\(185\) −289.648 + 72.6109i −1.56566 + 0.392491i
\(186\) −4.36026 11.7492i −0.0234422 0.0631677i
\(187\) −41.8949 −0.224037
\(188\) −243.486 + 209.586i −1.29514 + 1.11482i
\(189\) −359.224 −1.90066
\(190\) −134.704 + 92.3503i −0.708968 + 0.486054i
\(191\) 37.9067i 0.198464i 0.995064 + 0.0992322i \(0.0316387\pi\)
−0.995064 + 0.0992322i \(0.968361\pi\)
\(192\) −89.6587 142.581i −0.466972 0.742609i
\(193\) 225.451i 1.16814i −0.811704 0.584069i \(-0.801460\pi\)
0.811704 0.584069i \(-0.198540\pi\)
\(194\) −4.93046 13.2857i −0.0254148 0.0684828i
\(195\) 57.8639 14.5057i 0.296738 0.0743883i
\(196\) 312.034 268.590i 1.59201 1.37036i
\(197\) 377.121i 1.91432i 0.289563 + 0.957159i \(0.406490\pi\)
−0.289563 + 0.957159i \(0.593510\pi\)
\(198\) 4.78702 + 12.8992i 0.0241769 + 0.0651472i
\(199\) 296.936i 1.49214i −0.665867 0.746070i \(-0.731938\pi\)
0.665867 0.746070i \(-0.268062\pi\)
\(200\) 2.69493 199.982i 0.0134746 0.999909i
\(201\) −145.730 −0.725026
\(202\) 40.0968 14.8804i 0.198499 0.0736652i
\(203\) 341.581 1.68266
\(204\) 86.7474 + 100.779i 0.425232 + 0.494013i
\(205\) 19.9788 + 79.6962i 0.0974575 + 0.388762i
\(206\) −1.71393 + 0.636060i −0.00832006 + 0.00308767i
\(207\) −24.5235 −0.118471
\(208\) −71.7290 10.7944i −0.344851 0.0518962i
\(209\) 54.1674 0.259174
\(210\) −183.421 267.542i −0.873434 1.27401i
\(211\) 154.781i 0.733559i 0.930308 + 0.366779i \(0.119540\pi\)
−0.930308 + 0.366779i \(0.880460\pi\)
\(212\) −174.770 203.039i −0.824386 0.957729i
\(213\) 327.305i 1.53664i
\(214\) −294.930 + 109.452i −1.37818 + 0.511457i
\(215\) 59.1467 + 235.938i 0.275101 + 1.09739i
\(216\) 112.744 204.079i 0.521963 0.944810i
\(217\) 29.3481i 0.135245i
\(218\) 171.018 63.4667i 0.784486 0.291132i
\(219\) 344.166i 1.57153i
\(220\) −38.2417 + 54.1994i −0.173826 + 0.246361i
\(221\) 57.2667 0.259125
\(222\) −109.367 294.701i −0.492643 1.32748i
\(223\) −162.723 −0.729699 −0.364849 0.931067i \(-0.618880\pi\)
−0.364849 + 0.931067i \(0.618880\pi\)
\(224\) 80.6747 + 386.090i 0.360155 + 1.72362i
\(225\) 45.7231 24.4616i 0.203214 0.108718i
\(226\) −131.466 354.250i −0.581709 1.56748i
\(227\) 171.179 0.754094 0.377047 0.926194i \(-0.376939\pi\)
0.377047 + 0.926194i \(0.376939\pi\)
\(228\) −112.159 130.301i −0.491925 0.571494i
\(229\) 415.938 1.81632 0.908161 0.418621i \(-0.137487\pi\)
0.908161 + 0.418621i \(0.137487\pi\)
\(230\) −66.8537 97.5141i −0.290668 0.423974i
\(231\) 107.584i 0.465733i
\(232\) −107.207 + 194.055i −0.462097 + 0.836445i
\(233\) 182.050i 0.781331i 0.920533 + 0.390665i \(0.127755\pi\)
−0.920533 + 0.390665i \(0.872245\pi\)
\(234\) −6.54345 17.6320i −0.0279635 0.0753506i
\(235\) −97.6496 389.528i −0.415530 1.65757i
\(236\) 32.5920 + 37.8637i 0.138102 + 0.160440i
\(237\) 197.272i 0.832371i
\(238\) −108.342 291.941i −0.455220 1.22664i
\(239\) 27.7896i 0.116275i 0.998309 + 0.0581373i \(0.0185161\pi\)
−0.998309 + 0.0581373i \(0.981484\pi\)
\(240\) 209.561 20.2342i 0.873169 0.0843092i
\(241\) 276.374 1.14678 0.573390 0.819282i \(-0.305628\pi\)
0.573390 + 0.819282i \(0.305628\pi\)
\(242\) 20.6255 7.65435i 0.0852293 0.0316296i
\(243\) 109.579 0.450941
\(244\) 8.57331 7.37966i 0.0351365 0.0302445i
\(245\) 125.141 + 499.192i 0.510779 + 2.03752i
\(246\) −81.0865 + 30.0921i −0.329620 + 0.122326i
\(247\) −74.0422 −0.299766
\(248\) −16.6729 9.21103i −0.0672296 0.0371412i
\(249\) −52.2664 −0.209905
\(250\) 221.914 + 115.126i 0.887657 + 0.460505i
\(251\) 145.061i 0.577931i 0.957340 + 0.288965i \(0.0933113\pi\)
−0.957340 + 0.288965i \(0.906689\pi\)
\(252\) −77.5071 + 66.7158i −0.307568 + 0.264745i
\(253\) 39.2126i 0.154990i
\(254\) 299.395 111.109i 1.17872 0.437436i
\(255\) −161.226 + 40.4172i −0.632258 + 0.158499i
\(256\) −244.662 75.3439i −0.955709 0.294312i
\(257\) 218.884i 0.851688i −0.904797 0.425844i \(-0.859977\pi\)
0.904797 0.425844i \(-0.140023\pi\)
\(258\) −240.054 + 89.0869i −0.930443 + 0.345298i
\(259\) 736.128i 2.84219i
\(260\) 52.2731 74.0859i 0.201050 0.284946i
\(261\) −57.4815 −0.220236
\(262\) 37.6733 + 101.515i 0.143791 + 0.387461i
\(263\) −430.384 −1.63644 −0.818220 0.574905i \(-0.805039\pi\)
−0.818220 + 0.574905i \(0.805039\pi\)
\(264\) −61.1197 33.7658i −0.231514 0.127901i
\(265\) 324.821 81.4283i 1.22574 0.307277i
\(266\) 140.080 + 377.461i 0.526617 + 1.41903i
\(267\) −243.542 −0.912143
\(268\) −167.875 + 144.502i −0.626398 + 0.539185i
\(269\) 233.423 0.867742 0.433871 0.900975i \(-0.357147\pi\)
0.433871 + 0.900975i \(0.357147\pi\)
\(270\) 164.795 + 240.373i 0.610351 + 0.890271i
\(271\) 314.298i 1.15977i 0.814697 + 0.579886i \(0.196903\pi\)
−0.814697 + 0.579886i \(0.803097\pi\)
\(272\) 199.858 + 30.0764i 0.734772 + 0.110575i
\(273\) 147.059i 0.538676i
\(274\) 124.506 + 335.496i 0.454403 + 1.22444i
\(275\) −39.1137 73.1103i −0.142231 0.265856i
\(276\) 94.3264 81.1934i 0.341762 0.294179i
\(277\) 52.4195i 0.189240i −0.995513 0.0946200i \(-0.969836\pi\)
0.995513 0.0946200i \(-0.0301636\pi\)
\(278\) −18.3327 49.3994i −0.0659448 0.177696i
\(279\) 4.93872i 0.0177015i
\(280\) −476.579 126.321i −1.70207 0.451147i
\(281\) −428.059 −1.52334 −0.761671 0.647964i \(-0.775621\pi\)
−0.761671 + 0.647964i \(0.775621\pi\)
\(282\) 396.324 147.080i 1.40540 0.521561i
\(283\) 245.145 0.866236 0.433118 0.901337i \(-0.357413\pi\)
0.433118 + 0.901337i \(0.357413\pi\)
\(284\) −324.545 377.040i −1.14277 1.32761i
\(285\) 208.455 52.2569i 0.731420 0.183357i
\(286\) −28.1933 + 10.4628i −0.0985779 + 0.0365834i
\(287\) 202.545 0.705730
\(288\) −13.5760 64.9716i −0.0471389 0.225596i
\(289\) 129.438 0.447883
\(290\) −156.701 228.567i −0.540347 0.788162i
\(291\) 18.6469i 0.0640787i
\(292\) −341.264 396.463i −1.16871 1.35775i
\(293\) 388.800i 1.32696i −0.748192 0.663482i \(-0.769078\pi\)
0.748192 0.663482i \(-0.230922\pi\)
\(294\) −507.900 + 188.487i −1.72755 + 0.641114i
\(295\) −60.5744 + 15.1852i −0.205337 + 0.0514753i
\(296\) −418.202 231.037i −1.41284 0.780530i
\(297\) 96.6593i 0.325452i
\(298\) 207.957 77.1751i 0.697841 0.258977i
\(299\) 53.6002i 0.179265i
\(300\) −94.8793 + 245.471i −0.316264 + 0.818235i
\(301\) 599.628 1.99212
\(302\) 37.7244 + 101.653i 0.124915 + 0.336598i
\(303\) −56.2772 −0.185733
\(304\) −258.404 38.8869i −0.850013 0.127917i
\(305\) 3.43831 + 13.7156i 0.0112732 + 0.0449691i
\(306\) 18.2320 + 49.1280i 0.0595816 + 0.160549i
\(307\) −129.502 −0.421829 −0.210915 0.977504i \(-0.567644\pi\)
−0.210915 + 0.977504i \(0.567644\pi\)
\(308\) 106.677 + 123.932i 0.346355 + 0.402378i
\(309\) 2.40556 0.00778499
\(310\) 19.6381 13.4635i 0.0633488 0.0434306i
\(311\) 431.813i 1.38847i −0.719750 0.694233i \(-0.755744\pi\)
0.719750 0.694233i \(-0.244256\pi\)
\(312\) 83.5455 + 46.1550i 0.267774 + 0.147933i
\(313\) 115.640i 0.369456i 0.982790 + 0.184728i \(0.0591405\pi\)
−0.982790 + 0.184728i \(0.940860\pi\)
\(314\) −82.6337 222.666i −0.263165 0.709126i
\(315\) −31.0841 123.996i −0.0986797 0.393637i
\(316\) −195.609 227.248i −0.619015 0.719140i
\(317\) 513.271i 1.61915i 0.587015 + 0.809576i \(0.300303\pi\)
−0.587015 + 0.809576i \(0.699697\pi\)
\(318\) 122.648 + 330.487i 0.385684 + 1.03927i
\(319\) 91.9118i 0.288125i
\(320\) 221.340 231.103i 0.691689 0.722196i
\(321\) 413.944 1.28955
\(322\) −273.249 + 101.406i −0.848600 + 0.314925i
\(323\) 206.303 0.638710
\(324\) −175.922 + 151.429i −0.542969 + 0.467372i
\(325\) 53.4650 + 99.9356i 0.164508 + 0.307494i
\(326\) −37.5690 + 13.9423i −0.115242 + 0.0427677i
\(327\) −240.030 −0.734035
\(328\) −63.5695 + 115.068i −0.193809 + 0.350816i
\(329\) −989.971 −3.00903
\(330\) 71.9895 49.3546i 0.218150 0.149559i
\(331\) 144.169i 0.435554i 0.975999 + 0.217777i \(0.0698806\pi\)
−0.975999 + 0.217777i \(0.930119\pi\)
\(332\) −60.2085 + 51.8257i −0.181351 + 0.156102i
\(333\) 123.876i 0.372001i
\(334\) 234.418 86.9951i 0.701849 0.260464i
\(335\) −67.3259 268.566i −0.200973 0.801689i
\(336\) 77.2350 513.228i 0.229866 1.52746i
\(337\) 62.1121i 0.184309i −0.995745 0.0921545i \(-0.970625\pi\)
0.995745 0.0921545i \(-0.0293754\pi\)
\(338\) −278.345 + 103.297i −0.823505 + 0.305612i
\(339\) 497.202i 1.46667i
\(340\) −145.648 + 206.425i −0.428377 + 0.607133i
\(341\) −7.89692 −0.0231581
\(342\) −23.5728 63.5195i −0.0689263 0.185729i
\(343\) 664.706 1.93792
\(344\) −188.196 + 340.654i −0.547081 + 0.990275i
\(345\) 37.8295 + 150.903i 0.109651 + 0.437401i
\(346\) 136.602 + 368.088i 0.394802 + 1.06384i
\(347\) 202.503 0.583583 0.291792 0.956482i \(-0.405749\pi\)
0.291792 + 0.956482i \(0.405749\pi\)
\(348\) 221.095 190.312i 0.635331 0.546874i
\(349\) 356.951 1.02278 0.511391 0.859348i \(-0.329130\pi\)
0.511391 + 0.859348i \(0.329130\pi\)
\(350\) 408.313 461.627i 1.16661 1.31894i
\(351\) 132.125i 0.376425i
\(352\) −103.888 + 21.7078i −0.295137 + 0.0616698i
\(353\) 242.038i 0.685659i 0.939398 + 0.342830i \(0.111385\pi\)
−0.939398 + 0.342830i \(0.888615\pi\)
\(354\) −22.8720 61.6311i −0.0646102 0.174099i
\(355\) 603.189 151.211i 1.69912 0.425948i
\(356\) −280.549 + 241.489i −0.788060 + 0.678339i
\(357\) 409.749i 1.14776i
\(358\) 89.5378 + 241.269i 0.250106 + 0.673937i
\(359\) 275.762i 0.768140i 0.923304 + 0.384070i \(0.125478\pi\)
−0.923304 + 0.384070i \(0.874522\pi\)
\(360\) 80.1991 + 21.2574i 0.222775 + 0.0590484i
\(361\) 94.2626 0.261115
\(362\) 118.856 44.1089i 0.328332 0.121848i
\(363\) −28.9486 −0.0797482
\(364\) −145.819 169.405i −0.400601 0.465398i
\(365\) 634.262 159.001i 1.73770 0.435620i
\(366\) −13.9548 + 5.17880i −0.0381280 + 0.0141497i
\(367\) −378.758 −1.03204 −0.516019 0.856577i \(-0.672587\pi\)
−0.516019 + 0.856577i \(0.672587\pi\)
\(368\) 28.1508 187.062i 0.0764966 0.508321i
\(369\) −34.0844 −0.0923696
\(370\) 492.576 337.700i 1.33129 0.912703i
\(371\) 825.519i 2.22512i
\(372\) 16.3514 + 18.9962i 0.0439552 + 0.0510650i
\(373\) 151.017i 0.404872i −0.979296 0.202436i \(-0.935114\pi\)
0.979296 0.202436i \(-0.0648858\pi\)
\(374\) 78.5548 29.1526i 0.210039 0.0779480i
\(375\) −221.054 243.619i −0.589478 0.649652i
\(376\) 310.706 562.412i 0.826347 1.49578i
\(377\) 125.636i 0.333251i
\(378\) 673.562 249.966i 1.78191 0.661287i
\(379\) 721.980i 1.90496i 0.304599 + 0.952481i \(0.401478\pi\)
−0.304599 + 0.952481i \(0.598522\pi\)
\(380\) 188.314 266.895i 0.495563 0.702355i
\(381\) −420.211 −1.10291
\(382\) −26.3774 71.0767i −0.0690508 0.186065i
\(383\) −640.870 −1.67329 −0.836645 0.547746i \(-0.815486\pi\)
−0.836645 + 0.547746i \(0.815486\pi\)
\(384\) 267.329 + 204.957i 0.696170 + 0.533741i
\(385\) −198.267 + 49.7029i −0.514979 + 0.129098i
\(386\) 156.880 + 422.730i 0.406424 + 1.09516i
\(387\) −100.906 −0.260739
\(388\) 18.4897 + 21.4804i 0.0476538 + 0.0553617i
\(389\) −103.555 −0.266209 −0.133104 0.991102i \(-0.542495\pi\)
−0.133104 + 0.991102i \(0.542495\pi\)
\(390\) −98.4035 + 67.4634i −0.252317 + 0.172983i
\(391\) 149.346i 0.381959i
\(392\) −398.179 + 720.747i −1.01576 + 1.83864i
\(393\) 142.480i 0.362543i
\(394\) −262.420 707.118i −0.666039 1.79472i
\(395\) 363.552 91.1376i 0.920384 0.230728i
\(396\) −17.9518 20.8554i −0.0453327 0.0526652i
\(397\) 490.730i 1.23609i 0.786141 + 0.618047i \(0.212076\pi\)
−0.786141 + 0.618047i \(0.787924\pi\)
\(398\) 206.623 + 556.768i 0.519153 + 1.39891i
\(399\) 529.779i 1.32777i
\(400\) 134.104 + 376.850i 0.335261 + 0.942125i
\(401\) −505.365 −1.26026 −0.630131 0.776489i \(-0.716999\pi\)
−0.630131 + 0.776489i \(0.716999\pi\)
\(402\) 273.251 101.406i 0.679728 0.252255i
\(403\) 10.7944 0.0267852
\(404\) −64.8287 + 55.8027i −0.160467 + 0.138126i
\(405\) −70.5533 281.440i −0.174206 0.694914i
\(406\) −640.479 + 237.689i −1.57753 + 0.585441i
\(407\) −198.076 −0.486673
\(408\) −232.782 128.601i −0.570545 0.315199i
\(409\) −145.058 −0.354666 −0.177333 0.984151i \(-0.556747\pi\)
−0.177333 + 0.984151i \(0.556747\pi\)
\(410\) −92.9177 135.532i −0.226629 0.330565i
\(411\) 470.880i 1.14569i
\(412\) 2.77110 2.38528i 0.00672597 0.00578952i
\(413\) 153.947i 0.372754i
\(414\) 45.9826 17.0647i 0.111069 0.0412190i
\(415\) −24.1465 96.3215i −0.0581844 0.232100i
\(416\) 142.006 29.6726i 0.341361 0.0713285i
\(417\) 69.3337i 0.166268i
\(418\) −101.566 + 37.6924i −0.242982 + 0.0901733i
\(419\) 436.102i 1.04082i 0.853918 + 0.520408i \(0.174220\pi\)
−0.853918 + 0.520408i \(0.825780\pi\)
\(420\) 530.092 + 374.019i 1.26212 + 0.890521i
\(421\) 426.638 1.01339 0.506696 0.862125i \(-0.330867\pi\)
0.506696 + 0.862125i \(0.330867\pi\)
\(422\) −107.704 290.221i −0.255224 0.687728i
\(423\) 166.593 0.393837
\(424\) 468.986 + 259.093i 1.10610 + 0.611068i
\(425\) −148.969 278.450i −0.350516 0.655176i
\(426\) 227.755 + 613.711i 0.534637 + 1.44064i
\(427\) 34.8576 0.0816337
\(428\) 476.844 410.454i 1.11412 0.959005i
\(429\) 39.5702 0.0922383
\(430\) −275.080 401.238i −0.639722 0.933111i
\(431\) 19.1962i 0.0445387i 0.999752 + 0.0222693i \(0.00708914\pi\)
−0.999752 + 0.0222693i \(0.992911\pi\)
\(432\) −69.3919 + 461.110i −0.160629 + 1.06738i
\(433\) 717.973i 1.65814i 0.559148 + 0.829068i \(0.311129\pi\)
−0.559148 + 0.829068i \(0.688871\pi\)
\(434\) −20.4219 55.0290i −0.0470550 0.126795i
\(435\) 88.6699 + 353.708i 0.203839 + 0.813121i
\(436\) −276.503 + 238.006i −0.634181 + 0.545885i
\(437\) 193.095i 0.441865i
\(438\) 239.488 + 645.327i 0.546776 + 1.47335i
\(439\) 142.031i 0.323532i 0.986829 + 0.161766i \(0.0517190\pi\)
−0.986829 + 0.161766i \(0.948281\pi\)
\(440\) 33.9902 128.237i 0.0772504 0.291447i
\(441\) −213.494 −0.484113
\(442\) −107.378 + 39.8490i −0.242936 + 0.0901562i
\(443\) −246.868 −0.557263 −0.278632 0.960398i \(-0.589881\pi\)
−0.278632 + 0.960398i \(0.589881\pi\)
\(444\) 410.135 + 476.474i 0.923728 + 1.07314i
\(445\) −112.514 448.823i −0.252840 1.00859i
\(446\) 305.113 113.231i 0.684109 0.253881i
\(447\) −291.874 −0.652962
\(448\) −419.929 667.799i −0.937343 1.49062i
\(449\) −260.153 −0.579406 −0.289703 0.957117i \(-0.593557\pi\)
−0.289703 + 0.957117i \(0.593557\pi\)
\(450\) −68.7112 + 77.6831i −0.152692 + 0.172629i
\(451\) 54.5003i 0.120843i
\(452\) 493.010 + 572.754i 1.09073 + 1.26715i
\(453\) 142.673i 0.314951i
\(454\) −320.969 + 119.115i −0.706980 + 0.262368i
\(455\) 271.014 67.9396i 0.595635 0.149318i
\(456\) 300.973 + 166.273i 0.660028 + 0.364635i
\(457\) 298.040i 0.652166i 0.945341 + 0.326083i \(0.105729\pi\)
−0.945341 + 0.326083i \(0.894271\pi\)
\(458\) −779.902 + 289.430i −1.70284 + 0.631944i
\(459\) 368.139i 0.802046i
\(460\) 193.209 + 136.323i 0.420019 + 0.296355i
\(461\) 647.275 1.40407 0.702034 0.712144i \(-0.252276\pi\)
0.702034 + 0.712144i \(0.252276\pi\)
\(462\) −74.8626 201.726i −0.162040 0.436635i
\(463\) −130.560 −0.281987 −0.140993 0.990011i \(-0.545030\pi\)
−0.140993 + 0.990011i \(0.545030\pi\)
\(464\) 65.9836 438.462i 0.142206 0.944961i
\(465\) −30.3901 + 7.61839i −0.0653550 + 0.0163836i
\(466\) −126.680 341.352i −0.271845 0.732515i
\(467\) 228.711 0.489746 0.244873 0.969555i \(-0.421254\pi\)
0.244873 + 0.969555i \(0.421254\pi\)
\(468\) 24.5385 + 28.5076i 0.0524327 + 0.0609136i
\(469\) −682.549 −1.45533
\(470\) 454.151 + 662.434i 0.966279 + 1.40943i
\(471\) 312.519i 0.663522i
\(472\) −87.4590 48.3170i −0.185294 0.102367i
\(473\) 161.347i 0.341113i
\(474\) 137.272 + 369.894i 0.289603 + 0.780366i
\(475\) 192.608 + 360.018i 0.405490 + 0.757933i
\(476\) 406.294 + 472.012i 0.853559 + 0.991621i
\(477\) 138.919i 0.291235i
\(478\) −19.3374 52.1068i −0.0404548 0.109010i
\(479\) 213.777i 0.446299i 0.974784 + 0.223149i \(0.0716338\pi\)
−0.974784 + 0.223149i \(0.928366\pi\)
\(480\) −378.855 + 183.763i −0.789282 + 0.382839i
\(481\) 270.753 0.562895
\(482\) −518.214 + 192.315i −1.07513 + 0.398994i
\(483\) 383.515 0.794026
\(484\) −33.3474 + 28.7045i −0.0688996 + 0.0593068i
\(485\) −34.3643 + 8.61467i −0.0708542 + 0.0177622i
\(486\) −205.465 + 76.2504i −0.422768 + 0.156894i
\(487\) 925.573 1.90056 0.950280 0.311396i \(-0.100797\pi\)
0.950280 + 0.311396i \(0.100797\pi\)
\(488\) −10.9402 + 19.8029i −0.0224184 + 0.0405798i
\(489\) 52.7293 0.107831
\(490\) −582.007 848.927i −1.18777 1.73250i
\(491\) 643.261i 1.31010i 0.755583 + 0.655052i \(0.227353\pi\)
−0.755583 + 0.655052i \(0.772647\pi\)
\(492\) 131.101 112.848i 0.266466 0.229366i
\(493\) 350.057i 0.710056i
\(494\) 138.833 51.5223i 0.281037 0.104296i
\(495\) 33.3645 8.36404i 0.0674031 0.0168971i
\(496\) 37.6720 + 5.66921i 0.0759516 + 0.0114299i
\(497\) 1532.98i 3.08447i
\(498\) 98.0018 36.3696i 0.196791 0.0730313i
\(499\) 224.200i 0.449298i −0.974440 0.224649i \(-0.927876\pi\)
0.974440 0.224649i \(-0.0721235\pi\)
\(500\) −496.210 61.4478i −0.992420 0.122896i
\(501\) −329.013 −0.656713
\(502\) −100.940 271.995i −0.201077 0.541823i
\(503\) 53.0447 0.105457 0.0527283 0.998609i \(-0.483208\pi\)
0.0527283 + 0.998609i \(0.483208\pi\)
\(504\) 98.9049 179.029i 0.196240 0.355215i
\(505\) −25.9995 103.713i −0.0514841 0.205372i
\(506\) −27.2861 73.5253i −0.0539251 0.145307i
\(507\) 390.666 0.770545
\(508\) −484.063 + 416.668i −0.952880 + 0.820212i
\(509\) 82.5528 0.162186 0.0810931 0.996707i \(-0.474159\pi\)
0.0810931 + 0.996707i \(0.474159\pi\)
\(510\) 274.181 187.973i 0.537610 0.368574i
\(511\) 1611.95i 3.15450i
\(512\) 511.179 28.9746i 0.998397 0.0565910i
\(513\) 475.981i 0.927838i
\(514\) 152.310 + 410.417i 0.296324 + 0.798477i
\(515\) 1.11135 + 4.43320i 0.00215795 + 0.00860816i
\(516\) 388.122 334.084i 0.752174 0.647449i
\(517\) 266.379i 0.515240i
\(518\) −512.235 1380.27i −0.988871 2.66462i
\(519\) 516.624i 0.995422i
\(520\) −46.4617 + 175.289i −0.0893494 + 0.337094i
\(521\) −28.9162 −0.0555013 −0.0277507 0.999615i \(-0.508834\pi\)
−0.0277507 + 0.999615i \(0.508834\pi\)
\(522\) 107.780 39.9985i 0.206476 0.0766255i
\(523\) −682.051 −1.30411 −0.652056 0.758171i \(-0.726093\pi\)
−0.652056 + 0.758171i \(0.726093\pi\)
\(524\) −141.278 164.130i −0.269615 0.313225i
\(525\) −715.048 + 382.547i −1.36200 + 0.728661i
\(526\) 806.989 299.483i 1.53420 0.569359i
\(527\) −30.0764 −0.0570710
\(528\) 138.098 + 20.7822i 0.261550 + 0.0393603i
\(529\) −389.216 −0.735758
\(530\) −552.392 + 378.709i −1.04225 + 0.714544i
\(531\) 25.9064i 0.0487879i
\(532\) −525.313 610.281i −0.987430 1.14715i
\(533\) 74.4972i 0.139770i
\(534\) 456.652 169.469i 0.855154 0.317358i
\(535\) 191.238 + 762.856i 0.357454 + 1.42590i
\(536\) 214.221 387.763i 0.399666 0.723438i
\(537\) 338.630i 0.630596i
\(538\) −437.678 + 162.427i −0.813528 + 0.301909i
\(539\) 341.372i 0.633344i
\(540\) −476.262 336.038i −0.881966 0.622292i
\(541\) −291.343 −0.538527 −0.269264 0.963066i \(-0.586780\pi\)
−0.269264 + 0.963066i \(0.586780\pi\)
\(542\) −218.705 589.324i −0.403514 1.08731i
\(543\) −166.819 −0.307217
\(544\) −395.671 + 82.6767i −0.727337 + 0.151979i
\(545\) −110.891 442.349i −0.203470 0.811650i
\(546\) 102.331 + 275.742i 0.187419 + 0.505021i
\(547\) 62.2215 0.113750 0.0568752 0.998381i \(-0.481886\pi\)
0.0568752 + 0.998381i \(0.481886\pi\)
\(548\) −466.910 542.432i −0.852025 0.989839i
\(549\) −5.86586 −0.0106846
\(550\) 124.214 + 109.868i 0.225843 + 0.199760i
\(551\) 452.602i 0.821420i
\(552\) −120.368 + 217.878i −0.218057 + 0.394707i
\(553\) 923.951i 1.67080i
\(554\) 36.4761 + 98.2888i 0.0658413 + 0.177417i
\(555\) −762.263 + 191.089i −1.37345 + 0.344305i
\(556\) 68.7491 + 79.8692i 0.123649 + 0.143650i
\(557\) 476.464i 0.855412i −0.903918 0.427706i \(-0.859322\pi\)
0.903918 0.427706i \(-0.140678\pi\)
\(558\) 3.43661 + 9.26033i 0.00615880 + 0.0165956i
\(559\) 220.547i 0.394538i
\(560\) 981.507 94.7698i 1.75269 0.169232i
\(561\) −110.254 −0.196532
\(562\) 802.630 297.865i 1.42817 0.530009i
\(563\) 214.796 0.381521 0.190761 0.981637i \(-0.438905\pi\)
0.190761 + 0.981637i \(0.438905\pi\)
\(564\) −640.779 + 551.564i −1.13613 + 0.977950i
\(565\) −916.291 + 229.702i −1.62175 + 0.406552i
\(566\) −459.657 + 170.584i −0.812115 + 0.301385i
\(567\) −715.268 −1.26150
\(568\) 870.901 + 481.132i 1.53328 + 0.847064i
\(569\) 692.867 1.21769 0.608846 0.793288i \(-0.291633\pi\)
0.608846 + 0.793288i \(0.291633\pi\)
\(570\) −354.499 + 243.037i −0.621928 + 0.426381i
\(571\) 405.570i 0.710281i −0.934813 0.355141i \(-0.884433\pi\)
0.934813 0.355141i \(-0.115567\pi\)
\(572\) 45.5831 39.2366i 0.0796907 0.0685955i
\(573\) 99.7586i 0.174099i
\(574\) −379.780 + 140.941i −0.661638 + 0.245541i
\(575\) −260.622 + 139.432i −0.453256 + 0.242490i
\(576\) 70.6661 + 112.378i 0.122684 + 0.195100i
\(577\) 885.493i 1.53465i 0.641259 + 0.767325i \(0.278413\pi\)
−0.641259 + 0.767325i \(0.721587\pi\)
\(578\) −242.702 + 90.0696i −0.419900 + 0.155830i
\(579\) 593.316i 1.02473i
\(580\) 452.869 + 319.533i 0.780809 + 0.550919i
\(581\) −244.797 −0.421338
\(582\) −12.9754 34.9638i −0.0222946 0.0600752i
\(583\) 222.129 0.381010
\(584\) 915.765 + 505.918i 1.56809 + 0.866298i
\(585\) −45.6064 + 11.4329i −0.0779597 + 0.0195435i
\(586\) 270.547 + 729.018i 0.461684 + 1.24406i
\(587\) 47.6840 0.0812334 0.0406167 0.999175i \(-0.487068\pi\)
0.0406167 + 0.999175i \(0.487068\pi\)
\(588\) 821.176 706.845i 1.39656 1.20212i
\(589\) 38.8869 0.0660219
\(590\) 103.013 70.6236i 0.174598 0.119701i
\(591\) 992.464i 1.67930i
\(592\) 944.914 + 142.199i 1.59614 + 0.240201i
\(593\) 283.001i 0.477236i 0.971113 + 0.238618i \(0.0766944\pi\)
−0.971113 + 0.238618i \(0.923306\pi\)
\(594\) 67.2604 + 181.241i 0.113233 + 0.305119i
\(595\) −755.124 + 189.300i −1.26912 + 0.318151i
\(596\) −336.226 + 289.413i −0.564137 + 0.485593i
\(597\) 781.443i 1.30895i
\(598\) 37.2977 + 100.503i 0.0623708 + 0.168065i
\(599\) 1057.36i 1.76521i −0.470120 0.882603i \(-0.655789\pi\)
0.470120 0.882603i \(-0.344211\pi\)
\(600\) 7.09221 526.290i 0.0118204 0.877150i
\(601\) 711.377 1.18366 0.591828 0.806064i \(-0.298406\pi\)
0.591828 + 0.806064i \(0.298406\pi\)
\(602\) −1124.33 + 417.251i −1.86766 + 0.693108i
\(603\) 114.860 0.190481
\(604\) −141.470 164.353i −0.234222 0.272107i
\(605\) −13.3739 53.3492i −0.0221057 0.0881805i
\(606\) 105.522 39.1605i 0.174129 0.0646213i
\(607\) −418.046 −0.688709 −0.344355 0.938840i \(-0.611902\pi\)
−0.344355 + 0.938840i \(0.611902\pi\)
\(608\) 511.578 106.896i 0.841412 0.175815i
\(609\) 898.934 1.47608
\(610\) −15.9910 23.3248i −0.0262147 0.0382373i
\(611\) 364.117i 0.595937i
\(612\) −68.3715 79.4305i −0.111718 0.129788i
\(613\) 540.562i 0.881831i 0.897549 + 0.440916i \(0.145346\pi\)
−0.897549 + 0.440916i \(0.854654\pi\)
\(614\) 242.821 90.1137i 0.395474 0.146765i
\(615\) 52.5779 + 209.736i 0.0854926 + 0.341033i
\(616\) −286.263 158.147i −0.464713 0.256732i
\(617\) 610.765i 0.989895i 0.868923 + 0.494948i \(0.164813\pi\)
−0.868923 + 0.494948i \(0.835187\pi\)
\(618\) −4.51054 + 1.67391i −0.00729861 + 0.00270860i
\(619\) 217.837i 0.351918i −0.984397 0.175959i \(-0.943697\pi\)
0.984397 0.175959i \(-0.0563026\pi\)
\(620\) −27.4538 + 38.9099i −0.0442803 + 0.0627578i
\(621\) −344.569 −0.554862
\(622\) 300.477 + 809.669i 0.483083 + 1.30172i
\(623\) −1140.66 −1.83092
\(624\) −188.768 28.4075i −0.302513 0.0455249i
\(625\) 346.840 519.930i 0.554945 0.831887i
\(626\) −80.4680 216.830i −0.128543 0.346373i
\(627\) 142.552 0.227355
\(628\) 309.884 + 360.007i 0.493445 + 0.573260i
\(629\) −754.396 −1.19936
\(630\) 144.567 + 210.868i 0.229471 + 0.334711i
\(631\) 302.659i 0.479650i −0.970816 0.239825i \(-0.922910\pi\)
0.970816 0.239825i \(-0.0770901\pi\)
\(632\) 524.906 + 289.986i 0.830547 + 0.458839i
\(633\) 407.335i 0.643500i
\(634\) −357.160 962.406i −0.563344 1.51799i
\(635\) −194.133 774.404i −0.305721 1.21953i
\(636\) −459.940 534.334i −0.723176 0.840148i
\(637\) 466.627i 0.732538i
\(638\) −63.9568 172.339i −0.100246 0.270123i
\(639\) 257.971i 0.403711i
\(640\) −254.210 + 587.347i −0.397204 + 0.917730i
\(641\) −790.165 −1.23271 −0.616353 0.787470i \(-0.711391\pi\)
−0.616353 + 0.787470i \(0.711391\pi\)
\(642\) −776.164 + 288.043i −1.20898 + 0.448665i
\(643\) −610.520 −0.949486 −0.474743 0.880124i \(-0.657459\pi\)
−0.474743 + 0.880124i \(0.657459\pi\)
\(644\) 441.791 380.281i 0.686011 0.590499i
\(645\) 155.656 + 620.917i 0.241327 + 0.962661i
\(646\) −386.828 + 143.556i −0.598805 + 0.222223i
\(647\) 471.930 0.729413 0.364706 0.931123i \(-0.381169\pi\)
0.364706 + 0.931123i \(0.381169\pi\)
\(648\) 224.490 406.351i 0.346435 0.627085i
\(649\) −41.4238 −0.0638272
\(650\) −169.789 150.180i −0.261215 0.231046i
\(651\) 77.2351i 0.118641i
\(652\) 60.7417 52.2847i 0.0931622 0.0801913i
\(653\) 384.236i 0.588417i −0.955741 0.294209i \(-0.904944\pi\)
0.955741 0.294209i \(-0.0950560\pi\)
\(654\) 450.066 167.025i 0.688175 0.255389i
\(655\) 262.575 65.8241i 0.400878 0.100495i
\(656\) 39.1258 259.992i 0.0596430 0.396329i
\(657\) 271.261i 0.412878i
\(658\) 1856.24 688.871i 2.82103 1.04692i
\(659\) 624.328i 0.947388i −0.880690 0.473694i \(-0.842920\pi\)
0.880690 0.473694i \(-0.157080\pi\)
\(660\) −100.640 + 142.636i −0.152485 + 0.216115i
\(661\) −761.714 −1.15237 −0.576183 0.817321i \(-0.695458\pi\)
−0.576183 + 0.817321i \(0.695458\pi\)
\(662\) −100.320 270.322i −0.151540 0.408342i
\(663\) 150.708 0.227312
\(664\) 76.8306 139.072i 0.115709 0.209445i
\(665\) 976.328 244.752i 1.46816 0.368049i
\(666\) 86.1994 + 232.274i 0.129428 + 0.348759i
\(667\) 327.645 0.491222
\(668\) −379.008 + 326.239i −0.567377 + 0.488382i
\(669\) −428.236 −0.640113
\(670\) 313.121 + 456.724i 0.467344 + 0.681678i
\(671\) 9.37940i 0.0139782i
\(672\) 212.311 + 1016.07i 0.315938 + 1.51201i
\(673\) 1053.59i 1.56552i 0.622325 + 0.782759i \(0.286188\pi\)
−0.622325 + 0.782759i \(0.713812\pi\)
\(674\) 43.2208 + 116.463i 0.0641257 + 0.172794i
\(675\) 642.436 343.700i 0.951757 0.509185i
\(676\) 450.030 387.373i 0.665724 0.573036i
\(677\) 897.006i 1.32497i −0.749075 0.662486i \(-0.769502\pi\)
0.749075 0.662486i \(-0.230498\pi\)
\(678\) −345.978 932.276i −0.510292 1.37504i
\(679\) 87.3354i 0.128624i
\(680\) 129.456 488.406i 0.190376 0.718244i
\(681\) 450.491 0.661514
\(682\) 14.8071 5.49508i 0.0217113 0.00805730i
\(683\) −116.784 −0.170987 −0.0854937 0.996339i \(-0.527247\pi\)
−0.0854937 + 0.996339i \(0.527247\pi\)
\(684\) 88.4001 + 102.699i 0.129240 + 0.150144i
\(685\) 867.783 217.542i 1.26684 0.317579i
\(686\) −1246.35 + 462.536i −1.81684 + 0.674251i
\(687\) 1094.62 1.59333
\(688\) 115.831 769.698i 0.168359 1.11875i
\(689\) −303.631 −0.440684
\(690\) −175.938 256.627i −0.254983 0.371923i
\(691\) 603.974i 0.874059i 0.899447 + 0.437029i \(0.143969\pi\)
−0.899447 + 0.437029i \(0.856031\pi\)
\(692\) −512.268 595.127i −0.740272 0.860010i
\(693\) 84.7945i 0.122359i
\(694\) −379.703 + 140.912i −0.547122 + 0.203043i
\(695\) −127.775 + 32.0314i −0.183849 + 0.0460884i
\(696\) −282.134 + 510.693i −0.405365 + 0.733755i
\(697\) 207.571i 0.297806i
\(698\) −669.299 + 248.385i −0.958882 + 0.355852i
\(699\) 479.099i 0.685407i
\(700\) −444.381 + 1149.70i −0.634830 + 1.64242i
\(701\) 624.447 0.890795 0.445398 0.895333i \(-0.353062\pi\)
0.445398 + 0.895333i \(0.353062\pi\)
\(702\) −91.9392 247.740i −0.130968 0.352906i
\(703\) 975.387 1.38746
\(704\) 179.690 112.994i 0.255241 0.160502i
\(705\) −256.984 1025.12i −0.364516 1.45407i
\(706\) −168.422 453.832i −0.238558 0.642821i
\(707\) −263.582 −0.372818
\(708\) 85.7721 + 99.6456i 0.121147 + 0.140742i
\(709\) 935.347 1.31925 0.659624 0.751596i \(-0.270715\pi\)
0.659624 + 0.751596i \(0.270715\pi\)
\(710\) −1025.79 + 703.257i −1.44477 + 0.990503i
\(711\) 155.483i 0.218683i
\(712\) 358.002 648.023i 0.502812 0.910144i
\(713\) 28.1508i 0.0394822i
\(714\) −285.124 768.297i −0.399333 1.07605i
\(715\) 18.2810 + 72.9238i 0.0255679 + 0.101991i
\(716\) −335.775 390.086i −0.468959 0.544813i
\(717\) 73.1336i 0.101999i
\(718\) −191.889 517.066i −0.267255 0.720148i
\(719\) 732.181i 1.01833i 0.860668 + 0.509166i \(0.170046\pi\)
−0.860668 + 0.509166i \(0.829954\pi\)
\(720\) −165.169 + 15.9480i −0.229401 + 0.0221499i
\(721\) 11.2668 0.0156266
\(722\) −176.747 + 65.5927i −0.244801 + 0.0908486i
\(723\) 727.331 1.00599
\(724\) −192.167 + 165.412i −0.265425 + 0.228470i
\(725\) −610.882 + 326.819i −0.842596 + 0.450784i
\(726\) 54.2799 20.1439i 0.0747657 0.0277464i
\(727\) −697.591 −0.959547 −0.479773 0.877392i \(-0.659281\pi\)
−0.479773 + 0.877392i \(0.659281\pi\)
\(728\) 391.297 + 216.173i 0.537496 + 0.296942i
\(729\) 810.645 1.11200
\(730\) −1078.63 + 739.486i −1.47757 + 1.01299i
\(731\) 614.509i 0.840641i
\(732\) 22.5623 19.4210i 0.0308228 0.0265314i
\(733\) 387.121i 0.528133i 0.964504 + 0.264066i \(0.0850638\pi\)
−0.964504 + 0.264066i \(0.914936\pi\)
\(734\) 710.189 263.559i 0.967559 0.359072i
\(735\) 329.332 + 1313.72i 0.448070 + 1.78737i
\(736\) 77.3834 + 370.339i 0.105140 + 0.503178i
\(737\) 183.659i 0.249198i
\(738\) 63.9097 23.7176i 0.0865986 0.0321377i
\(739\) 765.385i 1.03570i 0.855470 + 0.517852i \(0.173268\pi\)
−0.855470 + 0.517852i \(0.826732\pi\)
\(740\) −688.614 + 975.962i −0.930559 + 1.31887i
\(741\) −194.856 −0.262964
\(742\) 574.438 + 1547.89i 0.774175 + 2.08610i
\(743\) 212.800 0.286406 0.143203 0.989693i \(-0.454260\pi\)
0.143203 + 0.989693i \(0.454260\pi\)
\(744\) −43.8780 24.2406i −0.0589758 0.0325814i
\(745\) −134.843 537.894i −0.180997 0.722005i
\(746\) 105.085 + 283.164i 0.140865 + 0.379576i
\(747\) 41.1947 0.0551468
\(748\) −127.008 + 109.325i −0.169797 + 0.146156i
\(749\) 1938.77 2.58847
\(750\) 584.009 + 302.977i 0.778679 + 0.403969i
\(751\) 324.908i 0.432634i −0.976323 0.216317i \(-0.930596\pi\)
0.976323 0.216317i \(-0.0694044\pi\)
\(752\) −191.234 + 1270.75i −0.254301 + 1.68983i
\(753\) 381.754i 0.506978i
\(754\) 87.4235 + 235.572i 0.115946 + 0.312430i
\(755\) 262.931 65.9134i 0.348253 0.0873025i
\(756\) −1089.02 + 937.396i −1.44050 + 1.23994i
\(757\) 398.815i 0.526836i 0.964682 + 0.263418i \(0.0848499\pi\)
−0.964682 + 0.263418i \(0.915150\pi\)
\(758\) −502.390 1353.75i −0.662784 1.78594i
\(759\) 103.195i 0.135962i
\(760\) −167.378 + 631.478i −0.220235 + 0.830892i
\(761\) −54.4148 −0.0715044 −0.0357522 0.999361i \(-0.511383\pi\)
−0.0357522 + 0.999361i \(0.511383\pi\)
\(762\) 787.913 292.404i 1.03401 0.383732i
\(763\) −1124.21 −1.47341
\(764\) 98.9176 + 114.917i 0.129473 + 0.150415i
\(765\) 127.073 31.8555i 0.166108 0.0416412i
\(766\) 1201.66 445.950i 1.56875 0.582180i
\(767\) 56.6228 0.0738237
\(768\) −643.873 198.282i −0.838377 0.258179i
\(769\) 74.6904 0.0971267 0.0485633 0.998820i \(-0.484536\pi\)
0.0485633 + 0.998820i \(0.484536\pi\)
\(770\) 337.173 231.159i 0.437887 0.300207i
\(771\) 576.034i 0.747126i
\(772\) −588.313 683.472i −0.762064 0.885327i
\(773\) 915.903i 1.18487i 0.805619 + 0.592434i \(0.201833\pi\)
−0.805619 + 0.592434i \(0.798167\pi\)
\(774\) 189.203 70.2154i 0.244448 0.0907176i
\(775\) −28.0798 52.4861i