Properties

Label 220.3.h.a.199.4
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.4
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.97378 + 0.322758i) q^{2} -4.73469 q^{3} +(3.79165 - 1.27411i) q^{4} +(-1.42827 - 4.79166i) q^{5} +(9.34526 - 1.52816i) q^{6} +7.98176 q^{7} +(-7.07268 + 3.73861i) q^{8} +13.4173 q^{9} +(4.36565 + 8.99673i) q^{10} +3.31662i q^{11} +(-17.9523 + 6.03252i) q^{12} +16.6171i q^{13} +(-15.7543 + 2.57618i) q^{14} +(6.76243 + 22.6870i) q^{15} +(12.7533 - 9.66197i) q^{16} -27.0004i q^{17} +(-26.4829 + 4.33055i) q^{18} -32.7057i q^{19} +(-11.5206 - 16.3486i) q^{20} -37.7912 q^{21} +(-1.07047 - 6.54630i) q^{22} +4.15724 q^{23} +(33.4870 - 17.7012i) q^{24} +(-20.9201 + 13.6876i) q^{25} +(-5.36330 - 32.7986i) q^{26} -20.9146 q^{27} +(30.2641 - 10.1696i) q^{28} -57.6811 q^{29} +(-20.6700 - 42.5967i) q^{30} +14.8979i q^{31} +(-22.0538 + 23.1869i) q^{32} -15.7032i q^{33} +(8.71459 + 53.2929i) q^{34} +(-11.4001 - 38.2459i) q^{35} +(50.8738 - 17.0951i) q^{36} -4.84811i q^{37} +(10.5560 + 64.5541i) q^{38} -78.6768i q^{39} +(28.0159 + 28.5502i) q^{40} +6.17837 q^{41} +(74.5917 - 12.1974i) q^{42} -51.9995 q^{43} +(4.22575 + 12.5755i) q^{44} +(-19.1636 - 64.2912i) q^{45} +(-8.20550 + 1.34178i) q^{46} -42.9867 q^{47} +(-60.3829 + 45.7465i) q^{48} +14.7085 q^{49} +(36.8739 - 33.7685i) q^{50} +127.838i q^{51} +(21.1720 + 63.0063i) q^{52} -62.4688i q^{53} +(41.2809 - 6.75035i) q^{54} +(15.8921 - 4.73705i) q^{55} +(-56.4525 + 29.8407i) q^{56} +154.852i q^{57} +(113.850 - 18.6171i) q^{58} +15.6879i q^{59} +(54.5466 + 77.4054i) q^{60} -5.92632 q^{61} +(-4.80842 - 29.4052i) q^{62} +107.094 q^{63} +(36.0456 - 52.8840i) q^{64} +(79.6235 - 23.7337i) q^{65} +(5.06833 + 30.9947i) q^{66} -53.4975 q^{67} +(-34.4015 - 102.376i) q^{68} -19.6833 q^{69} +(34.8456 + 71.8097i) q^{70} -16.2442i q^{71} +(-94.8963 + 50.1620i) q^{72} -23.9582i q^{73} +(1.56477 + 9.56913i) q^{74} +(99.0501 - 64.8066i) q^{75} +(-41.6707 - 124.009i) q^{76} +26.4725i q^{77} +(25.3936 + 155.291i) q^{78} -27.9060i q^{79} +(-64.5121 - 47.3095i) q^{80} -21.7317 q^{81} +(-12.1948 + 1.99412i) q^{82} +24.0670 q^{83} +(-143.291 + 48.1501i) q^{84} +(-129.377 + 38.5639i) q^{85} +(102.636 - 16.7833i) q^{86} +273.102 q^{87} +(-12.3996 - 23.4574i) q^{88} +79.0905 q^{89} +(58.5753 + 120.712i) q^{90} +132.634i q^{91} +(15.7628 - 5.29679i) q^{92} -70.5369i q^{93} +(84.8465 - 13.8743i) q^{94} +(-156.715 + 46.7127i) q^{95} +(104.418 - 109.783i) q^{96} -69.4266i q^{97} +(-29.0314 + 4.74729i) q^{98} +44.5002i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97378 + 0.322758i −0.986892 + 0.161379i
\(3\) −4.73469 −1.57823 −0.789115 0.614245i \(-0.789461\pi\)
−0.789115 + 0.614245i \(0.789461\pi\)
\(4\) 3.79165 1.27411i 0.947914 0.318528i
\(5\) −1.42827 4.79166i −0.285655 0.958333i
\(6\) 9.34526 1.52816i 1.55754 0.254693i
\(7\) 7.98176 1.14025 0.570126 0.821557i \(-0.306894\pi\)
0.570126 + 0.821557i \(0.306894\pi\)
\(8\) −7.07268 + 3.73861i −0.884085 + 0.467326i
\(9\) 13.4173 1.49081
\(10\) 4.36565 + 8.99673i 0.436565 + 0.899673i
\(11\) 3.31662i 0.301511i
\(12\) −17.9523 + 6.03252i −1.49603 + 0.502710i
\(13\) 16.6171i 1.27824i 0.769108 + 0.639119i \(0.220701\pi\)
−0.769108 + 0.639119i \(0.779299\pi\)
\(14\) −15.7543 + 2.57618i −1.12531 + 0.184013i
\(15\) 6.76243 + 22.6870i 0.450829 + 1.51247i
\(16\) 12.7533 9.66197i 0.797080 0.603873i
\(17\) 27.0004i 1.58826i −0.607750 0.794128i \(-0.707928\pi\)
0.607750 0.794128i \(-0.292072\pi\)
\(18\) −26.4829 + 4.33055i −1.47127 + 0.240586i
\(19\) 32.7057i 1.72135i −0.509151 0.860677i \(-0.670040\pi\)
0.509151 0.860677i \(-0.329960\pi\)
\(20\) −11.5206 16.3486i −0.576031 0.817428i
\(21\) −37.7912 −1.79958
\(22\) −1.07047 6.54630i −0.0486576 0.297559i
\(23\) 4.15724 0.180750 0.0903748 0.995908i \(-0.471193\pi\)
0.0903748 + 0.995908i \(0.471193\pi\)
\(24\) 33.4870 17.7012i 1.39529 0.737548i
\(25\) −20.9201 + 13.6876i −0.836803 + 0.547504i
\(26\) −5.36330 32.7986i −0.206281 1.26148i
\(27\) −20.9146 −0.774614
\(28\) 30.2641 10.1696i 1.08086 0.363202i
\(29\) −57.6811 −1.98900 −0.994502 0.104715i \(-0.966607\pi\)
−0.994502 + 0.104715i \(0.966607\pi\)
\(30\) −20.6700 42.5967i −0.689001 1.41989i
\(31\) 14.8979i 0.480577i 0.970702 + 0.240289i \(0.0772421\pi\)
−0.970702 + 0.240289i \(0.922758\pi\)
\(32\) −22.0538 + 23.1869i −0.689180 + 0.724590i
\(33\) 15.7032i 0.475854i
\(34\) 8.71459 + 53.2929i 0.256311 + 1.56744i
\(35\) −11.4001 38.2459i −0.325718 1.09274i
\(36\) 50.8738 17.0951i 1.41316 0.474865i
\(37\) 4.84811i 0.131030i −0.997852 0.0655151i \(-0.979131\pi\)
0.997852 0.0655151i \(-0.0208690\pi\)
\(38\) 10.5560 + 64.5541i 0.277791 + 1.69879i
\(39\) 78.6768i 2.01735i
\(40\) 28.0159 + 28.5502i 0.700397 + 0.713754i
\(41\) 6.17837 0.150692 0.0753460 0.997157i \(-0.475994\pi\)
0.0753460 + 0.997157i \(0.475994\pi\)
\(42\) 74.5917 12.1974i 1.77599 0.290415i
\(43\) −51.9995 −1.20929 −0.604646 0.796494i \(-0.706685\pi\)
−0.604646 + 0.796494i \(0.706685\pi\)
\(44\) 4.22575 + 12.5755i 0.0960397 + 0.285807i
\(45\) −19.1636 64.2912i −0.425857 1.42869i
\(46\) −8.20550 + 1.34178i −0.178380 + 0.0291692i
\(47\) −42.9867 −0.914610 −0.457305 0.889310i \(-0.651185\pi\)
−0.457305 + 0.889310i \(0.651185\pi\)
\(48\) −60.3829 + 45.7465i −1.25798 + 0.953051i
\(49\) 14.7085 0.300174
\(50\) 36.8739 33.7685i 0.737479 0.675370i
\(51\) 127.838i 2.50664i
\(52\) 21.1720 + 63.0063i 0.407154 + 1.21166i
\(53\) 62.4688i 1.17866i −0.807893 0.589329i \(-0.799392\pi\)
0.807893 0.589329i \(-0.200608\pi\)
\(54\) 41.2809 6.75035i 0.764461 0.125007i
\(55\) 15.8921 4.73705i 0.288948 0.0861281i
\(56\) −56.4525 + 29.8407i −1.00808 + 0.532869i
\(57\) 154.852i 2.71669i
\(58\) 113.850 18.6171i 1.96293 0.320984i
\(59\) 15.6879i 0.265897i 0.991123 + 0.132949i \(0.0424445\pi\)
−0.991123 + 0.132949i \(0.957555\pi\)
\(60\) 54.5466 + 77.4054i 0.909110 + 1.29009i
\(61\) −5.92632 −0.0971528 −0.0485764 0.998819i \(-0.515468\pi\)
−0.0485764 + 0.998819i \(0.515468\pi\)
\(62\) −4.80842 29.4052i −0.0775551 0.474278i
\(63\) 107.094 1.69990
\(64\) 36.0456 52.8840i 0.563213 0.826312i
\(65\) 79.6235 23.7337i 1.22498 0.365134i
\(66\) 5.06833 + 30.9947i 0.0767930 + 0.469617i
\(67\) −53.4975 −0.798469 −0.399235 0.916849i \(-0.630724\pi\)
−0.399235 + 0.916849i \(0.630724\pi\)
\(68\) −34.4015 102.376i −0.505904 1.50553i
\(69\) −19.6833 −0.285265
\(70\) 34.8456 + 71.8097i 0.497794 + 1.02585i
\(71\) 16.2442i 0.228792i −0.993435 0.114396i \(-0.963507\pi\)
0.993435 0.114396i \(-0.0364933\pi\)
\(72\) −94.8963 + 50.1620i −1.31800 + 0.696695i
\(73\) 23.9582i 0.328194i −0.986444 0.164097i \(-0.947529\pi\)
0.986444 0.164097i \(-0.0524710\pi\)
\(74\) 1.56477 + 9.56913i 0.0211455 + 0.129313i
\(75\) 99.0501 64.8066i 1.32067 0.864088i
\(76\) −41.6707 124.009i −0.548299 1.63170i
\(77\) 26.4725i 0.343799i
\(78\) 25.3936 + 155.291i 0.325559 + 1.99091i
\(79\) 27.9060i 0.353241i −0.984279 0.176620i \(-0.943484\pi\)
0.984279 0.176620i \(-0.0565165\pi\)
\(80\) −64.5121 47.3095i −0.806401 0.591369i
\(81\) −21.7317 −0.268292
\(82\) −12.1948 + 1.99412i −0.148717 + 0.0243185i
\(83\) 24.0670 0.289964 0.144982 0.989434i \(-0.453688\pi\)
0.144982 + 0.989434i \(0.453688\pi\)
\(84\) −143.291 + 48.1501i −1.70585 + 0.573216i
\(85\) −129.377 + 38.5639i −1.52208 + 0.453693i
\(86\) 102.636 16.7833i 1.19344 0.195154i
\(87\) 273.102 3.13911
\(88\) −12.3996 23.4574i −0.140904 0.266562i
\(89\) 79.0905 0.888657 0.444329 0.895864i \(-0.353442\pi\)
0.444329 + 0.895864i \(0.353442\pi\)
\(90\) 58.5753 + 120.712i 0.650837 + 1.34124i
\(91\) 132.634i 1.45751i
\(92\) 15.7628 5.29679i 0.171335 0.0575738i
\(93\) 70.5369i 0.758461i
\(94\) 84.8465 13.8743i 0.902622 0.147599i
\(95\) −156.715 + 46.7127i −1.64963 + 0.491713i
\(96\) 104.418 109.783i 1.08769 1.14357i
\(97\) 69.4266i 0.715739i −0.933772 0.357869i \(-0.883503\pi\)
0.933772 0.357869i \(-0.116497\pi\)
\(98\) −29.0314 + 4.74729i −0.296239 + 0.0484418i
\(99\) 44.5002i 0.449497i
\(100\) −61.8822 + 78.5532i −0.618822 + 0.785532i
\(101\) −102.273 −1.01261 −0.506303 0.862356i \(-0.668988\pi\)
−0.506303 + 0.862356i \(0.668988\pi\)
\(102\) −41.2609 252.326i −0.404519 2.47378i
\(103\) 56.6705 0.550199 0.275100 0.961416i \(-0.411289\pi\)
0.275100 + 0.961416i \(0.411289\pi\)
\(104\) −62.1248 117.527i −0.597354 1.13007i
\(105\) 53.9761 + 181.083i 0.514058 + 1.72460i
\(106\) 20.1623 + 123.300i 0.190211 + 1.16321i
\(107\) −103.061 −0.963184 −0.481592 0.876396i \(-0.659941\pi\)
−0.481592 + 0.876396i \(0.659941\pi\)
\(108\) −79.3009 + 26.6475i −0.734267 + 0.246736i
\(109\) 56.5755 0.519041 0.259520 0.965738i \(-0.416436\pi\)
0.259520 + 0.965738i \(0.416436\pi\)
\(110\) −29.8388 + 14.4792i −0.271262 + 0.131629i
\(111\) 22.9543i 0.206796i
\(112\) 101.794 77.1196i 0.908872 0.688568i
\(113\) 28.9693i 0.256365i −0.991751 0.128183i \(-0.959086\pi\)
0.991751 0.128183i \(-0.0409144\pi\)
\(114\) −49.9796 305.644i −0.438418 2.68109i
\(115\) −5.93768 19.9201i −0.0516320 0.173218i
\(116\) −218.707 + 73.4921i −1.88540 + 0.633553i
\(117\) 222.957i 1.90561i
\(118\) −5.06341 30.9646i −0.0429102 0.262412i
\(119\) 215.511i 1.81101i
\(120\) −132.646 135.176i −1.10539 1.12647i
\(121\) −11.0000 −0.0909091
\(122\) 11.6973 1.91277i 0.0958794 0.0156784i
\(123\) −29.2527 −0.237827
\(124\) 18.9816 + 56.4876i 0.153077 + 0.455546i
\(125\) 95.4660 + 80.6923i 0.763728 + 0.645538i
\(126\) −211.380 + 34.5654i −1.67762 + 0.274328i
\(127\) −83.0581 −0.654000 −0.327000 0.945024i \(-0.606038\pi\)
−0.327000 + 0.945024i \(0.606038\pi\)
\(128\) −54.0776 + 116.016i −0.422481 + 0.906372i
\(129\) 246.202 1.90854
\(130\) −149.499 + 72.5444i −1.15000 + 0.558034i
\(131\) 80.9381i 0.617848i 0.951087 + 0.308924i \(0.0999689\pi\)
−0.951087 + 0.308924i \(0.900031\pi\)
\(132\) −20.0076 59.5411i −0.151573 0.451069i
\(133\) 261.049i 1.96278i
\(134\) 105.592 17.2667i 0.788004 0.128856i
\(135\) 29.8717 + 100.216i 0.221272 + 0.742338i
\(136\) 100.944 + 190.965i 0.742234 + 1.40415i
\(137\) 164.303i 1.19929i −0.800266 0.599645i \(-0.795309\pi\)
0.800266 0.599645i \(-0.204691\pi\)
\(138\) 38.8505 6.35293i 0.281526 0.0460357i
\(139\) 196.202i 1.41152i −0.708449 0.705762i \(-0.750605\pi\)
0.708449 0.705762i \(-0.249395\pi\)
\(140\) −91.9549 130.490i −0.656821 0.932073i
\(141\) 203.529 1.44347
\(142\) 5.24296 + 32.0626i 0.0369222 + 0.225793i
\(143\) −55.1127 −0.385403
\(144\) 171.115 129.638i 1.18830 0.900261i
\(145\) 82.3844 + 276.389i 0.568168 + 1.90613i
\(146\) 7.73269 + 47.2882i 0.0529636 + 0.323892i
\(147\) −69.6403 −0.473743
\(148\) −6.17703 18.3824i −0.0417367 0.124205i
\(149\) −22.8604 −0.153426 −0.0767129 0.997053i \(-0.524442\pi\)
−0.0767129 + 0.997053i \(0.524442\pi\)
\(150\) −174.587 + 159.884i −1.16391 + 1.06589i
\(151\) 104.875i 0.694540i 0.937765 + 0.347270i \(0.112891\pi\)
−0.937765 + 0.347270i \(0.887109\pi\)
\(152\) 122.274 + 231.317i 0.804434 + 1.52182i
\(153\) 362.272i 2.36779i
\(154\) −8.54422 52.2510i −0.0554819 0.339292i
\(155\) 71.3857 21.2782i 0.460553 0.137279i
\(156\) −100.243 298.315i −0.642583 1.91228i
\(157\) 33.0112i 0.210262i 0.994458 + 0.105131i \(0.0335262\pi\)
−0.994458 + 0.105131i \(0.966474\pi\)
\(158\) 9.00690 + 55.0805i 0.0570057 + 0.348611i
\(159\) 295.771i 1.86019i
\(160\) 142.603 + 72.5570i 0.891266 + 0.453481i
\(161\) 33.1821 0.206100
\(162\) 42.8936 7.01407i 0.264775 0.0432967i
\(163\) −11.6003 −0.0711676 −0.0355838 0.999367i \(-0.511329\pi\)
−0.0355838 + 0.999367i \(0.511329\pi\)
\(164\) 23.4262 7.87192i 0.142843 0.0479995i
\(165\) −75.2444 + 22.4284i −0.456027 + 0.135930i
\(166\) −47.5031 + 7.76782i −0.286163 + 0.0467941i
\(167\) −215.796 −1.29219 −0.646095 0.763257i \(-0.723599\pi\)
−0.646095 + 0.763257i \(0.723599\pi\)
\(168\) 267.285 141.286i 1.59098 0.840990i
\(169\) −107.128 −0.633892
\(170\) 242.915 117.874i 1.42891 0.693378i
\(171\) 438.823i 2.56622i
\(172\) −197.164 + 66.2532i −1.14630 + 0.385193i
\(173\) 241.675i 1.39697i 0.715627 + 0.698483i \(0.246141\pi\)
−0.715627 + 0.698483i \(0.753859\pi\)
\(174\) −539.045 + 88.1460i −3.09796 + 0.506586i
\(175\) −166.979 + 109.251i −0.954166 + 0.624293i
\(176\) 32.0451 + 42.2979i 0.182075 + 0.240329i
\(177\) 74.2775i 0.419647i
\(178\) −156.108 + 25.5271i −0.877009 + 0.143411i
\(179\) 116.702i 0.651965i −0.945376 0.325983i \(-0.894305\pi\)
0.945376 0.325983i \(-0.105695\pi\)
\(180\) −154.576 219.354i −0.858754 1.21863i
\(181\) 58.1296 0.321158 0.160579 0.987023i \(-0.448664\pi\)
0.160579 + 0.987023i \(0.448664\pi\)
\(182\) −42.8086 261.790i −0.235212 1.43841i
\(183\) 28.0593 0.153330
\(184\) −29.4028 + 15.5423i −0.159798 + 0.0844690i
\(185\) −23.2305 + 6.92443i −0.125570 + 0.0374294i
\(186\) 22.7664 + 139.225i 0.122400 + 0.748520i
\(187\) 89.5501 0.478878
\(188\) −162.991 + 54.7698i −0.866971 + 0.291329i
\(189\) −166.935 −0.883255
\(190\) 294.245 142.782i 1.54866 0.751484i
\(191\) 210.224i 1.10065i −0.834951 0.550325i \(-0.814504\pi\)
0.834951 0.550325i \(-0.185496\pi\)
\(192\) −170.665 + 250.389i −0.888880 + 1.30411i
\(193\) 11.9235i 0.0617797i 0.999523 + 0.0308899i \(0.00983412\pi\)
−0.999523 + 0.0308899i \(0.990166\pi\)
\(194\) 22.4080 + 137.033i 0.115505 + 0.706357i
\(195\) −376.993 + 112.372i −1.93330 + 0.576266i
\(196\) 55.7696 18.7403i 0.284539 0.0956136i
\(197\) 314.359i 1.59573i −0.602837 0.797864i \(-0.705963\pi\)
0.602837 0.797864i \(-0.294037\pi\)
\(198\) −14.3628 87.8338i −0.0725394 0.443605i
\(199\) 9.66806i 0.0485832i −0.999705 0.0242916i \(-0.992267\pi\)
0.999705 0.0242916i \(-0.00773302\pi\)
\(200\) 96.7884 175.020i 0.483942 0.875100i
\(201\) 253.294 1.26017
\(202\) 201.865 33.0095i 0.999333 0.163413i
\(203\) −460.397 −2.26797
\(204\) 162.880 + 484.719i 0.798433 + 2.37607i
\(205\) −8.82440 29.6047i −0.0430458 0.144413i
\(206\) −111.855 + 18.2909i −0.542987 + 0.0887906i
\(207\) 55.7790 0.269464
\(208\) 160.554 + 211.923i 0.771894 + 1.01886i
\(209\) 108.473 0.519008
\(210\) −164.983 339.997i −0.785634 1.61903i
\(211\) 0.857976i 0.00406624i 0.999998 + 0.00203312i \(0.000647162\pi\)
−0.999998 + 0.00203312i \(0.999353\pi\)
\(212\) −79.5922 236.860i −0.375435 1.11727i
\(213\) 76.9114i 0.361086i
\(214\) 203.420 33.2637i 0.950559 0.155438i
\(215\) 74.2695 + 249.164i 0.345440 + 1.15890i
\(216\) 147.922 78.1914i 0.684825 0.361997i
\(217\) 118.911i 0.547979i
\(218\) −111.668 + 18.2602i −0.512238 + 0.0837623i
\(219\) 113.434i 0.517966i
\(220\) 54.2220 38.2096i 0.246464 0.173680i
\(221\) 448.668 2.03017
\(222\) −7.40870 45.3069i −0.0333725 0.204085i
\(223\) 246.978 1.10752 0.553762 0.832675i \(-0.313192\pi\)
0.553762 + 0.832675i \(0.313192\pi\)
\(224\) −176.028 + 185.072i −0.785839 + 0.826215i
\(225\) −280.691 + 183.651i −1.24752 + 0.816226i
\(226\) 9.35007 + 57.1791i 0.0413720 + 0.253005i
\(227\) 317.663 1.39940 0.699698 0.714439i \(-0.253318\pi\)
0.699698 + 0.714439i \(0.253318\pi\)
\(228\) 197.298 + 587.144i 0.865342 + 2.57519i
\(229\) 133.599 0.583401 0.291701 0.956510i \(-0.405779\pi\)
0.291701 + 0.956510i \(0.405779\pi\)
\(230\) 18.1491 + 37.4016i 0.0789090 + 0.162616i
\(231\) 125.339i 0.542594i
\(232\) 407.960 215.647i 1.75845 0.929513i
\(233\) 195.429i 0.838753i 0.907812 + 0.419376i \(0.137751\pi\)
−0.907812 + 0.419376i \(0.862249\pi\)
\(234\) −71.9611 440.068i −0.307526 1.88063i
\(235\) 61.3967 + 205.978i 0.261263 + 0.876501i
\(236\) 19.9882 + 59.4832i 0.0846956 + 0.252048i
\(237\) 132.126i 0.557495i
\(238\) 69.5578 + 425.371i 0.292260 + 1.78727i
\(239\) 417.886i 1.74847i 0.485499 + 0.874237i \(0.338638\pi\)
−0.485499 + 0.874237i \(0.661362\pi\)
\(240\) 305.445 + 223.996i 1.27269 + 0.933317i
\(241\) −321.343 −1.33337 −0.666687 0.745338i \(-0.732288\pi\)
−0.666687 + 0.745338i \(0.732288\pi\)
\(242\) 21.7116 3.55034i 0.0897175 0.0146708i
\(243\) 291.124 1.19804
\(244\) −22.4706 + 7.55079i −0.0920925 + 0.0309459i
\(245\) −21.0078 70.4783i −0.0857460 0.287666i
\(246\) 57.7385 9.44154i 0.234709 0.0383802i
\(247\) 543.474 2.20030
\(248\) −55.6974 105.368i −0.224586 0.424871i
\(249\) −113.950 −0.457630
\(250\) −214.473 128.457i −0.857894 0.513827i
\(251\) 276.231i 1.10052i −0.834993 0.550261i \(-0.814528\pi\)
0.834993 0.550261i \(-0.185472\pi\)
\(252\) 406.062 136.449i 1.61136 0.541465i
\(253\) 13.7880i 0.0544981i
\(254\) 163.939 26.8077i 0.645428 0.105542i
\(255\) 612.559 182.588i 2.40219 0.716032i
\(256\) 69.2926 246.444i 0.270674 0.962671i
\(257\) 460.052i 1.79008i 0.445982 + 0.895042i \(0.352855\pi\)
−0.445982 + 0.895042i \(0.647145\pi\)
\(258\) −485.949 + 79.4636i −1.88352 + 0.307999i
\(259\) 38.6965i 0.149407i
\(260\) 271.665 191.439i 1.04487 0.736305i
\(261\) −773.925 −2.96523
\(262\) −26.1234 159.754i −0.0997077 0.609749i
\(263\) 101.763 0.386932 0.193466 0.981107i \(-0.438027\pi\)
0.193466 + 0.981107i \(0.438027\pi\)
\(264\) 58.7081 + 111.064i 0.222379 + 0.420696i
\(265\) −299.330 + 89.2226i −1.12955 + 0.336689i
\(266\) 84.2558 + 515.255i 0.316751 + 1.93705i
\(267\) −374.469 −1.40251
\(268\) −202.844 + 68.1617i −0.756880 + 0.254335i
\(269\) −32.5721 −0.121086 −0.0605430 0.998166i \(-0.519283\pi\)
−0.0605430 + 0.998166i \(0.519283\pi\)
\(270\) −91.3058 188.163i −0.338170 0.696899i
\(271\) 328.890i 1.21362i −0.794849 0.606808i \(-0.792450\pi\)
0.794849 0.606808i \(-0.207550\pi\)
\(272\) −260.877 344.343i −0.959106 1.26597i
\(273\) 627.980i 2.30029i
\(274\) 53.0300 + 324.298i 0.193540 + 1.18357i
\(275\) −45.3967 69.3840i −0.165079 0.252306i
\(276\) −74.6321 + 25.0786i −0.270406 + 0.0908647i
\(277\) 253.434i 0.914922i −0.889230 0.457461i \(-0.848759\pi\)
0.889230 0.457461i \(-0.151241\pi\)
\(278\) 63.3258 + 387.260i 0.227791 + 1.39302i
\(279\) 199.890i 0.716450i
\(280\) 223.616 + 227.881i 0.798628 + 0.813859i
\(281\) −5.26579 −0.0187395 −0.00936973 0.999956i \(-0.502983\pi\)
−0.00936973 + 0.999956i \(0.502983\pi\)
\(282\) −401.722 + 65.6905i −1.42455 + 0.232945i
\(283\) 293.265 1.03627 0.518135 0.855299i \(-0.326626\pi\)
0.518135 + 0.855299i \(0.326626\pi\)
\(284\) −20.6969 61.5925i −0.0728766 0.216875i
\(285\) 741.997 221.170i 2.60350 0.776036i
\(286\) 108.781 17.7881i 0.380352 0.0621960i
\(287\) 49.3143 0.171827
\(288\) −295.902 + 311.106i −1.02744 + 1.08023i
\(289\) −440.020 −1.52256
\(290\) −251.816 518.941i −0.868330 1.78945i
\(291\) 328.714i 1.12960i
\(292\) −30.5253 90.8410i −0.104539 0.311099i
\(293\) 116.785i 0.398582i 0.979940 + 0.199291i \(0.0638639\pi\)
−0.979940 + 0.199291i \(0.936136\pi\)
\(294\) 137.455 22.4770i 0.467534 0.0764523i
\(295\) 75.1713 22.4066i 0.254818 0.0759547i
\(296\) 18.1252 + 34.2892i 0.0612338 + 0.115842i
\(297\) 69.3658i 0.233555i
\(298\) 45.1216 7.37839i 0.151415 0.0247597i
\(299\) 69.0813i 0.231041i
\(300\) 292.993 371.925i 0.976643 1.23975i
\(301\) −415.048 −1.37890
\(302\) −33.8494 207.002i −0.112084 0.685436i
\(303\) 484.232 1.59813
\(304\) −316.002 417.106i −1.03948 1.37206i
\(305\) 8.46441 + 28.3969i 0.0277522 + 0.0931047i
\(306\) 116.926 + 715.047i 0.382112 + 2.33676i
\(307\) −251.246 −0.818390 −0.409195 0.912447i \(-0.634190\pi\)
−0.409195 + 0.912447i \(0.634190\pi\)
\(308\) 33.7289 + 100.375i 0.109509 + 0.325892i
\(309\) −268.317 −0.868341
\(310\) −134.032 + 65.0390i −0.432362 + 0.209803i
\(311\) 445.477i 1.43240i 0.697894 + 0.716201i \(0.254120\pi\)
−0.697894 + 0.716201i \(0.745880\pi\)
\(312\) 294.142 + 556.456i 0.942762 + 1.78351i
\(313\) 424.911i 1.35754i −0.734349 0.678772i \(-0.762512\pi\)
0.734349 0.678772i \(-0.237488\pi\)
\(314\) −10.6546 65.1570i −0.0339319 0.207506i
\(315\) −152.959 513.157i −0.485584 1.62907i
\(316\) −35.5553 105.810i −0.112517 0.334842i
\(317\) 52.2687i 0.164886i 0.996596 + 0.0824428i \(0.0262722\pi\)
−0.996596 + 0.0824428i \(0.973728\pi\)
\(318\) −95.4624 583.788i −0.300196 1.83581i
\(319\) 191.307i 0.599707i
\(320\) −304.885 97.1858i −0.952766 0.303706i
\(321\) 487.961 1.52013
\(322\) −65.4944 + 10.7098i −0.203399 + 0.0332602i
\(323\) −883.067 −2.73395
\(324\) −82.3989 + 27.6885i −0.254318 + 0.0854584i
\(325\) −227.448 347.631i −0.699841 1.06963i
\(326\) 22.8965 3.74410i 0.0702348 0.0114850i
\(327\) −267.867 −0.819166
\(328\) −43.6976 + 23.0985i −0.133224 + 0.0704222i
\(329\) −343.109 −1.04289
\(330\) 141.277 68.5547i 0.428113 0.207741i
\(331\) 204.652i 0.618283i −0.951016 0.309141i \(-0.899958\pi\)
0.951016 0.309141i \(-0.100042\pi\)
\(332\) 91.2537 30.6640i 0.274861 0.0923615i
\(333\) 65.0486i 0.195341i
\(334\) 425.934 69.6498i 1.27525 0.208532i
\(335\) 76.4090 + 256.342i 0.228086 + 0.765199i
\(336\) −481.962 + 365.137i −1.43441 + 1.08672i
\(337\) 24.2768i 0.0720379i −0.999351 0.0360190i \(-0.988532\pi\)
0.999351 0.0360190i \(-0.0114677\pi\)
\(338\) 211.447 34.5764i 0.625583 0.102297i
\(339\) 137.161i 0.404603i
\(340\) −441.417 + 311.061i −1.29829 + 0.914886i
\(341\) −49.4107 −0.144899
\(342\) 141.634 + 866.142i 0.414134 + 2.53258i
\(343\) −273.706 −0.797978
\(344\) 367.776 194.406i 1.06912 0.565133i
\(345\) 28.1131 + 94.3156i 0.0814871 + 0.273378i
\(346\) −78.0026 477.014i −0.225441 1.37865i
\(347\) 95.8193 0.276136 0.138068 0.990423i \(-0.455911\pi\)
0.138068 + 0.990423i \(0.455911\pi\)
\(348\) 1035.51 347.963i 2.97560 0.999892i
\(349\) 383.059 1.09759 0.548795 0.835957i \(-0.315087\pi\)
0.548795 + 0.835957i \(0.315087\pi\)
\(350\) 294.319 269.532i 0.840911 0.770092i
\(351\) 347.540i 0.990141i
\(352\) −76.9022 73.1441i −0.218472 0.207796i
\(353\) 167.048i 0.473224i 0.971604 + 0.236612i \(0.0760369\pi\)
−0.971604 + 0.236612i \(0.923963\pi\)
\(354\) 23.9737 + 146.608i 0.0677223 + 0.414147i
\(355\) −77.8369 + 23.2012i −0.219259 + 0.0653555i
\(356\) 299.884 100.770i 0.842370 0.283062i
\(357\) 1020.38i 2.85820i
\(358\) 37.6665 + 230.344i 0.105214 + 0.643420i
\(359\) 251.837i 0.701497i −0.936470 0.350748i \(-0.885927\pi\)
0.936470 0.350748i \(-0.114073\pi\)
\(360\) 375.897 + 383.066i 1.04416 + 1.06407i
\(361\) −708.665 −1.96306
\(362\) −114.735 + 18.7618i −0.316949 + 0.0518282i
\(363\) 52.0816 0.143476
\(364\) 168.990 + 502.901i 0.464258 + 1.38160i
\(365\) −114.799 + 34.2188i −0.314519 + 0.0937501i
\(366\) −55.3831 + 9.05637i −0.151320 + 0.0247442i
\(367\) −98.4658 −0.268299 −0.134150 0.990961i \(-0.542830\pi\)
−0.134150 + 0.990961i \(0.542830\pi\)
\(368\) 53.0185 40.1672i 0.144072 0.109150i
\(369\) 82.8971 0.224653
\(370\) 43.6172 21.1652i 0.117884 0.0572032i
\(371\) 498.611i 1.34397i
\(372\) −89.8718 267.452i −0.241591 0.718956i
\(373\) 106.337i 0.285087i 0.989789 + 0.142543i \(0.0455280\pi\)
−0.989789 + 0.142543i \(0.954472\pi\)
\(374\) −176.753 + 28.9030i −0.472601 + 0.0772808i
\(375\) −452.002 382.053i −1.20534 1.01881i
\(376\) 304.031 160.710i 0.808593 0.427421i
\(377\) 958.493i 2.54242i
\(378\) 329.494 53.8797i 0.871678 0.142539i
\(379\) 22.1653i 0.0584837i −0.999572 0.0292418i \(-0.990691\pi\)
0.999572 0.0292418i \(-0.00930929\pi\)
\(380\) −534.692 + 376.791i −1.40708 + 0.991554i
\(381\) 393.254 1.03216
\(382\) 67.8515 + 414.937i 0.177622 + 1.08622i
\(383\) 280.276 0.731790 0.365895 0.930656i \(-0.380763\pi\)
0.365895 + 0.930656i \(0.380763\pi\)
\(384\) 256.041 549.298i 0.666773 1.43046i
\(385\) 126.847 37.8100i 0.329474 0.0982077i
\(386\) −3.84840 23.5344i −0.00996996 0.0609700i
\(387\) −697.694 −1.80283
\(388\) −88.4572 263.242i −0.227982 0.678458i
\(389\) 352.236 0.905490 0.452745 0.891640i \(-0.350445\pi\)
0.452745 + 0.891640i \(0.350445\pi\)
\(390\) 707.834 343.476i 1.81496 0.880707i
\(391\) 112.247i 0.287077i
\(392\) −104.029 + 54.9894i −0.265379 + 0.140279i
\(393\) 383.217i 0.975106i
\(394\) 101.462 + 620.476i 0.257517 + 1.57481i
\(395\) −133.716 + 39.8574i −0.338522 + 0.100905i
\(396\) 56.6981 + 168.729i 0.143177 + 0.426084i
\(397\) 216.236i 0.544676i 0.962202 + 0.272338i \(0.0877968\pi\)
−0.962202 + 0.272338i \(0.912203\pi\)
\(398\) 3.12044 + 19.0827i 0.00784031 + 0.0479464i
\(399\) 1235.99i 3.09772i
\(400\) −134.550 + 376.691i −0.336376 + 0.941728i
\(401\) 548.165 1.36700 0.683498 0.729952i \(-0.260458\pi\)
0.683498 + 0.729952i \(0.260458\pi\)
\(402\) −499.948 + 81.7527i −1.24365 + 0.203365i
\(403\) −247.560 −0.614292
\(404\) −387.784 + 130.307i −0.959863 + 0.322543i
\(405\) 31.0387 + 104.131i 0.0766388 + 0.257113i
\(406\) 908.725 148.597i 2.23824 0.366002i
\(407\) 16.0794 0.0395071
\(408\) −477.938 904.160i −1.17142 2.21608i
\(409\) −715.299 −1.74890 −0.874448 0.485119i \(-0.838776\pi\)
−0.874448 + 0.485119i \(0.838776\pi\)
\(410\) 26.9726 + 55.5851i 0.0657869 + 0.135573i
\(411\) 777.923i 1.89276i
\(412\) 214.875 72.2045i 0.521541 0.175254i
\(413\) 125.217i 0.303190i
\(414\) −110.096 + 18.0031i −0.265932 + 0.0434858i
\(415\) −34.3742 115.321i −0.0828295 0.277882i
\(416\) −385.299 366.469i −0.926198 0.880936i
\(417\) 928.956i 2.22771i
\(418\) −214.102 + 35.0104i −0.512205 + 0.0837570i
\(419\) 122.220i 0.291695i 0.989307 + 0.145848i \(0.0465909\pi\)
−0.989307 + 0.145848i \(0.953409\pi\)
\(420\) 435.378 + 617.831i 1.03661 + 1.47103i
\(421\) 252.558 0.599900 0.299950 0.953955i \(-0.403030\pi\)
0.299950 + 0.953955i \(0.403030\pi\)
\(422\) −0.276919 1.69346i −0.000656206 0.00401294i
\(423\) −576.765 −1.36351
\(424\) 233.546 + 441.822i 0.550817 + 1.04203i
\(425\) 369.570 + 564.850i 0.869577 + 1.32906i
\(426\) −24.8238 151.807i −0.0582718 0.356354i
\(427\) −47.3025 −0.110779
\(428\) −390.770 + 131.311i −0.913015 + 0.306801i
\(429\) 260.941 0.608255
\(430\) −227.012 467.826i −0.527935 1.08797i
\(431\) 342.069i 0.793663i 0.917892 + 0.396831i \(0.129890\pi\)
−0.917892 + 0.396831i \(0.870110\pi\)
\(432\) −266.730 + 202.076i −0.617430 + 0.467769i
\(433\) 736.676i 1.70133i −0.525707 0.850666i \(-0.676199\pi\)
0.525707 0.850666i \(-0.323801\pi\)
\(434\) −38.3796 234.706i −0.0884323 0.540796i
\(435\) −390.065 1308.61i −0.896700 3.00831i
\(436\) 214.515 72.0834i 0.492006 0.165329i
\(437\) 135.966i 0.311134i
\(438\) −36.6119 223.895i −0.0835888 0.511176i
\(439\) 358.512i 0.816656i −0.912835 0.408328i \(-0.866112\pi\)
0.912835 0.408328i \(-0.133888\pi\)
\(440\) −94.6901 + 92.9181i −0.215205 + 0.211178i
\(441\) 197.349 0.447503
\(442\) −885.573 + 144.811i −2.00356 + 0.327627i
\(443\) 673.951 1.52133 0.760667 0.649142i \(-0.224872\pi\)
0.760667 + 0.649142i \(0.224872\pi\)
\(444\) 29.2463 + 87.0349i 0.0658702 + 0.196024i
\(445\) −112.963 378.975i −0.253849 0.851629i
\(446\) −487.481 + 79.7142i −1.09301 + 0.178731i
\(447\) 108.237 0.242141
\(448\) 287.708 422.107i 0.642204 0.942203i
\(449\) 506.931 1.12902 0.564511 0.825425i \(-0.309065\pi\)
0.564511 + 0.825425i \(0.309065\pi\)
\(450\) 494.749 453.082i 1.09944 1.00685i
\(451\) 20.4913i 0.0454353i
\(452\) −36.9101 109.841i −0.0816594 0.243012i
\(453\) 496.553i 1.09614i
\(454\) −626.998 + 102.528i −1.38105 + 0.225833i
\(455\) 635.536 189.437i 1.39678 0.416345i
\(456\) −578.929 1095.22i −1.26958 2.40179i
\(457\) 130.803i 0.286221i −0.989707 0.143110i \(-0.954290\pi\)
0.989707 0.143110i \(-0.0457104\pi\)
\(458\) −263.695 + 43.1201i −0.575754 + 0.0941488i
\(459\) 564.701i 1.23029i
\(460\) −47.8940 67.9649i −0.104117 0.147750i
\(461\) −232.740 −0.504859 −0.252430 0.967615i \(-0.581230\pi\)
−0.252430 + 0.967615i \(0.581230\pi\)
\(462\) 40.4542 + 247.393i 0.0875633 + 0.535482i
\(463\) 49.3198 0.106522 0.0532611 0.998581i \(-0.483038\pi\)
0.0532611 + 0.998581i \(0.483038\pi\)
\(464\) −735.624 + 557.314i −1.58540 + 1.20111i
\(465\) −337.989 + 100.746i −0.726858 + 0.216658i
\(466\) −63.0764 385.736i −0.135357 0.827759i
\(467\) 521.442 1.11658 0.558289 0.829647i \(-0.311458\pi\)
0.558289 + 0.829647i \(0.311458\pi\)
\(468\) 284.071 + 845.374i 0.606990 + 1.80636i
\(469\) −427.004 −0.910456
\(470\) −187.665 386.739i −0.399287 0.822850i
\(471\) 156.298i 0.331842i
\(472\) −58.6510 110.956i −0.124261 0.235076i
\(473\) 172.463i 0.364615i
\(474\) −42.6449 260.789i −0.0899681 0.550188i
\(475\) 447.663 + 684.206i 0.942449 + 1.44043i
\(476\) −274.584 817.141i −0.576858 1.71668i
\(477\) 838.164i 1.75716i
\(478\) −134.876 824.816i −0.282167 1.72556i
\(479\) 473.099i 0.987681i −0.869552 0.493841i \(-0.835593\pi\)
0.869552 0.493841i \(-0.164407\pi\)
\(480\) −675.179 343.535i −1.40662 0.715698i
\(481\) 80.5616 0.167488
\(482\) 634.262 103.716i 1.31590 0.215179i
\(483\) −157.107 −0.325273
\(484\) −41.7082 + 14.0152i −0.0861740 + 0.0289571i
\(485\) −332.669 + 99.1602i −0.685916 + 0.204454i
\(486\) −574.616 + 93.9626i −1.18234 + 0.193339i
\(487\) −100.945 −0.207280 −0.103640 0.994615i \(-0.533049\pi\)
−0.103640 + 0.994615i \(0.533049\pi\)
\(488\) 41.9150 22.1562i 0.0858914 0.0454020i
\(489\) 54.9240 0.112319
\(490\) 64.2123 + 132.328i 0.131045 + 0.270058i
\(491\) 18.4996i 0.0376773i −0.999823 0.0188387i \(-0.994003\pi\)
0.999823 0.0188387i \(-0.00599689\pi\)
\(492\) −110.916 + 37.2711i −0.225439 + 0.0757543i
\(493\) 1557.41i 3.15905i
\(494\) −1072.70 + 175.411i −2.17146 + 0.355083i
\(495\) 213.230 63.5584i 0.430767 0.128401i
\(496\) 143.943 + 189.997i 0.290208 + 0.383059i
\(497\) 129.658i 0.260880i
\(498\) 224.912 36.7782i 0.451631 0.0738519i
\(499\) 764.191i 1.53145i 0.643171 + 0.765723i \(0.277618\pi\)
−0.643171 + 0.765723i \(0.722382\pi\)
\(500\) 464.785 + 184.323i 0.929570 + 0.368646i
\(501\) 1021.73 2.03937
\(502\) 89.1558 + 545.221i 0.177601 + 1.08610i
\(503\) 519.882 1.03356 0.516781 0.856118i \(-0.327130\pi\)
0.516781 + 0.856118i \(0.327130\pi\)
\(504\) −757.440 + 400.381i −1.50286 + 0.794408i
\(505\) 146.074 + 490.059i 0.289255 + 0.970413i
\(506\) −4.45019 27.2146i −0.00879485 0.0537837i
\(507\) 507.217 1.00043
\(508\) −314.927 + 105.825i −0.619936 + 0.208317i
\(509\) 731.539 1.43721 0.718604 0.695420i \(-0.244781\pi\)
0.718604 + 0.695420i \(0.244781\pi\)
\(510\) −1150.13 + 558.098i −2.25515 + 1.09431i
\(511\) 191.228i 0.374224i
\(512\) −57.2269 + 508.792i −0.111771 + 0.993734i
\(513\) 684.027i 1.33339i
\(514\) −148.485 908.043i −0.288882 1.76662i
\(515\) −80.9409 271.546i −0.157167 0.527274i
\(516\) 933.512 313.688i 1.80913 0.607923i
\(517\) 142.571i 0.275765i
\(518\) 12.4896 + 76.3786i 0.0241112 + 0.147449i
\(519\) 1144.26i 2.20473i
\(520\) −474.421 + 465.542i −0.912347 + 0.895273i
\(521\) −913.393 −1.75315 −0.876577 0.481262i \(-0.840179\pi\)
−0.876577 + 0.481262i \(0.840179\pi\)
\(522\) 1527.56 249.791i 2.92636 0.478526i
\(523\) 662.576 1.26688 0.633438 0.773793i \(-0.281643\pi\)
0.633438 + 0.773793i \(0.281643\pi\)
\(524\) 103.124 + 306.889i 0.196802 + 0.585666i
\(525\) 790.594 517.271i 1.50589 0.985278i
\(526\) −200.859 + 32.8449i −0.381861 + 0.0624428i
\(527\) 402.248 0.763280
\(528\) −151.724 200.267i −0.287356 0.379294i
\(529\) −511.717 −0.967330
\(530\) 562.015 272.717i 1.06041 0.514561i
\(531\) 210.490i 0.396403i
\(532\) −332.606 989.809i −0.625199 1.86054i
\(533\) 102.667i 0.192620i
\(534\) 739.121 120.863i 1.38412 0.226335i
\(535\) 147.199 + 493.832i 0.275138 + 0.923051i
\(536\) 378.370 200.006i 0.705915 0.373145i
\(537\) 552.547i 1.02895i
\(538\) 64.2904 10.5129i 0.119499 0.0195407i
\(539\) 48.7826i 0.0905058i
\(540\) 240.949 + 341.923i 0.446202 + 0.633191i
\(541\) 334.290 0.617912 0.308956 0.951076i \(-0.400020\pi\)
0.308956 + 0.951076i \(0.400020\pi\)
\(542\) 106.152 + 649.158i 0.195852 + 1.19771i
\(543\) −275.226 −0.506862
\(544\) 626.054 + 595.460i 1.15084 + 1.09460i
\(545\) −80.8052 271.091i −0.148266 0.497414i
\(546\) 202.686 + 1239.50i 0.371219 + 2.27014i
\(547\) −750.195 −1.37147 −0.685736 0.727851i \(-0.740519\pi\)
−0.685736 + 0.727851i \(0.740519\pi\)
\(548\) −209.340 622.979i −0.382007 1.13682i
\(549\) −79.5153 −0.144837
\(550\) 111.997 + 122.297i 0.203632 + 0.222358i
\(551\) 1886.50i 3.42378i
\(552\) 139.213 73.5880i 0.252198 0.133312i
\(553\) 222.739i 0.402783i
\(554\) 81.7977 + 500.223i 0.147649 + 0.902930i
\(555\) 109.989 32.7850i 0.198179 0.0590721i
\(556\) −249.983 743.930i −0.449610 1.33800i
\(557\) 599.474i 1.07626i −0.842863 0.538128i \(-0.819132\pi\)
0.842863 0.538128i \(-0.180868\pi\)
\(558\) −64.5160 394.539i −0.115620 0.707059i
\(559\) 864.081i 1.54576i
\(560\) −514.920 377.613i −0.919500 0.674309i
\(561\) −423.992 −0.755779
\(562\) 10.3935 1.69958i 0.0184938 0.00302416i
\(563\) 123.380 0.219147 0.109573 0.993979i \(-0.465052\pi\)
0.109573 + 0.993979i \(0.465052\pi\)
\(564\) 771.710 259.318i 1.36828 0.459784i
\(565\) −138.811 + 41.3760i −0.245683 + 0.0732319i
\(566\) −578.841 + 94.6536i −1.02269 + 0.167232i
\(567\) −173.457 −0.305920
\(568\) 60.7308 + 114.890i 0.106920 + 0.202272i
\(569\) −357.450 −0.628208 −0.314104 0.949389i \(-0.601704\pi\)
−0.314104 + 0.949389i \(0.601704\pi\)
\(570\) −1393.16 + 676.028i −2.44414 + 1.18601i
\(571\) 146.201i 0.256045i 0.991771 + 0.128022i \(0.0408629\pi\)
−0.991771 + 0.128022i \(0.959137\pi\)
\(572\) −208.968 + 70.2196i −0.365329 + 0.122762i
\(573\) 995.346i 1.73708i
\(574\) −97.3358 + 15.9166i −0.169574 + 0.0277292i
\(575\) −86.9698 + 56.9027i −0.151252 + 0.0989612i
\(576\) 483.635 709.560i 0.839644 1.23188i
\(577\) 243.693i 0.422345i −0.977449 0.211172i \(-0.932272\pi\)
0.977449 0.211172i \(-0.0677281\pi\)
\(578\) 868.505 142.020i 1.50260 0.245709i
\(579\) 56.4540i 0.0975027i
\(580\) 664.523 + 943.003i 1.14573 + 1.62587i
\(581\) 192.097 0.330632
\(582\) −106.095 648.810i −0.182294 1.11479i
\(583\) 207.186 0.355379
\(584\) 89.5701 + 169.448i 0.153374 + 0.290151i
\(585\) 1068.33 318.443i 1.82621 0.544347i
\(586\) −37.6932 230.508i −0.0643228 0.393358i
\(587\) 367.994 0.626906 0.313453 0.949604i \(-0.398514\pi\)
0.313453 + 0.949604i \(0.398514\pi\)
\(588\) −264.052 + 88.7294i −0.449068 + 0.150900i
\(589\) 487.246 0.827244
\(590\) −141.140 + 68.4881i −0.239220 + 0.116081i
\(591\) 1488.39i 2.51843i
\(592\) −46.8423 61.8294i −0.0791256 0.104442i
\(593\) 590.301i 0.995448i 0.867335 + 0.497724i \(0.165831\pi\)
−0.867335 + 0.497724i \(0.834169\pi\)
\(594\) 22.3884 + 136.913i 0.0376909 + 0.230494i
\(595\) −1032.65 + 307.808i −1.73555 + 0.517324i
\(596\) −86.6789 + 29.1267i −0.145434 + 0.0488703i
\(597\) 45.7753i 0.0766755i
\(598\) −22.2965 136.352i −0.0372852 0.228013i
\(599\) 805.119i 1.34410i −0.740504 0.672052i \(-0.765413\pi\)
0.740504 0.672052i \(-0.234587\pi\)
\(600\) −458.263 + 828.666i −0.763772 + 1.38111i
\(601\) −448.802 −0.746759 −0.373380 0.927679i \(-0.621801\pi\)
−0.373380 + 0.927679i \(0.621801\pi\)
\(602\) 819.215 133.960i 1.36082 0.222525i
\(603\) −717.792 −1.19037
\(604\) 133.623 + 397.652i 0.221230 + 0.658364i
\(605\) 15.7110 + 52.7083i 0.0259686 + 0.0871211i
\(606\) −955.770 + 156.290i −1.57718 + 0.257904i
\(607\) 988.361 1.62827 0.814136 0.580675i \(-0.197211\pi\)
0.814136 + 0.580675i \(0.197211\pi\)
\(608\) 758.344 + 721.285i 1.24728 + 1.18632i
\(609\) 2179.84 3.57937
\(610\) −25.8723 53.3175i −0.0424135 0.0874057i
\(611\) 714.314i 1.16909i
\(612\) −461.575 1373.61i −0.754207 2.24446i
\(613\) 872.852i 1.42390i 0.702229 + 0.711951i \(0.252188\pi\)
−0.702229 + 0.711951i \(0.747812\pi\)
\(614\) 495.905 81.0916i 0.807663 0.132071i
\(615\) 41.7808 + 140.169i 0.0679363 + 0.227917i
\(616\) −98.9703 187.232i −0.160666 0.303947i
\(617\) 717.022i 1.16211i 0.813864 + 0.581055i \(0.197360\pi\)
−0.813864 + 0.581055i \(0.802640\pi\)
\(618\) 529.601 86.6016i 0.856959 0.140132i
\(619\) 233.773i 0.377662i −0.982010 0.188831i \(-0.939530\pi\)
0.982010 0.188831i \(-0.0604699\pi\)
\(620\) 243.559 171.633i 0.392837 0.276827i
\(621\) −86.9470 −0.140011
\(622\) −143.781 879.275i −0.231160 1.41363i
\(623\) 631.281 1.01329
\(624\) −760.173 1003.39i −1.21823 1.60799i
\(625\) 250.299 572.691i 0.400478 0.916306i
\(626\) 137.144 + 838.683i 0.219079 + 1.33975i
\(627\) −513.585 −0.819114
\(628\) 42.0599 + 125.167i 0.0669744 + 0.199311i
\(629\) −130.901 −0.208109
\(630\) 467.534 + 963.493i 0.742117 + 1.52935i
\(631\) 51.5454i 0.0816884i −0.999166 0.0408442i \(-0.986995\pi\)
0.999166 0.0408442i \(-0.0130047\pi\)
\(632\) 104.330 + 197.370i 0.165079 + 0.312295i
\(633\) 4.06225i 0.00641746i
\(634\) −16.8702 103.167i −0.0266091 0.162724i
\(635\) 118.630 + 397.986i 0.186818 + 0.626750i
\(636\) 376.845 + 1121.46i 0.592523 + 1.76330i
\(637\) 244.413i 0.383694i
\(638\) 61.7458 + 377.598i 0.0967802 + 0.591847i
\(639\) 217.954i 0.341086i
\(640\) 633.145 + 93.4197i 0.989289 + 0.145968i
\(641\) 558.971 0.872030 0.436015 0.899939i \(-0.356390\pi\)
0.436015 + 0.899939i \(0.356390\pi\)
\(642\) −963.129 + 157.493i −1.50020 + 0.245317i
\(643\) −732.573 −1.13930 −0.569652 0.821886i \(-0.692922\pi\)
−0.569652 + 0.821886i \(0.692922\pi\)
\(644\) 125.815 42.2777i 0.195365 0.0656486i
\(645\) −351.643 1179.72i −0.545184 1.82902i
\(646\) 1742.98 285.017i 2.69812 0.441203i
\(647\) 787.541 1.21722 0.608610 0.793470i \(-0.291728\pi\)
0.608610 + 0.793470i \(0.291728\pi\)
\(648\) 153.701 81.2461i 0.237193 0.125380i
\(649\) −52.0310 −0.0801710
\(650\) 561.135 + 612.738i 0.863284 + 0.942673i
\(651\) 563.009i 0.864837i
\(652\) −43.9844 + 14.7801i −0.0674608 + 0.0226689i
\(653\) 1098.35i 1.68201i 0.541026 + 0.841006i \(0.318036\pi\)
−0.541026 + 0.841006i \(0.681964\pi\)
\(654\) 528.713 86.4564i 0.808429 0.132196i
\(655\) 387.828 115.602i 0.592104 0.176491i
\(656\) 78.7945 59.6952i 0.120114 0.0909988i
\(657\) 321.454i 0.489275i
\(658\) 677.224 110.741i 1.02922 0.168300i
\(659\) 606.310i 0.920046i 0.887907 + 0.460023i \(0.152159\pi\)
−0.887907 + 0.460023i \(0.847841\pi\)
\(660\) −256.725 + 180.911i −0.388977 + 0.274107i
\(661\) 1154.82 1.74708 0.873538 0.486757i \(-0.161820\pi\)
0.873538 + 0.486757i \(0.161820\pi\)
\(662\) 66.0530 + 403.938i 0.0997779 + 0.610179i
\(663\) −2124.30 −3.20408
\(664\) −170.218 + 89.9770i −0.256353 + 0.135508i
\(665\) −1250.86 + 372.850i −1.88099 + 0.560676i
\(666\) 20.9950 + 128.392i 0.0315240 + 0.192781i
\(667\) −239.794 −0.359512
\(668\) −818.223 + 274.948i −1.22488 + 0.411598i
\(669\) −1169.36 −1.74793
\(670\) −233.551 481.302i −0.348584 0.718361i
\(671\) 19.6554i 0.0292927i
\(672\) 833.438 876.260i 1.24023 1.30396i
\(673\) 782.062i 1.16205i −0.813884 0.581027i \(-0.802651\pi\)
0.813884 0.581027i \(-0.197349\pi\)
\(674\) 7.83553 + 47.9171i 0.0116254 + 0.0710937i
\(675\) 437.535 286.271i 0.648199 0.424105i
\(676\) −406.191 + 136.493i −0.600875 + 0.201912i
\(677\) 746.901i 1.10325i −0.834092 0.551626i \(-0.814008\pi\)
0.834092 0.551626i \(-0.185992\pi\)
\(678\) −44.2697 270.725i −0.0652945 0.399300i
\(679\) 554.147i 0.816122i
\(680\) 770.865 756.439i 1.13362 1.11241i
\(681\) −1504.04 −2.20857
\(682\) 97.5261 15.9477i 0.143000 0.0233837i
\(683\) −953.904 −1.39664 −0.698319 0.715786i \(-0.746068\pi\)
−0.698319 + 0.715786i \(0.746068\pi\)
\(684\) −559.109 1663.86i −0.817411 2.43255i
\(685\) −787.283 + 234.669i −1.14932 + 0.342583i
\(686\) 540.238 88.3410i 0.787518 0.128777i
\(687\) −632.550 −0.920742
\(688\) −663.165 + 502.418i −0.963903 + 0.730259i
\(689\) 1038.05 1.50660
\(690\) −85.9303 177.085i −0.124537 0.256645i
\(691\) 1086.54i 1.57241i −0.617964 0.786206i \(-0.712042\pi\)
0.617964 0.786206i \(-0.287958\pi\)
\(692\) 307.921 + 916.348i 0.444972 + 1.32420i
\(693\) 355.190i 0.512539i
\(694\) −189.127 + 30.9265i −0.272517 + 0.0445626i
\(695\) −940.134 + 280.230i −1.35271 + 0.403209i
\(696\) −1931.57 + 1021.02i −2.77524 + 1.46699i
\(697\) 166.818i 0.239338i
\(698\) −756.075 + 123.635i −1.08320 + 0.177128i
\(699\) 925.298i 1.32375i
\(700\) −493.929 + 626.993i −0.705612 + 0.895704i
\(701\) −520.512 −0.742528 −0.371264 0.928527i \(-0.621076\pi\)
−0.371264 + 0.928527i \(0.621076\pi\)
\(702\) 112.171 + 685.968i 0.159788 + 0.977163i
\(703\) −158.561 −0.225549
\(704\) 175.396 + 119.550i 0.249142 + 0.169815i
\(705\) −290.695 975.241i −0.412333 1.38332i
\(706\) −53.9161 329.717i −0.0763684 0.467021i
\(707\) −816.320 −1.15463
\(708\) −94.6378 281.635i −0.133669 0.397789i
\(709\) −419.440 −0.591594 −0.295797 0.955251i \(-0.595585\pi\)
−0.295797 + 0.955251i \(0.595585\pi\)
\(710\) 146.145 70.9167i 0.205838 0.0998826i
\(711\) 374.424i 0.526615i
\(712\) −559.382 + 295.688i −0.785649 + 0.415293i
\(713\) 61.9341i 0.0868641i
\(714\) −329.335 2014.00i −0.461253 2.82073i
\(715\) 78.7159 + 264.081i 0.110092 + 0.369344i
\(716\) −148.691 442.493i −0.207669 0.618007i
\(717\) 1978.56i 2.75950i
\(718\) 81.2825 + 497.073i 0.113207 + 0.692302i
\(719\) 674.291i 0.937818i −0.883246 0.468909i \(-0.844647\pi\)
0.883246 0.468909i \(-0.155353\pi\)
\(720\) −865.578 634.766i −1.20219 0.881620i
\(721\) 452.330 0.627365
\(722\) 1398.75 228.728i 1.93733 0.316797i
\(723\) 1521.46 2.10437
\(724\) 220.408 74.0636i 0.304430 0.102298i
\(725\) 1206.69 789.517i 1.66440 1.08899i
\(726\) −102.798 + 16.8098i −0.141595 + 0.0231539i
\(727\) 268.034 0.368685 0.184342 0.982862i \(-0.440985\pi\)
0.184342 + 0.982862i \(0.440985\pi\)
\(728\) −495.865 938.076i −0.681134 1.28857i
\(729\) −1182.80 −1.62249
\(730\) 215.545 104.593i 0.295267 0.143278i
\(731\) 1404.01i 1.92067i
\(732\) 106.391 35.7507i 0.145343 0.0488397i
\(733\) 1208.37i 1.64852i −0.566212 0.824260i \(-0.691591\pi\)
0.566212 0.824260i \(-0.308409\pi\)
\(734\) 194.350 31.7807i 0.264783 0.0432979i
\(735\) 99.4653 + 333.693i 0.135327 + 0.454004i
\(736\) −91.6828 + 96.3935i −0.124569 + 0.130969i
\(737\) 177.431i 0.240748i
\(738\) −163.621 + 26.7557i −0.221709 + 0.0362543i
\(739\) 1108.28i 1.49970i 0.661605 + 0.749852i \(0.269875\pi\)
−0.661605 + 0.749852i \(0.730125\pi\)
\(740\) −79.2597 + 55.8533i −0.107108 + 0.0754774i
\(741\) −2573.18 −3.47258
\(742\) 160.931 + 984.152i 0.216888 + 1.32635i
\(743\) −441.298 −0.593940 −0.296970 0.954887i \(-0.595976\pi\)
−0.296970 + 0.954887i \(0.595976\pi\)
\(744\) 263.710 + 498.885i 0.354449 + 0.670544i
\(745\) 32.6509 + 109.539i 0.0438268 + 0.147033i
\(746\) −34.3212 209.887i −0.0460070 0.281350i
\(747\) 322.914 0.432281
\(748\) 339.543 114.097i 0.453934 0.152536i
\(749\) −822.606 −1.09827
\(750\) 1015.47 + 608.204i 1.35395 + 0.810938i
\(751\) 381.181i 0.507565i 0.967261 + 0.253782i \(0.0816747\pi\)
−0.967261 + 0.253782i \(0.918325\pi\)
\(752\) −548.221 + 415.336i −0.729018 + 0.552309i
\(753\) 1307.87i 1.73688i
\(754\) 309.361 + 1891.86i 0.410294 + 2.50910i
\(755\) 502.528 149.791i 0.665600 0.198398i
\(756\) −632.961 + 212.694i −0.837249 + 0.281341i
\(757\) 8.07063i 0.0106613i 0.999986 + 0.00533066i \(0.00169681\pi\)
−0.999986 + 0.00533066i \(0.998303\pi\)
\(758\) 7.15403 + 43.7496i 0.00943804 + 0.0577171i
\(759\) 65.2820i 0.0860105i
\(760\) 933.754 916.280i 1.22862 1.20563i
\(761\) 514.328 0.675858 0.337929 0.941172i \(-0.390274\pi\)
0.337929 + 0.941172i \(0.390274\pi\)
\(762\) −776.199 + 126.926i −1.01863 + 0.166570i
\(763\) 451.572 0.591837
\(764\) −267.849 797.097i −0.350587 1.04332i
\(765\) −1735.89 + 517.424i −2.26913 + 0.676371i
\(766\) −553.204 + 90.4612i −0.722198 + 0.118096i
\(767\) −260.688 −0.339880
\(768\) −328.079 + 1166.84i −0.427186 + 1.51932i
\(769\) 428.701 0.557479 0.278739 0.960367i \(-0.410083\pi\)
0.278739 + 0.960367i \(0.410083\pi\)
\(770\) −238.166 + 115.570i −0.309306 + 0.150091i
\(771\) 2178.20i 2.82517i
\(772\) 15.1918 + 45.2098i 0.0196786 + 0.0585619i
\(773\) 710.711i 0.919419i 0.888069 + 0.459709i \(0.152046\pi\)
−0.888069 + 0.459709i \(0.847954\pi\)
\(774\) 1377.10 225.186i 1.77920 0.290938i
\(775\) −203.916