Properties

Label 220.3.h.a.199.20
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.20
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02937 + 1.71476i) q^{2} -4.39883 q^{3} +(-1.88080 - 3.53024i) q^{4} +(0.646763 - 4.95799i) q^{5} +(4.52802 - 7.54293i) q^{6} -6.76347 q^{7} +(7.98955 + 0.408800i) q^{8} +10.3497 q^{9} +(7.83601 + 6.21265i) q^{10} -3.31662i q^{11} +(8.27331 + 15.5289i) q^{12} -2.22215i q^{13} +(6.96211 - 11.5977i) q^{14} +(-2.84500 + 21.8094i) q^{15} +(-8.92518 + 13.2793i) q^{16} +19.4076i q^{17} +(-10.6536 + 17.7472i) q^{18} +1.70493i q^{19} +(-18.7193 + 7.04176i) q^{20} +29.7513 q^{21} +(5.68721 + 3.41403i) q^{22} +7.21944 q^{23} +(-35.1446 - 1.79824i) q^{24} +(-24.1634 - 6.41330i) q^{25} +(3.81046 + 2.28742i) q^{26} -5.93701 q^{27} +(12.7207 + 23.8767i) q^{28} -31.6591 q^{29} +(-34.4692 - 27.3284i) q^{30} +44.6446i q^{31} +(-13.5836 - 28.9739i) q^{32} +14.5893i q^{33} +(-33.2794 - 19.9776i) q^{34} +(-4.37436 + 33.5332i) q^{35} +(-19.4657 - 36.5368i) q^{36} +19.7200i q^{37} +(-2.92354 - 1.75500i) q^{38} +9.77488i q^{39} +(7.19417 - 39.3477i) q^{40} +56.8872 q^{41} +(-30.6251 + 51.0164i) q^{42} +82.4889 q^{43} +(-11.7085 + 6.23791i) q^{44} +(6.69379 - 51.3136i) q^{45} +(-7.43147 + 12.3796i) q^{46} -13.5111 q^{47} +(39.2603 - 58.4136i) q^{48} -3.25546 q^{49} +(35.8703 - 34.8328i) q^{50} -85.3708i q^{51} +(-7.84474 + 4.17943i) q^{52} +62.9482i q^{53} +(6.11137 - 10.1805i) q^{54} +(-16.4438 - 2.14507i) q^{55} +(-54.0371 - 2.76490i) q^{56} -7.49968i q^{57} +(32.5889 - 54.2877i) q^{58} +37.1968i q^{59} +(82.3431 - 30.9755i) q^{60} +110.464 q^{61} +(-76.5547 - 45.9557i) q^{62} -69.9998 q^{63} +(63.6658 + 6.53225i) q^{64} +(-11.0174 - 1.43721i) q^{65} +(-25.0171 - 15.0177i) q^{66} +48.4315 q^{67} +(68.5136 - 36.5019i) q^{68} -31.7571 q^{69} +(-52.9986 - 42.0191i) q^{70} +50.3046i q^{71} +(82.6893 + 4.23094i) q^{72} -27.2425i q^{73} +(-33.8151 - 20.2992i) q^{74} +(106.291 + 28.2110i) q^{75} +(6.01880 - 3.20663i) q^{76} +22.4319i q^{77} +(-16.7616 - 10.0620i) q^{78} +18.4898i q^{79} +(60.0664 + 52.8396i) q^{80} -67.0313 q^{81} +(-58.5579 + 97.5479i) q^{82} -142.575 q^{83} +(-55.9563 - 105.029i) q^{84} +(96.2229 + 12.5521i) q^{85} +(-84.9115 + 141.449i) q^{86} +139.263 q^{87} +(1.35583 - 26.4983i) q^{88} -142.350 q^{89} +(81.1002 + 64.2989i) q^{90} +15.0295i q^{91} +(-13.5783 - 25.4864i) q^{92} -196.384i q^{93} +(13.9079 - 23.1682i) q^{94} +(8.45301 + 1.10268i) q^{95} +(59.7518 + 127.451i) q^{96} -173.273i q^{97} +(3.35107 - 5.58233i) q^{98} -34.3260i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02937 + 1.71476i −0.514684 + 0.857380i
\(3\) −4.39883 −1.46628 −0.733138 0.680080i \(-0.761945\pi\)
−0.733138 + 0.680080i \(0.761945\pi\)
\(4\) −1.88080 3.53024i −0.470200 0.882560i
\(5\) 0.646763 4.95799i 0.129353 0.991599i
\(6\) 4.52802 7.54293i 0.754669 1.25716i
\(7\) −6.76347 −0.966210 −0.483105 0.875562i \(-0.660491\pi\)
−0.483105 + 0.875562i \(0.660491\pi\)
\(8\) 7.98955 + 0.408800i 0.998694 + 0.0510999i
\(9\) 10.3497 1.14996
\(10\) 7.83601 + 6.21265i 0.783601 + 0.621265i
\(11\) 3.31662i 0.301511i
\(12\) 8.27331 + 15.5289i 0.689443 + 1.29408i
\(13\) 2.22215i 0.170935i −0.996341 0.0854675i \(-0.972762\pi\)
0.996341 0.0854675i \(-0.0272384\pi\)
\(14\) 6.96211 11.5977i 0.497293 0.828409i
\(15\) −2.84500 + 21.8094i −0.189667 + 1.45396i
\(16\) −8.92518 + 13.2793i −0.557824 + 0.829959i
\(17\) 19.4076i 1.14163i 0.821080 + 0.570813i \(0.193372\pi\)
−0.821080 + 0.570813i \(0.806628\pi\)
\(18\) −10.6536 + 17.7472i −0.591869 + 0.985956i
\(19\) 1.70493i 0.0897330i 0.998993 + 0.0448665i \(0.0142862\pi\)
−0.998993 + 0.0448665i \(0.985714\pi\)
\(20\) −18.7193 + 7.04176i −0.935967 + 0.352088i
\(21\) 29.7513 1.41673
\(22\) 5.68721 + 3.41403i 0.258510 + 0.155183i
\(23\) 7.21944 0.313889 0.156944 0.987607i \(-0.449836\pi\)
0.156944 + 0.987607i \(0.449836\pi\)
\(24\) −35.1446 1.79824i −1.46436 0.0749266i
\(25\) −24.1634 6.41330i −0.966536 0.256532i
\(26\) 3.81046 + 2.28742i 0.146556 + 0.0879776i
\(27\) −5.93701 −0.219889
\(28\) 12.7207 + 23.8767i 0.454312 + 0.852738i
\(29\) −31.6591 −1.09169 −0.545846 0.837885i \(-0.683792\pi\)
−0.545846 + 0.837885i \(0.683792\pi\)
\(30\) −34.4692 27.3284i −1.14897 0.910945i
\(31\) 44.6446i 1.44015i 0.693898 + 0.720074i \(0.255892\pi\)
−0.693898 + 0.720074i \(0.744108\pi\)
\(32\) −13.5836 28.9739i −0.424487 0.905434i
\(33\) 14.5893i 0.442099i
\(34\) −33.2794 19.9776i −0.978806 0.587577i
\(35\) −4.37436 + 33.5332i −0.124982 + 0.958093i
\(36\) −19.4657 36.5368i −0.540713 1.01491i
\(37\) 19.7200i 0.532974i 0.963839 + 0.266487i \(0.0858629\pi\)
−0.963839 + 0.266487i \(0.914137\pi\)
\(38\) −2.92354 1.75500i −0.0769352 0.0461842i
\(39\) 9.77488i 0.250638i
\(40\) 7.19417 39.3477i 0.179854 0.983693i
\(41\) 56.8872 1.38749 0.693747 0.720219i \(-0.255959\pi\)
0.693747 + 0.720219i \(0.255959\pi\)
\(42\) −30.6251 + 51.0164i −0.729169 + 1.21468i
\(43\) 82.4889 1.91835 0.959173 0.282820i \(-0.0912700\pi\)
0.959173 + 0.282820i \(0.0912700\pi\)
\(44\) −11.7085 + 6.23791i −0.266102 + 0.141771i
\(45\) 6.69379 51.3136i 0.148751 1.14030i
\(46\) −7.43147 + 12.3796i −0.161554 + 0.269122i
\(47\) −13.5111 −0.287469 −0.143735 0.989616i \(-0.545911\pi\)
−0.143735 + 0.989616i \(0.545911\pi\)
\(48\) 39.2603 58.4136i 0.817924 1.21695i
\(49\) −3.25546 −0.0664380
\(50\) 35.8703 34.8328i 0.717406 0.696655i
\(51\) 85.3708i 1.67394i
\(52\) −7.84474 + 4.17943i −0.150860 + 0.0803736i
\(53\) 62.9482i 1.18770i 0.804575 + 0.593850i \(0.202393\pi\)
−0.804575 + 0.593850i \(0.797607\pi\)
\(54\) 6.11137 10.1805i 0.113173 0.188528i
\(55\) −16.4438 2.14507i −0.298978 0.0390013i
\(56\) −54.0371 2.76490i −0.964948 0.0493733i
\(57\) 7.49968i 0.131573i
\(58\) 32.5889 54.2877i 0.561877 0.935995i
\(59\) 37.1968i 0.630454i 0.949016 + 0.315227i \(0.102081\pi\)
−0.949016 + 0.315227i \(0.897919\pi\)
\(60\) 82.3431 30.9755i 1.37239 0.516258i
\(61\) 110.464 1.81089 0.905444 0.424465i \(-0.139538\pi\)
0.905444 + 0.424465i \(0.139538\pi\)
\(62\) −76.5547 45.9557i −1.23475 0.741221i
\(63\) −69.9998 −1.11111
\(64\) 63.6658 + 6.53225i 0.994778 + 0.102066i
\(65\) −11.0174 1.43721i −0.169499 0.0221109i
\(66\) −25.0171 15.0177i −0.379046 0.227541i
\(67\) 48.4315 0.722858 0.361429 0.932400i \(-0.382289\pi\)
0.361429 + 0.932400i \(0.382289\pi\)
\(68\) 68.5136 36.5019i 1.00755 0.536792i
\(69\) −31.7571 −0.460248
\(70\) −52.9986 42.0191i −0.757123 0.600272i
\(71\) 50.3046i 0.708515i 0.935148 + 0.354258i \(0.115266\pi\)
−0.935148 + 0.354258i \(0.884734\pi\)
\(72\) 82.6893 + 4.23094i 1.14846 + 0.0587631i
\(73\) 27.2425i 0.373185i −0.982437 0.186593i \(-0.940256\pi\)
0.982437 0.186593i \(-0.0597445\pi\)
\(74\) −33.8151 20.2992i −0.456961 0.274313i
\(75\) 106.291 + 28.2110i 1.41721 + 0.376146i
\(76\) 6.01880 3.20663i 0.0791947 0.0421924i
\(77\) 22.4319i 0.291323i
\(78\) −16.7616 10.0620i −0.214892 0.128999i
\(79\) 18.4898i 0.234048i 0.993129 + 0.117024i \(0.0373354\pi\)
−0.993129 + 0.117024i \(0.962665\pi\)
\(80\) 60.0664 + 52.8396i 0.750830 + 0.660495i
\(81\) −67.0313 −0.827546
\(82\) −58.5579 + 97.5479i −0.714121 + 1.18961i
\(83\) −142.575 −1.71777 −0.858887 0.512165i \(-0.828844\pi\)
−0.858887 + 0.512165i \(0.828844\pi\)
\(84\) −55.9563 105.029i −0.666147 1.25035i
\(85\) 96.2229 + 12.5521i 1.13203 + 0.147672i
\(86\) −84.9115 + 141.449i −0.987343 + 1.64475i
\(87\) 139.263 1.60072
\(88\) 1.35583 26.4983i 0.0154072 0.301117i
\(89\) −142.350 −1.59944 −0.799719 0.600374i \(-0.795018\pi\)
−0.799719 + 0.600374i \(0.795018\pi\)
\(90\) 81.1002 + 64.2989i 0.901113 + 0.714432i
\(91\) 15.0295i 0.165159i
\(92\) −13.5783 25.4864i −0.147591 0.277026i
\(93\) 196.384i 2.11165i
\(94\) 13.9079 23.1682i 0.147956 0.246470i
\(95\) 8.45301 + 1.10268i 0.0889791 + 0.0116072i
\(96\) 59.7518 + 127.451i 0.622415 + 1.32762i
\(97\) 173.273i 1.78632i −0.449742 0.893159i \(-0.648484\pi\)
0.449742 0.893159i \(-0.351516\pi\)
\(98\) 3.35107 5.58233i 0.0341946 0.0569626i
\(99\) 34.3260i 0.346727i
\(100\) 22.8060 + 97.3647i 0.228060 + 0.973647i
\(101\) 34.7297 0.343859 0.171929 0.985109i \(-0.445000\pi\)
0.171929 + 0.985109i \(0.445000\pi\)
\(102\) 146.390 + 87.8780i 1.43520 + 0.861549i
\(103\) −88.7535 −0.861684 −0.430842 0.902427i \(-0.641783\pi\)
−0.430842 + 0.902427i \(0.641783\pi\)
\(104\) 0.908416 17.7540i 0.00873477 0.170712i
\(105\) 19.2421 147.507i 0.183258 1.40483i
\(106\) −107.941 64.7969i −1.01831 0.611291i
\(107\) −3.82436 −0.0357417 −0.0178708 0.999840i \(-0.505689\pi\)
−0.0178708 + 0.999840i \(0.505689\pi\)
\(108\) 11.1663 + 20.9591i 0.103392 + 0.194065i
\(109\) 16.4510 0.150926 0.0754632 0.997149i \(-0.475956\pi\)
0.0754632 + 0.997149i \(0.475956\pi\)
\(110\) 20.6050 25.9891i 0.187318 0.236265i
\(111\) 86.7450i 0.781486i
\(112\) 60.3652 89.8145i 0.538975 0.801915i
\(113\) 180.163i 1.59437i 0.603738 + 0.797183i \(0.293677\pi\)
−0.603738 + 0.797183i \(0.706323\pi\)
\(114\) 12.8601 + 7.71993i 0.112808 + 0.0677187i
\(115\) 4.66927 35.7940i 0.0406024 0.311252i
\(116\) 59.5444 + 111.764i 0.513314 + 0.963484i
\(117\) 22.9986i 0.196569i
\(118\) −63.7836 38.2892i −0.540539 0.324485i
\(119\) 131.263i 1.10305i
\(120\) −31.6459 + 173.084i −0.263716 + 1.44237i
\(121\) −11.0000 −0.0909091
\(122\) −113.708 + 189.420i −0.932036 + 1.55262i
\(123\) −250.237 −2.03445
\(124\) 157.606 83.9675i 1.27102 0.677157i
\(125\) −47.4251 + 115.654i −0.379401 + 0.925232i
\(126\) 72.0556 120.033i 0.571870 0.952641i
\(127\) 13.2800 0.104567 0.0522837 0.998632i \(-0.483350\pi\)
0.0522837 + 0.998632i \(0.483350\pi\)
\(128\) −76.7368 + 102.447i −0.599506 + 0.800370i
\(129\) −362.854 −2.81282
\(130\) 13.8055 17.4128i 0.106196 0.133945i
\(131\) 187.980i 1.43496i −0.696579 0.717480i \(-0.745295\pi\)
0.696579 0.717480i \(-0.254705\pi\)
\(132\) 51.5036 27.4395i 0.390179 0.207875i
\(133\) 11.5312i 0.0867009i
\(134\) −49.8539 + 83.0484i −0.372044 + 0.619764i
\(135\) −3.83984 + 29.4356i −0.0284432 + 0.218042i
\(136\) −7.93383 + 155.058i −0.0583370 + 1.14013i
\(137\) 148.543i 1.08426i 0.840295 + 0.542129i \(0.182381\pi\)
−0.840295 + 0.542129i \(0.817619\pi\)
\(138\) 32.6898 54.4558i 0.236882 0.394607i
\(139\) 129.371i 0.930724i −0.885120 0.465362i \(-0.845924\pi\)
0.885120 0.465362i \(-0.154076\pi\)
\(140\) 126.608 47.6268i 0.904341 0.340191i
\(141\) 59.4328 0.421509
\(142\) −86.2603 51.7820i −0.607467 0.364662i
\(143\) −7.37005 −0.0515388
\(144\) −92.3728 + 137.437i −0.641478 + 0.954424i
\(145\) −20.4759 + 156.966i −0.141213 + 1.08252i
\(146\) 46.7144 + 28.0426i 0.319962 + 0.192073i
\(147\) 14.3202 0.0974164
\(148\) 69.6164 37.0894i 0.470381 0.250604i
\(149\) 32.3173 0.216895 0.108447 0.994102i \(-0.465412\pi\)
0.108447 + 0.994102i \(0.465412\pi\)
\(150\) −157.787 + 153.223i −1.05192 + 1.02149i
\(151\) 213.925i 1.41672i 0.705851 + 0.708360i \(0.250565\pi\)
−0.705851 + 0.708360i \(0.749435\pi\)
\(152\) −0.696973 + 13.6216i −0.00458535 + 0.0896157i
\(153\) 200.863i 1.31283i
\(154\) −38.4653 23.0907i −0.249775 0.149940i
\(155\) 221.347 + 28.8745i 1.42805 + 0.186287i
\(156\) 34.5077 18.3846i 0.221203 0.117850i
\(157\) 165.089i 1.05152i 0.850633 + 0.525760i \(0.176219\pi\)
−0.850633 + 0.525760i \(0.823781\pi\)
\(158\) −31.7055 19.0328i −0.200668 0.120461i
\(159\) 276.898i 1.74150i
\(160\) −152.438 + 48.6080i −0.952736 + 0.303800i
\(161\) −48.8285 −0.303283
\(162\) 68.9999 114.942i 0.425925 0.709521i
\(163\) 175.402 1.07608 0.538042 0.842918i \(-0.319164\pi\)
0.538042 + 0.842918i \(0.319164\pi\)
\(164\) −106.993 200.826i −0.652399 1.22455i
\(165\) 72.3334 + 9.43580i 0.438385 + 0.0571867i
\(166\) 146.763 244.482i 0.884112 1.47278i
\(167\) −265.308 −1.58867 −0.794336 0.607479i \(-0.792181\pi\)
−0.794336 + 0.607479i \(0.792181\pi\)
\(168\) 237.700 + 12.1623i 1.41488 + 0.0723948i
\(169\) 164.062 0.970781
\(170\) −120.573 + 152.078i −0.709251 + 0.894578i
\(171\) 17.6454i 0.103190i
\(172\) −155.145 291.205i −0.902006 1.69306i
\(173\) 192.856i 1.11477i 0.830253 + 0.557386i \(0.188196\pi\)
−0.830253 + 0.557386i \(0.811804\pi\)
\(174\) −143.353 + 238.802i −0.823867 + 1.37243i
\(175\) 163.428 + 43.3761i 0.933877 + 0.247864i
\(176\) 44.0426 + 29.6015i 0.250242 + 0.168190i
\(177\) 163.622i 0.924420i
\(178\) 146.531 244.096i 0.823206 1.37133i
\(179\) 61.7804i 0.345142i 0.984997 + 0.172571i \(0.0552074\pi\)
−0.984997 + 0.172571i \(0.944793\pi\)
\(180\) −193.739 + 72.8800i −1.07633 + 0.404889i
\(181\) −44.5899 −0.246353 −0.123176 0.992385i \(-0.539308\pi\)
−0.123176 + 0.992385i \(0.539308\pi\)
\(182\) −25.7719 15.4709i −0.141604 0.0850048i
\(183\) −485.913 −2.65526
\(184\) 57.6801 + 2.95131i 0.313479 + 0.0160397i
\(185\) 97.7718 + 12.7542i 0.528496 + 0.0689416i
\(186\) 336.751 + 202.151i 1.81049 + 1.08683i
\(187\) 64.3678 0.344213
\(188\) 25.4116 + 47.6973i 0.135168 + 0.253709i
\(189\) 40.1548 0.212459
\(190\) −10.5921 + 13.3598i −0.0557479 + 0.0703148i
\(191\) 70.1530i 0.367293i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587902\pi\)
\(192\) −280.055 28.7342i −1.45862 0.149657i
\(193\) 336.346i 1.74273i 0.490638 + 0.871364i \(0.336764\pi\)
−0.490638 + 0.871364i \(0.663236\pi\)
\(194\) 297.121 + 178.362i 1.53155 + 0.919390i
\(195\) 48.4638 + 6.32203i 0.248532 + 0.0324207i
\(196\) 6.12287 + 11.4926i 0.0312391 + 0.0586355i
\(197\) 77.8458i 0.395156i −0.980287 0.197578i \(-0.936692\pi\)
0.980287 0.197578i \(-0.0633076\pi\)
\(198\) 58.8608 + 35.3341i 0.297277 + 0.178455i
\(199\) 258.361i 1.29830i 0.760662 + 0.649148i \(0.224874\pi\)
−0.760662 + 0.649148i \(0.775126\pi\)
\(200\) −190.433 61.1173i −0.952164 0.305587i
\(201\) −213.042 −1.05991
\(202\) −35.7497 + 59.5531i −0.176979 + 0.294817i
\(203\) 214.125 1.05480
\(204\) −301.379 + 160.565i −1.47735 + 0.787085i
\(205\) 36.7926 282.046i 0.179476 1.37584i
\(206\) 91.3600 152.191i 0.443495 0.738790i
\(207\) 74.7189 0.360961
\(208\) 29.5088 + 19.8331i 0.141869 + 0.0953516i
\(209\) 5.65460 0.0270555
\(210\) 233.132 + 184.835i 1.11015 + 0.880165i
\(211\) 108.954i 0.516369i 0.966096 + 0.258184i \(0.0831242\pi\)
−0.966096 + 0.258184i \(0.916876\pi\)
\(212\) 222.222 118.393i 1.04822 0.558457i
\(213\) 221.281i 1.03888i
\(214\) 3.93668 6.55786i 0.0183957 0.0306442i
\(215\) 53.3508 408.979i 0.248143 1.90223i
\(216\) −47.4340 2.42705i −0.219602 0.0112363i
\(217\) 301.952i 1.39148i
\(218\) −16.9341 + 28.2095i −0.0776794 + 0.129401i
\(219\) 119.835i 0.547193i
\(220\) 23.3549 + 62.0850i 0.106159 + 0.282205i
\(221\) 43.1268 0.195144
\(222\) 148.747 + 89.2926i 0.670031 + 0.402219i
\(223\) −116.380 −0.521883 −0.260941 0.965355i \(-0.584033\pi\)
−0.260941 + 0.965355i \(0.584033\pi\)
\(224\) 91.8722 + 195.964i 0.410144 + 0.874840i
\(225\) −250.083 66.3756i −1.11148 0.295002i
\(226\) −308.937 185.454i −1.36698 0.820595i
\(227\) 85.6133 0.377151 0.188576 0.982059i \(-0.439613\pi\)
0.188576 + 0.982059i \(0.439613\pi\)
\(228\) −26.4757 + 14.1054i −0.116121 + 0.0618657i
\(229\) 286.685 1.25190 0.625950 0.779863i \(-0.284711\pi\)
0.625950 + 0.779863i \(0.284711\pi\)
\(230\) 56.5716 + 44.8519i 0.245964 + 0.195008i
\(231\) 98.6740i 0.427160i
\(232\) −252.942 12.9422i −1.09027 0.0557854i
\(233\) 9.18626i 0.0394260i 0.999806 + 0.0197130i \(0.00627525\pi\)
−0.999806 + 0.0197130i \(0.993725\pi\)
\(234\) 39.4370 + 23.6740i 0.168534 + 0.101171i
\(235\) −8.73846 + 66.9878i −0.0371849 + 0.285054i
\(236\) 131.314 69.9597i 0.556414 0.296440i
\(237\) 81.3333i 0.343179i
\(238\) 225.084 + 135.118i 0.945733 + 0.567723i
\(239\) 27.9965i 0.117140i −0.998283 0.0585701i \(-0.981346\pi\)
0.998283 0.0585701i \(-0.0186541\pi\)
\(240\) −264.222 232.432i −1.10092 0.968468i
\(241\) −258.214 −1.07143 −0.535714 0.844400i \(-0.679957\pi\)
−0.535714 + 0.844400i \(0.679957\pi\)
\(242\) 11.3231 18.8624i 0.0467895 0.0779436i
\(243\) 348.292 1.43330
\(244\) −207.761 389.965i −0.851480 1.59822i
\(245\) −2.10551 + 16.1405i −0.00859393 + 0.0658798i
\(246\) 257.586 429.096i 1.04710 1.74429i
\(247\) 3.78861 0.0153385
\(248\) −18.2507 + 356.690i −0.0735914 + 1.43827i
\(249\) 627.164 2.51873
\(250\) −149.501 200.373i −0.598004 0.801493i
\(251\) 8.49681i 0.0338518i 0.999857 + 0.0169259i \(0.00538795\pi\)
−0.999857 + 0.0169259i \(0.994612\pi\)
\(252\) 131.656 + 247.116i 0.522443 + 0.980619i
\(253\) 23.9442i 0.0946411i
\(254\) −13.6701 + 22.7721i −0.0538192 + 0.0896539i
\(255\) −423.268 55.2147i −1.65987 0.216528i
\(256\) −96.6822 237.041i −0.377665 0.925942i
\(257\) 428.056i 1.66559i −0.553582 0.832794i \(-0.686740\pi\)
0.553582 0.832794i \(-0.313260\pi\)
\(258\) 373.511 622.208i 1.44772 2.41166i
\(259\) 133.376i 0.514965i
\(260\) 15.6479 + 41.5973i 0.0601842 + 0.159989i
\(261\) −327.661 −1.25541
\(262\) 322.340 + 193.500i 1.23031 + 0.738552i
\(263\) −56.6652 −0.215457 −0.107729 0.994180i \(-0.534358\pi\)
−0.107729 + 0.994180i \(0.534358\pi\)
\(264\) −5.96408 + 116.562i −0.0225912 + 0.441521i
\(265\) 312.097 + 40.7126i 1.17772 + 0.153632i
\(266\) 19.7733 + 11.8699i 0.0743356 + 0.0446236i
\(267\) 626.173 2.34522
\(268\) −91.0900 170.975i −0.339888 0.637966i
\(269\) −354.085 −1.31630 −0.658151 0.752886i \(-0.728661\pi\)
−0.658151 + 0.752886i \(0.728661\pi\)
\(270\) −46.5224 36.8845i −0.172305 0.136609i
\(271\) 47.5830i 0.175583i −0.996139 0.0877916i \(-0.972019\pi\)
0.996139 0.0877916i \(-0.0279809\pi\)
\(272\) −257.721 173.217i −0.947502 0.636826i
\(273\) 66.1121i 0.242169i
\(274\) −254.716 152.906i −0.929620 0.558050i
\(275\) −21.2705 + 80.1409i −0.0773473 + 0.291422i
\(276\) 59.7287 + 112.110i 0.216408 + 0.406196i
\(277\) 21.3640i 0.0771264i 0.999256 + 0.0385632i \(0.0122781\pi\)
−0.999256 + 0.0385632i \(0.987722\pi\)
\(278\) 221.840 + 133.170i 0.797984 + 0.479029i
\(279\) 462.057i 1.65612i
\(280\) −48.6576 + 266.127i −0.173777 + 0.950454i
\(281\) 315.774 1.12375 0.561876 0.827222i \(-0.310080\pi\)
0.561876 + 0.827222i \(0.310080\pi\)
\(282\) −61.1783 + 101.913i −0.216944 + 0.361394i
\(283\) −399.142 −1.41039 −0.705197 0.709011i \(-0.749142\pi\)
−0.705197 + 0.709011i \(0.749142\pi\)
\(284\) 177.587 94.6129i 0.625307 0.333144i
\(285\) −37.1833 4.85052i −0.130468 0.0170194i
\(286\) 7.58650 12.6379i 0.0265262 0.0441884i
\(287\) −384.755 −1.34061
\(288\) −140.586 299.870i −0.488145 1.04122i
\(289\) −87.6560 −0.303308
\(290\) −248.081 196.687i −0.855451 0.678230i
\(291\) 762.197i 2.61923i
\(292\) −96.1727 + 51.2377i −0.329358 + 0.175472i
\(293\) 90.0131i 0.307212i 0.988132 + 0.153606i \(0.0490887\pi\)
−0.988132 + 0.153606i \(0.950911\pi\)
\(294\) −14.7408 + 24.5557i −0.0501387 + 0.0835228i
\(295\) 184.422 + 24.0575i 0.625158 + 0.0815509i
\(296\) −8.06154 + 157.554i −0.0272349 + 0.532277i
\(297\) 19.6908i 0.0662991i
\(298\) −33.2664 + 55.4164i −0.111632 + 0.185961i
\(299\) 16.0427i 0.0536546i
\(300\) −100.320 428.290i −0.334399 1.42763i
\(301\) −557.911 −1.85353
\(302\) −366.830 220.208i −1.21467 0.729164i
\(303\) −152.770 −0.504191
\(304\) −22.6403 15.2168i −0.0744747 0.0500552i
\(305\) 71.4442 547.681i 0.234243 1.79567i
\(306\) −344.431 206.762i −1.12559 0.675692i
\(307\) 27.1789 0.0885305 0.0442653 0.999020i \(-0.485905\pi\)
0.0442653 + 0.999020i \(0.485905\pi\)
\(308\) 79.1900 42.1899i 0.257110 0.136980i
\(309\) 390.411 1.26347
\(310\) −277.361 + 349.835i −0.894713 + 1.12850i
\(311\) 403.255i 1.29664i 0.761367 + 0.648321i \(0.224528\pi\)
−0.761367 + 0.648321i \(0.775472\pi\)
\(312\) −3.99596 + 78.0968i −0.0128076 + 0.250310i
\(313\) 233.203i 0.745058i −0.928021 0.372529i \(-0.878491\pi\)
0.928021 0.372529i \(-0.121509\pi\)
\(314\) −283.087 169.937i −0.901552 0.541201i
\(315\) −45.2733 + 347.058i −0.143725 + 1.10177i
\(316\) 65.2733 34.7756i 0.206561 0.110049i
\(317\) 286.321i 0.903222i 0.892215 + 0.451611i \(0.149150\pi\)
−0.892215 + 0.451611i \(0.850850\pi\)
\(318\) 474.814 + 285.030i 1.49312 + 0.896321i
\(319\) 105.001i 0.329158i
\(320\) 73.5635 311.430i 0.229886 0.973218i
\(321\) 16.8227 0.0524072
\(322\) 50.2625 83.7291i 0.156095 0.260028i
\(323\) −33.0886 −0.102441
\(324\) 126.072 + 236.636i 0.389112 + 0.730359i
\(325\) −14.2513 + 53.6948i −0.0438503 + 0.165215i
\(326\) −180.553 + 300.772i −0.553843 + 0.922612i
\(327\) −72.3650 −0.221300
\(328\) 454.503 + 23.2555i 1.38568 + 0.0709008i
\(329\) 91.3817 0.277756
\(330\) −90.6379 + 114.322i −0.274660 + 0.346429i
\(331\) 24.6298i 0.0744104i 0.999308 + 0.0372052i \(0.0118455\pi\)
−0.999308 + 0.0372052i \(0.988154\pi\)
\(332\) 268.156 + 503.325i 0.807697 + 1.51604i
\(333\) 204.096i 0.612901i
\(334\) 273.100 454.940i 0.817664 1.36209i
\(335\) 31.3237 240.123i 0.0935037 0.716785i
\(336\) −265.536 + 395.078i −0.790286 + 1.17583i
\(337\) 178.380i 0.529317i 0.964342 + 0.264658i \(0.0852592\pi\)
−0.964342 + 0.264658i \(0.914741\pi\)
\(338\) −168.880 + 281.327i −0.499646 + 0.832328i
\(339\) 792.507i 2.33778i
\(340\) −136.664 363.298i −0.401953 1.06852i
\(341\) 148.069 0.434221
\(342\) −30.2577 18.1637i −0.0884728 0.0531101i
\(343\) 353.428 1.03040
\(344\) 659.049 + 33.7214i 1.91584 + 0.0980274i
\(345\) −20.5393 + 157.451i −0.0595343 + 0.456381i
\(346\) −330.701 198.520i −0.955783 0.573756i
\(347\) 257.701 0.742653 0.371326 0.928502i \(-0.378903\pi\)
0.371326 + 0.928502i \(0.378903\pi\)
\(348\) −261.926 491.631i −0.752660 1.41273i
\(349\) −46.4966 −0.133228 −0.0666141 0.997779i \(-0.521220\pi\)
−0.0666141 + 0.997779i \(0.521220\pi\)
\(350\) −242.608 + 235.590i −0.693165 + 0.673115i
\(351\) 13.1929i 0.0375867i
\(352\) −96.0955 + 45.0516i −0.272999 + 0.127988i
\(353\) 499.148i 1.41402i 0.707205 + 0.707009i \(0.249956\pi\)
−0.707205 + 0.707009i \(0.750044\pi\)
\(354\) 280.573 + 168.428i 0.792579 + 0.475784i
\(355\) 249.410 + 32.5352i 0.702563 + 0.0916484i
\(356\) 267.732 + 502.530i 0.752056 + 1.41160i
\(357\) 577.403i 1.61738i
\(358\) −105.939 63.5948i −0.295918 0.177639i
\(359\) 467.290i 1.30164i 0.759231 + 0.650821i \(0.225575\pi\)
−0.759231 + 0.650821i \(0.774425\pi\)
\(360\) 74.4574 407.236i 0.206826 1.13121i
\(361\) 358.093 0.991948
\(362\) 45.8994 76.4609i 0.126794 0.211218i
\(363\) 48.3871 0.133298
\(364\) 53.0577 28.2674i 0.145763 0.0776578i
\(365\) −135.068 17.6195i −0.370050 0.0482725i
\(366\) 500.184 833.224i 1.36662 2.27657i
\(367\) −512.944 −1.39767 −0.698833 0.715285i \(-0.746297\pi\)
−0.698833 + 0.715285i \(0.746297\pi\)
\(368\) −64.4349 + 95.8695i −0.175095 + 0.260515i
\(369\) 588.764 1.59557
\(370\) −122.514 + 154.526i −0.331118 + 0.417639i
\(371\) 425.748i 1.14757i
\(372\) −693.282 + 369.358i −1.86366 + 0.992899i
\(373\) 616.530i 1.65290i −0.563014 0.826448i \(-0.690358\pi\)
0.563014 0.826448i \(-0.309642\pi\)
\(374\) −66.2582 + 110.375i −0.177161 + 0.295121i
\(375\) 208.615 508.742i 0.556306 1.35665i
\(376\) −107.947 5.52332i −0.287094 0.0146897i
\(377\) 70.3514i 0.186608i
\(378\) −41.3341 + 68.8558i −0.109349 + 0.182158i
\(379\) 690.502i 1.82190i 0.412513 + 0.910952i \(0.364651\pi\)
−0.412513 + 0.910952i \(0.635349\pi\)
\(380\) −12.0057 31.9151i −0.0315939 0.0839871i
\(381\) −58.4166 −0.153324
\(382\) 120.295 + 72.2133i 0.314910 + 0.189040i
\(383\) −385.778 −1.00725 −0.503626 0.863922i \(-0.668001\pi\)
−0.503626 + 0.863922i \(0.668001\pi\)
\(384\) 337.552 450.648i 0.879041 1.17356i
\(385\) 111.217 + 14.5081i 0.288876 + 0.0376834i
\(386\) −576.753 346.225i −1.49418 0.896955i
\(387\) 853.733 2.20603
\(388\) −611.694 + 325.891i −1.57653 + 0.839926i
\(389\) −514.438 −1.32246 −0.661231 0.750182i \(-0.729966\pi\)
−0.661231 + 0.750182i \(0.729966\pi\)
\(390\) −60.7278 + 76.5960i −0.155712 + 0.196400i
\(391\) 140.112i 0.358343i
\(392\) −26.0097 1.33083i −0.0663512 0.00339498i
\(393\) 826.890i 2.10405i
\(394\) 133.487 + 80.1321i 0.338799 + 0.203381i
\(395\) 91.6722 + 11.9585i 0.232081 + 0.0302747i
\(396\) −121.179 + 64.5603i −0.306008 + 0.163031i
\(397\) 27.3556i 0.0689057i −0.999406 0.0344528i \(-0.989031\pi\)
0.999406 0.0344528i \(-0.0109689\pi\)
\(398\) −443.027 265.949i −1.11313 0.668213i
\(399\) 50.7238i 0.127127i
\(400\) 300.827 263.634i 0.752068 0.659086i
\(401\) 510.105 1.27208 0.636041 0.771655i \(-0.280571\pi\)
0.636041 + 0.771655i \(0.280571\pi\)
\(402\) 219.299 365.316i 0.545519 0.908745i
\(403\) 99.2071 0.246172
\(404\) −65.3196 122.604i −0.161682 0.303476i
\(405\) −43.3534 + 332.340i −0.107045 + 0.820594i
\(406\) −220.414 + 367.173i −0.542891 + 0.904368i
\(407\) 65.4039 0.160698
\(408\) 34.8995 682.074i 0.0855381 1.67175i
\(409\) 471.021 1.15164 0.575820 0.817577i \(-0.304683\pi\)
0.575820 + 0.817577i \(0.304683\pi\)
\(410\) 445.769 + 353.420i 1.08724 + 0.862000i
\(411\) 653.416i 1.58982i
\(412\) 166.927 + 313.321i 0.405164 + 0.760488i
\(413\) 251.580i 0.609151i
\(414\) −76.9133 + 128.125i −0.185781 + 0.309481i
\(415\) −92.2125 + 706.887i −0.222199 + 1.70334i
\(416\) −64.3845 + 30.1848i −0.154770 + 0.0725597i
\(417\) 569.079i 1.36470i
\(418\) −5.82067 + 9.69628i −0.0139250 + 0.0231968i
\(419\) 214.295i 0.511445i −0.966750 0.255722i \(-0.917687\pi\)
0.966750 0.255722i \(-0.0823133\pi\)
\(420\) −556.925 + 209.502i −1.32601 + 0.498814i
\(421\) −93.6045 −0.222338 −0.111169 0.993801i \(-0.535460\pi\)
−0.111169 + 0.993801i \(0.535460\pi\)
\(422\) −186.830 112.154i −0.442724 0.265767i
\(423\) −139.835 −0.330580
\(424\) −25.7332 + 502.927i −0.0606915 + 1.18615i
\(425\) 124.467 468.954i 0.292863 1.10342i
\(426\) 379.444 + 227.780i 0.890714 + 0.534695i
\(427\) −747.121 −1.74970
\(428\) 7.19286 + 13.5009i 0.0168057 + 0.0315442i
\(429\) 32.4196 0.0755701
\(430\) 646.383 + 512.474i 1.50322 + 1.19180i
\(431\) 426.905i 0.990500i −0.868751 0.495250i \(-0.835077\pi\)
0.868751 0.495250i \(-0.164923\pi\)
\(432\) 52.9889 78.8396i 0.122659 0.182499i
\(433\) 27.7192i 0.0640167i 0.999488 + 0.0320084i \(0.0101903\pi\)
−0.999488 + 0.0320084i \(0.989810\pi\)
\(434\) 517.775 + 310.820i 1.19303 + 0.716175i
\(435\) 90.0701 690.464i 0.207058 1.58727i
\(436\) −30.9410 58.0759i −0.0709656 0.133202i
\(437\) 12.3086i 0.0281662i
\(438\) −205.488 123.355i −0.469152 0.281631i
\(439\) 487.493i 1.11046i 0.831696 + 0.555231i \(0.187370\pi\)
−0.831696 + 0.555231i \(0.812630\pi\)
\(440\) −130.502 23.8604i −0.296595 0.0542281i
\(441\) −33.6930 −0.0764013
\(442\) −44.3933 + 73.9520i −0.100437 + 0.167312i
\(443\) −223.850 −0.505304 −0.252652 0.967557i \(-0.581303\pi\)
−0.252652 + 0.967557i \(0.581303\pi\)
\(444\) −306.231 + 163.150i −0.689709 + 0.367455i
\(445\) −92.0668 + 705.770i −0.206892 + 1.58600i
\(446\) 119.798 199.563i 0.268605 0.447452i
\(447\) −142.158 −0.318027
\(448\) −430.602 44.1807i −0.961164 0.0986176i
\(449\) 23.8039 0.0530155 0.0265077 0.999649i \(-0.491561\pi\)
0.0265077 + 0.999649i \(0.491561\pi\)
\(450\) 371.246 360.508i 0.824991 0.801129i
\(451\) 188.674i 0.418345i
\(452\) 636.020 338.851i 1.40712 0.749671i
\(453\) 941.018i 2.07730i
\(454\) −88.1277 + 146.806i −0.194114 + 0.323362i
\(455\) 74.5161 + 9.72052i 0.163772 + 0.0213638i
\(456\) 3.06586 59.9190i 0.00672339 0.131401i
\(457\) 317.090i 0.693851i −0.937893 0.346925i \(-0.887226\pi\)
0.937893 0.346925i \(-0.112774\pi\)
\(458\) −295.105 + 491.596i −0.644333 + 1.07335i
\(459\) 115.223i 0.251031i
\(460\) −135.143 + 50.8376i −0.293790 + 0.110517i
\(461\) −548.166 −1.18908 −0.594540 0.804066i \(-0.702666\pi\)
−0.594540 + 0.804066i \(0.702666\pi\)
\(462\) 169.202 + 101.572i 0.366239 + 0.219853i
\(463\) −527.246 −1.13876 −0.569380 0.822074i \(-0.692817\pi\)
−0.569380 + 0.822074i \(0.692817\pi\)
\(464\) 282.563 420.412i 0.608972 0.906060i
\(465\) −973.669 127.014i −2.09391 0.273148i
\(466\) −15.7522 9.45605i −0.0338031 0.0202920i
\(467\) −345.096 −0.738964 −0.369482 0.929238i \(-0.620465\pi\)
−0.369482 + 0.929238i \(0.620465\pi\)
\(468\) −81.1905 + 43.2557i −0.173484 + 0.0924268i
\(469\) −327.565 −0.698433
\(470\) −105.873 83.9395i −0.225261 0.178595i
\(471\) 726.197i 1.54182i
\(472\) −15.2060 + 297.186i −0.0322162 + 0.629631i
\(473\) 273.585i 0.578403i
\(474\) 139.467 + 83.7220i 0.294234 + 0.176629i
\(475\) 10.9342 41.1968i 0.0230194 0.0867301i
\(476\) −463.390 + 246.879i −0.973508 + 0.518654i
\(477\) 651.493i 1.36581i
\(478\) 48.0073 + 28.8187i 0.100434 + 0.0602902i
\(479\) 106.849i 0.223068i 0.993761 + 0.111534i \(0.0355764\pi\)
−0.993761 + 0.111534i \(0.964424\pi\)
\(480\) 670.547 213.818i 1.39697 0.445455i
\(481\) 43.8210 0.0911039
\(482\) 265.797 442.775i 0.551447 0.918620i
\(483\) 214.788 0.444696
\(484\) 20.6888 + 38.8326i 0.0427454 + 0.0802327i
\(485\) −859.085 112.066i −1.77131 0.231065i
\(486\) −358.521 + 597.237i −0.737697 + 1.22888i
\(487\) 697.116 1.43145 0.715725 0.698382i \(-0.246096\pi\)
0.715725 + 0.698382i \(0.246096\pi\)
\(488\) 882.559 + 45.1577i 1.80852 + 0.0925363i
\(489\) −771.561 −1.57783
\(490\) −25.5098 20.2250i −0.0520608 0.0412756i
\(491\) 225.649i 0.459570i −0.973241 0.229785i \(-0.926198\pi\)
0.973241 0.229785i \(-0.0738022\pi\)
\(492\) 470.646 + 883.397i 0.956597 + 1.79552i
\(493\) 614.428i 1.24630i
\(494\) −3.89988 + 6.49656i −0.00789449 + 0.0131509i
\(495\) −170.188 22.2008i −0.343814 0.0448501i
\(496\) −592.851 398.461i −1.19526 0.803349i
\(497\) 340.234i 0.684575i
\(498\) −645.583 + 1075.44i −1.29635 + 2.15951i
\(499\) 702.622i 1.40806i 0.710170 + 0.704031i \(0.248618\pi\)
−0.710170 + 0.704031i \(0.751382\pi\)
\(500\) 497.484 50.1002i 0.994967 0.100200i
\(501\) 1167.04 2.32943
\(502\) −14.5700 8.74635i −0.0290239 0.0174230i
\(503\) 453.682 0.901952 0.450976 0.892536i \(-0.351076\pi\)
0.450976 + 0.892536i \(0.351076\pi\)
\(504\) −559.266 28.6159i −1.10966 0.0567775i
\(505\) 22.4619 172.190i 0.0444790 0.340970i
\(506\) 41.0585 + 24.6474i 0.0811433 + 0.0487103i
\(507\) −721.680 −1.42343
\(508\) −24.9771 46.8818i −0.0491675 0.0922869i
\(509\) −607.445 −1.19341 −0.596704 0.802461i \(-0.703523\pi\)
−0.596704 + 0.802461i \(0.703523\pi\)
\(510\) 530.379 668.966i 1.03996 1.31170i
\(511\) 184.254i 0.360575i
\(512\) 505.990 + 78.2162i 0.988262 + 0.152766i
\(513\) 10.1222i 0.0197313i
\(514\) 734.014 + 440.628i 1.42804 + 0.857253i
\(515\) −57.4025 + 440.039i −0.111461 + 0.854445i
\(516\) 682.456 + 1280.96i 1.32259 + 2.48249i
\(517\) 44.8111i 0.0866753i
\(518\) 228.707 + 137.293i 0.441520 + 0.265044i
\(519\) 848.339i 1.63456i
\(520\) −87.4368 15.9866i −0.168148 0.0307434i
\(521\) 97.5728 0.187280 0.0936399 0.995606i \(-0.470150\pi\)
0.0936399 + 0.995606i \(0.470150\pi\)
\(522\) 337.284 561.861i 0.646139 1.07636i
\(523\) −10.0320 −0.0191816 −0.00959080 0.999954i \(-0.503053\pi\)
−0.00959080 + 0.999954i \(0.503053\pi\)
\(524\) −663.614 + 353.552i −1.26644 + 0.674718i
\(525\) −718.893 190.804i −1.36932 0.363436i
\(526\) 58.3294 97.1672i 0.110892 0.184729i
\(527\) −866.445 −1.64411
\(528\) −193.736 130.212i −0.366924 0.246613i
\(529\) −476.880 −0.901474
\(530\) −391.075 + 493.262i −0.737877 + 0.930683i
\(531\) 384.975i 0.725000i
\(532\) −40.7080 + 21.6879i −0.0765187 + 0.0407668i
\(533\) 126.412i 0.237171i
\(534\) −644.563 + 1073.74i −1.20705 + 2.01074i
\(535\) −2.47346 + 18.9612i −0.00462328 + 0.0354414i
\(536\) 386.946 + 19.7988i 0.721914 + 0.0369380i
\(537\) 271.761i 0.506073i
\(538\) 364.484 607.171i 0.677480 1.12857i
\(539\) 10.7971i 0.0200318i
\(540\) 111.137 41.8070i 0.205809 0.0774203i
\(541\) −212.444 −0.392687 −0.196344 0.980535i \(-0.562907\pi\)
−0.196344 + 0.980535i \(0.562907\pi\)
\(542\) 81.5934 + 48.9805i 0.150541 + 0.0903699i
\(543\) 196.143 0.361221
\(544\) 562.315 263.625i 1.03367 0.484605i
\(545\) 10.6399 81.5638i 0.0195227 0.149658i
\(546\) 113.366 + 68.0537i 0.207631 + 0.124641i
\(547\) 392.581 0.717699 0.358850 0.933395i \(-0.383169\pi\)
0.358850 + 0.933395i \(0.383169\pi\)
\(548\) 524.393 279.380i 0.956922 0.509818i
\(549\) 1143.27 2.08246
\(550\) −115.527 118.968i −0.210049 0.216306i
\(551\) 53.9764i 0.0979608i
\(552\) −253.725 12.9823i −0.459646 0.0235186i
\(553\) 125.055i 0.226139i
\(554\) −36.6341 21.9914i −0.0661266 0.0396957i
\(555\) −430.081 56.1035i −0.774921 0.101087i
\(556\) −456.709 + 243.320i −0.821420 + 0.437626i
\(557\) 257.215i 0.461786i −0.972979 0.230893i \(-0.925835\pi\)
0.972979 0.230893i \(-0.0741647\pi\)
\(558\) −792.316 475.627i −1.41992 0.852378i
\(559\) 183.303i 0.327912i
\(560\) −406.258 357.379i −0.725460 0.638177i
\(561\) −283.143 −0.504711
\(562\) −325.048 + 541.477i −0.578378 + 0.963482i
\(563\) 556.118 0.987776 0.493888 0.869526i \(-0.335575\pi\)
0.493888 + 0.869526i \(0.335575\pi\)
\(564\) −111.781 209.812i −0.198194 0.372007i
\(565\) 893.248 + 116.523i 1.58097 + 0.206235i
\(566\) 410.864 684.432i 0.725908 1.20924i
\(567\) 453.364 0.799584
\(568\) −20.5645 + 401.911i −0.0362051 + 0.707590i
\(569\) 398.335 0.700062 0.350031 0.936738i \(-0.386171\pi\)
0.350031 + 0.936738i \(0.386171\pi\)
\(570\) 46.5928 58.7675i 0.0817418 0.103101i
\(571\) 819.200i 1.43468i −0.696725 0.717338i \(-0.745360\pi\)
0.696725 0.717338i \(-0.254640\pi\)
\(572\) 13.8616 + 26.0181i 0.0242336 + 0.0454861i
\(573\) 308.591i 0.538553i
\(574\) 396.055 659.762i 0.689991 1.14941i
\(575\) −174.446 46.3004i −0.303385 0.0805225i
\(576\) 658.920 + 67.6067i 1.14396 + 0.117373i
\(577\) 665.479i 1.15334i −0.816976 0.576672i \(-0.804351\pi\)
0.816976 0.576672i \(-0.195649\pi\)
\(578\) 90.2304 150.309i 0.156108 0.260050i
\(579\) 1479.53i 2.55532i
\(580\) 592.637 222.936i 1.02179 0.384372i
\(581\) 964.304 1.65973
\(582\) −1306.98 784.582i −2.24568 1.34808i
\(583\) 208.775 0.358105
\(584\) 11.1367 217.655i 0.0190697 0.372698i
\(585\) −114.027 14.8746i −0.194918 0.0254267i
\(586\) −154.351 92.6567i −0.263397 0.158117i
\(587\) 536.375 0.913756 0.456878 0.889529i \(-0.348968\pi\)
0.456878 + 0.889529i \(0.348968\pi\)
\(588\) −26.9334 50.5538i −0.0458052 0.0859758i
\(589\) −76.1157 −0.129229
\(590\) −231.091 + 291.474i −0.391679 + 0.494024i
\(591\) 342.430i 0.579408i
\(592\) −261.869 176.005i −0.442347 0.297306i
\(593\) 784.565i 1.32304i 0.749926 + 0.661522i \(0.230089\pi\)
−0.749926 + 0.661522i \(0.769911\pi\)
\(594\) −33.7650 20.2691i −0.0568435 0.0341231i
\(595\) −650.801 84.8960i −1.09378 0.142682i
\(596\) −60.7824 114.088i −0.101984 0.191423i
\(597\) 1136.48i 1.90366i
\(598\) 27.5094 + 16.5139i 0.0460024 + 0.0276152i
\(599\) 734.563i 1.22631i −0.789961 0.613157i \(-0.789899\pi\)
0.789961 0.613157i \(-0.210101\pi\)
\(600\) 837.681 + 268.845i 1.39614 + 0.448074i
\(601\) 195.844 0.325864 0.162932 0.986637i \(-0.447905\pi\)
0.162932 + 0.986637i \(0.447905\pi\)
\(602\) 574.296 956.683i 0.953980 1.58917i
\(603\) 501.251 0.831261
\(604\) 755.206 402.350i 1.25034 0.666142i
\(605\) −7.11440 + 54.5379i −0.0117593 + 0.0901453i
\(606\) 157.257 261.964i 0.259499 0.432283i
\(607\) 1195.06 1.96879 0.984395 0.175972i \(-0.0563067\pi\)
0.984395 + 0.175972i \(0.0563067\pi\)
\(608\) 49.3984 23.1590i 0.0812473 0.0380905i
\(609\) −941.900 −1.54663
\(610\) 865.598 + 686.275i 1.41901 + 1.12504i
\(611\) 30.0237i 0.0491386i
\(612\) 709.094 377.783i 1.15865 0.617292i
\(613\) 537.326i 0.876551i 0.898841 + 0.438275i \(0.144411\pi\)
−0.898841 + 0.438275i \(0.855589\pi\)
\(614\) −27.9771 + 46.6052i −0.0455653 + 0.0759043i
\(615\) −161.844 + 1240.67i −0.263161 + 2.01736i
\(616\) −9.17015 + 179.221i −0.0148866 + 0.290943i
\(617\) 374.763i 0.607395i 0.952768 + 0.303698i \(0.0982213\pi\)
−0.952768 + 0.303698i \(0.901779\pi\)
\(618\) −401.877 + 669.461i −0.650286 + 1.08327i
\(619\) 485.901i 0.784977i −0.919757 0.392488i \(-0.871614\pi\)
0.919757 0.392488i \(-0.128386\pi\)
\(620\) −314.376 835.717i −0.507059 1.34793i
\(621\) −42.8619 −0.0690207
\(622\) −691.486 415.099i −1.11171 0.667361i
\(623\) 962.780 1.54539
\(624\) −129.804 87.2426i −0.208019 0.139812i
\(625\) 542.739 + 309.934i 0.868383 + 0.495894i
\(626\) 399.887 + 240.052i 0.638797 + 0.383470i
\(627\) −24.8736 −0.0396708
\(628\) 582.803 310.499i 0.928030 0.494425i
\(629\) −382.719 −0.608456
\(630\) −548.519 434.884i −0.870664 0.690292i
\(631\) 1145.46i 1.81531i −0.419717 0.907655i \(-0.637871\pi\)
0.419717 0.907655i \(-0.362129\pi\)
\(632\) −7.55861 + 147.725i −0.0119598 + 0.233742i
\(633\) 479.269i 0.757139i
\(634\) −490.972 294.730i −0.774404 0.464874i
\(635\) 8.58905 65.8424i 0.0135261 0.103689i
\(636\) −977.516 + 520.790i −1.53698 + 0.818852i
\(637\) 7.23414i 0.0113566i
\(638\) −180.052 108.085i −0.282213 0.169412i
\(639\) 520.636i 0.814767i
\(640\) 458.303 + 446.720i 0.716098 + 0.697999i
\(641\) −493.176 −0.769385 −0.384692 0.923045i \(-0.625692\pi\)
−0.384692 + 0.923045i \(0.625692\pi\)
\(642\) −17.3168 + 28.8469i −0.0269732 + 0.0449329i
\(643\) 831.666 1.29342 0.646708 0.762738i \(-0.276145\pi\)
0.646708 + 0.762738i \(0.276145\pi\)
\(644\) 91.8366 + 172.376i 0.142603 + 0.267665i
\(645\) −234.681 + 1799.03i −0.363846 + 2.78919i
\(646\) 34.0604 56.7390i 0.0527250 0.0878312i
\(647\) −570.901 −0.882382 −0.441191 0.897413i \(-0.645444\pi\)
−0.441191 + 0.897413i \(0.645444\pi\)
\(648\) −535.549 27.4023i −0.826465 0.0422876i
\(649\) 123.368 0.190089
\(650\) −77.4038 79.7094i −0.119083 0.122630i
\(651\) 1328.24i 2.04030i
\(652\) −329.895 619.210i −0.505974 0.949708i
\(653\) 638.860i 0.978346i −0.872187 0.489173i \(-0.837299\pi\)
0.872187 0.489173i \(-0.162701\pi\)
\(654\) 74.4903 124.089i 0.113899 0.189738i
\(655\) −932.002 121.578i −1.42290 0.185616i
\(656\) −507.729 + 755.425i −0.773977 + 1.15156i
\(657\) 281.951i 0.429150i
\(658\) −94.0655 + 156.698i −0.142957 + 0.238142i
\(659\) 329.450i 0.499924i −0.968256 0.249962i \(-0.919582\pi\)
0.968256 0.249962i \(-0.0804182\pi\)
\(660\) −102.734 273.101i −0.155658 0.413790i
\(661\) 220.511 0.333602 0.166801 0.985991i \(-0.446656\pi\)
0.166801 + 0.985991i \(0.446656\pi\)
\(662\) −42.2343 25.3532i −0.0637980 0.0382979i
\(663\) −189.707 −0.286134
\(664\) −1139.11 58.2847i −1.71553 0.0877782i
\(665\) −57.1717 7.45797i −0.0859725 0.0112150i
\(666\) −349.976 210.090i −0.525489 0.315451i
\(667\) −228.561 −0.342670
\(668\) 498.991 + 936.601i 0.746993 + 1.40210i
\(669\) 511.935 0.765224
\(670\) 379.510 + 300.888i 0.566432 + 0.449086i
\(671\) 366.368i 0.546003i
\(672\) −404.130 862.012i −0.601383 1.28276i
\(673\) 821.967i 1.22135i 0.791882 + 0.610674i \(0.209101\pi\)
−0.791882 + 0.610674i \(0.790899\pi\)
\(674\) −305.878 183.618i −0.453825 0.272431i
\(675\) 143.458 + 38.0758i 0.212531 + 0.0564086i
\(676\) −308.568 579.178i −0.456461 0.856773i
\(677\) 80.1206i 0.118347i 0.998248 + 0.0591733i \(0.0188464\pi\)
−0.998248 + 0.0591733i \(0.981154\pi\)
\(678\) 1358.96 + 815.782i 2.00436 + 1.20322i
\(679\) 1171.93i 1.72596i
\(680\) 763.646 + 139.622i 1.12301 + 0.205326i
\(681\) −376.598 −0.553008
\(682\) −152.418 + 253.903i −0.223487 + 0.372292i
\(683\) 240.382 0.351951 0.175975 0.984395i \(-0.443692\pi\)
0.175975 + 0.984395i \(0.443692\pi\)
\(684\) 62.2926 33.1875i 0.0910711 0.0485198i
\(685\) 736.477 + 96.0723i 1.07515 + 0.140252i
\(686\) −363.808 + 606.044i −0.530332 + 0.883447i
\(687\) −1261.08 −1.83563
\(688\) −736.228 + 1095.40i −1.07010 + 1.59215i
\(689\) 139.881 0.203020
\(690\) −248.849 197.296i −0.360650 0.285936i
\(691\) 464.924i 0.672828i 0.941714 + 0.336414i \(0.109214\pi\)
−0.941714 + 0.336414i \(0.890786\pi\)
\(692\) 680.827 362.723i 0.983854 0.524166i
\(693\) 232.163i 0.335011i
\(694\) −265.269 + 441.894i −0.382232 + 0.636736i
\(695\) −641.419 83.6722i −0.922905 0.120392i
\(696\) 1112.65 + 56.9306i 1.59863 + 0.0817968i
\(697\) 1104.05i 1.58400i
\(698\) 47.8622 79.7305i 0.0685704 0.114227i
\(699\) 40.4088i 0.0578094i
\(700\) −154.248 658.523i −0.220354 0.940748i
\(701\) −1056.49 −1.50711 −0.753557 0.657383i \(-0.771663\pi\)
−0.753557 + 0.657383i \(0.771663\pi\)
\(702\) −22.6227 13.5804i −0.0322261 0.0193453i
\(703\) −33.6212 −0.0478253
\(704\) 21.6650 211.155i 0.0307742 0.299937i
\(705\) 38.4390 294.668i 0.0545234 0.417968i
\(706\) −855.919 513.807i −1.21235 0.727773i
\(707\) −234.893 −0.332240
\(708\) −577.626 + 307.741i −0.815856 + 0.434662i
\(709\) 465.322 0.656308 0.328154 0.944624i \(-0.393574\pi\)
0.328154 + 0.944624i \(0.393574\pi\)
\(710\) −312.525 + 394.187i −0.440176 + 0.555193i
\(711\) 191.363i 0.269147i
\(712\) −1137.31 58.1926i −1.59735 0.0817312i
\(713\) 322.309i 0.452046i
\(714\) −990.107 594.361i −1.38670 0.832438i
\(715\) −4.76668 + 36.5407i −0.00666669 + 0.0511058i
\(716\) 218.100 116.197i 0.304608 0.162286i
\(717\) 123.152i 0.171760i
\(718\) −801.289 481.013i −1.11600 0.669935i
\(719\) 1243.44i 1.72940i 0.502285 + 0.864702i \(0.332493\pi\)
−0.502285 + 0.864702i \(0.667507\pi\)
\(720\) 621.668 + 546.873i 0.863428 + 0.759546i
\(721\) 600.281 0.832568
\(722\) −368.610 + 614.044i −0.510540 + 0.850476i
\(723\) 1135.84 1.57101
\(724\) 83.8646 + 157.413i 0.115835 + 0.217421i
\(725\) 764.991 + 203.039i 1.05516 + 0.280054i
\(726\) −49.8082 + 82.9722i −0.0686063 + 0.114287i
\(727\) −556.549 −0.765542 −0.382771 0.923843i \(-0.625030\pi\)
−0.382771 + 0.923843i \(0.625030\pi\)
\(728\) −6.14404 + 120.079i −0.00843962 + 0.164943i
\(729\) −928.795 −1.27407
\(730\) 169.248 213.473i 0.231847 0.292428i
\(731\) 1600.91i 2.19003i
\(732\) 913.905 + 1715.39i 1.24850 + 2.34343i
\(733\) 578.930i 0.789810i −0.918722 0.394905i \(-0.870778\pi\)
0.918722 0.394905i \(-0.129222\pi\)
\(734\) 528.008 879.575i 0.719357 1.19833i
\(735\) 9.26178 70.9995i 0.0126011 0.0965979i
\(736\) −98.0659 209.175i −0.133242 0.284206i
\(737\) 160.629i 0.217950i
\(738\) −606.056 + 1009.59i −0.821214 + 1.36801i
\(739\) 295.380i 0.399703i −0.979826 0.199851i \(-0.935954\pi\)
0.979826 0.199851i \(-0.0640459\pi\)
\(740\) −138.864 369.146i −0.187654 0.498846i
\(741\) −16.6654 −0.0224905
\(742\) 730.055 + 438.252i 0.983902 + 0.590636i
\(743\) 306.154 0.412051 0.206026 0.978547i \(-0.433947\pi\)
0.206026 + 0.978547i \(0.433947\pi\)
\(744\) 80.2816 1569.02i 0.107905 2.10889i
\(745\) 20.9016 160.229i 0.0280559 0.215072i
\(746\) 1057.20 + 634.637i 1.41716 + 0.850719i
\(747\) −1475.61 −1.97538
\(748\) −121.063 227.234i −0.161849 0.303789i
\(749\) 25.8660 0.0345340
\(750\) 657.629 + 881.407i 0.876839 + 1.17521i
\(751\) 690.163i 0.918992i 0.888180 + 0.459496i \(0.151970\pi\)
−0.888180 + 0.459496i \(0.848030\pi\)
\(752\) 120.589 179.418i 0.160357 0.238588i
\(753\) 37.3760i 0.0496361i
\(754\) −120.636 72.4175i −0.159994 0.0960445i
\(755\) 1060.64 + 138.359i 1.40482 + 0.183257i
\(756\) −75.5231 141.756i −0.0998982 0.187508i
\(757\) 561.479i 0.741717i 0.928689 + 0.370858i \(0.120936\pi\)
−0.928689 + 0.370858i \(0.879064\pi\)
\(758\) −1184.04 710.781i −1.56206 0.937705i
\(759\) 105.326i 0.138770i
\(760\) 67.0850 + 12.2655i 0.0882697 + 0.0161389i
\(761\) 1.53264 0.00201398 0.00100699 0.999999i \(-0.499679\pi\)
0.00100699 + 0.999999i \(0.499679\pi\)
\(762\) 60.1323 100.170i 0.0789137 0.131457i
\(763\) −111.266 −0.145827
\(764\) −247.657 + 131.944i −0.324158 + 0.172701i
\(765\) 995.876 + 129.911i 1.30180 + 0.169818i
\(766\) 397.107 661.516i 0.518417 0.863598i
\(767\) 82.6571 0.107767
\(768\) 425.288 + 1042.70i 0.553761 + 1.35769i
\(769\) −912.045 −1.18601 −0.593007 0.805197i \(-0.702059\pi\)
−0.593007 + 0.805197i \(0.702059\pi\)
\(770\) −139.361 + 175.777i −0.180989 + 0.228281i
\(771\) 1882.95i 2.44221i
\(772\) 1187.38 632.600i 1.53806 0.819430i
\(773\) 1240.60i 1.60491i −0.596709 0.802457i \(-0.703526\pi\)
0.596709 0.802457i \(-0.296474\pi\)
\(774\) −878.806 + 1463.95i −1.13541 + 1.89140i
\(775\)