Properties

Label 220.3.h.a.199.18
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.18
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20196 + 1.59852i) q^{2} +1.87168 q^{3} +(-1.11056 - 3.84274i) q^{4} +(3.84060 + 3.20153i) q^{5} +(-2.24970 + 2.99193i) q^{6} -11.6487 q^{7} +(7.47757 + 2.84358i) q^{8} -5.49681 q^{9} +(-9.73399 + 2.29116i) q^{10} +3.31662i q^{11} +(-2.07862 - 7.19239i) q^{12} +15.3665i q^{13} +(14.0013 - 18.6207i) q^{14} +(7.18837 + 5.99225i) q^{15} +(-13.5333 + 8.53520i) q^{16} +15.8071i q^{17} +(6.60697 - 8.78678i) q^{18} +14.1893i q^{19} +(8.03745 - 18.3139i) q^{20} -21.8026 q^{21} +(-5.30171 - 3.98647i) q^{22} +17.7274 q^{23} +(13.9956 + 5.32227i) q^{24} +(4.50035 + 24.5916i) q^{25} +(-24.5638 - 18.4700i) q^{26} -27.1334 q^{27} +(12.9366 + 44.7628i) q^{28} -20.6526 q^{29} +(-18.2189 + 4.28831i) q^{30} -10.1970i q^{31} +(2.62282 - 31.8923i) q^{32} +6.20767i q^{33} +(-25.2680 - 18.9996i) q^{34} +(-44.7378 - 37.2936i) q^{35} +(6.10455 + 21.1228i) q^{36} -43.4012i q^{37} +(-22.6820 - 17.0551i) q^{38} +28.7613i q^{39} +(19.6145 + 34.8607i) q^{40} +51.2365 q^{41} +(26.2059 - 34.8520i) q^{42} -50.3006 q^{43} +(12.7449 - 3.68332i) q^{44} +(-21.1110 - 17.5982i) q^{45} +(-21.3077 + 28.3377i) q^{46} -25.8323 q^{47} +(-25.3300 + 15.9752i) q^{48} +86.6912 q^{49} +(-44.7195 - 22.3643i) q^{50} +29.5858i q^{51} +(59.0496 - 17.0655i) q^{52} -36.3196i q^{53} +(32.6134 - 43.3734i) q^{54} +(-10.6183 + 12.7378i) q^{55} +(-87.1037 - 33.1239i) q^{56} +26.5579i q^{57} +(24.8237 - 33.0137i) q^{58} +76.2655i q^{59} +(15.0435 - 34.2778i) q^{60} +81.2888 q^{61} +(16.3001 + 12.2564i) q^{62} +64.0304 q^{63} +(47.8281 + 42.5261i) q^{64} +(-49.1965 + 59.0167i) q^{65} +(-9.92311 - 7.46140i) q^{66} +39.1221 q^{67} +(60.7425 - 17.5547i) q^{68} +33.1801 q^{69} +(113.388 - 26.6889i) q^{70} +26.8136i q^{71} +(-41.1028 - 15.6306i) q^{72} +40.7194i q^{73} +(69.3778 + 52.1667i) q^{74} +(8.42323 + 46.0276i) q^{75} +(54.5260 - 15.7581i) q^{76} -38.6342i q^{77} +(-45.9756 - 34.5700i) q^{78} -49.7047i q^{79} +(-79.3017 - 10.5471i) q^{80} -1.31384 q^{81} +(-61.5845 + 81.9028i) q^{82} +36.5271 q^{83} +(24.2131 + 83.7816i) q^{84} +(-50.6069 + 60.7086i) q^{85} +(60.4595 - 80.4067i) q^{86} -38.6551 q^{87} +(-9.43108 + 24.8003i) q^{88} +111.806 q^{89} +(53.5059 - 12.5940i) q^{90} -179.000i q^{91} +(-19.6874 - 68.1218i) q^{92} -19.0854i q^{93} +(31.0496 - 41.2936i) q^{94} +(-45.4277 + 54.4955i) q^{95} +(4.90909 - 59.6923i) q^{96} -35.6621i q^{97} +(-104.200 + 138.578i) q^{98} -18.2308i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20196 + 1.59852i −0.600982 + 0.799262i
\(3\) 1.87168 0.623894 0.311947 0.950100i \(-0.399019\pi\)
0.311947 + 0.950100i \(0.399019\pi\)
\(4\) −1.11056 3.84274i −0.277640 0.960685i
\(5\) 3.84060 + 3.20153i 0.768119 + 0.640307i
\(6\) −2.24970 + 2.99193i −0.374949 + 0.498655i
\(7\) −11.6487 −1.66409 −0.832047 0.554705i \(-0.812831\pi\)
−0.832047 + 0.554705i \(0.812831\pi\)
\(8\) 7.47757 + 2.84358i 0.934696 + 0.355447i
\(9\) −5.49681 −0.610756
\(10\) −9.73399 + 2.29116i −0.973399 + 0.229116i
\(11\) 3.31662i 0.301511i
\(12\) −2.07862 7.19239i −0.173218 0.599366i
\(13\) 15.3665i 1.18204i 0.806656 + 0.591021i \(0.201275\pi\)
−0.806656 + 0.591021i \(0.798725\pi\)
\(14\) 14.0013 18.6207i 1.00009 1.33005i
\(15\) 7.18837 + 5.99225i 0.479225 + 0.399484i
\(16\) −13.5333 + 8.53520i −0.845832 + 0.533450i
\(17\) 15.8071i 0.929829i 0.885356 + 0.464914i \(0.153915\pi\)
−0.885356 + 0.464914i \(0.846085\pi\)
\(18\) 6.60697 8.78678i 0.367054 0.488155i
\(19\) 14.1893i 0.746808i 0.927669 + 0.373404i \(0.121809\pi\)
−0.927669 + 0.373404i \(0.878191\pi\)
\(20\) 8.03745 18.3139i 0.401872 0.915696i
\(21\) −21.8026 −1.03822
\(22\) −5.30171 3.98647i −0.240987 0.181203i
\(23\) 17.7274 0.770757 0.385378 0.922759i \(-0.374071\pi\)
0.385378 + 0.922759i \(0.374071\pi\)
\(24\) 13.9956 + 5.32227i 0.583151 + 0.221761i
\(25\) 4.50035 + 24.5916i 0.180014 + 0.983664i
\(26\) −24.5638 18.4700i −0.944761 0.710386i
\(27\) −27.1334 −1.00494
\(28\) 12.9366 + 44.7628i 0.462020 + 1.59867i
\(29\) −20.6526 −0.712158 −0.356079 0.934456i \(-0.615887\pi\)
−0.356079 + 0.934456i \(0.615887\pi\)
\(30\) −18.2189 + 4.28831i −0.607298 + 0.142944i
\(31\) 10.1970i 0.328934i −0.986383 0.164467i \(-0.947410\pi\)
0.986383 0.164467i \(-0.0525904\pi\)
\(32\) 2.62282 31.8923i 0.0819633 0.996635i
\(33\) 6.20767i 0.188111i
\(34\) −25.2680 18.9996i −0.743177 0.558811i
\(35\) −44.7378 37.2936i −1.27822 1.06553i
\(36\) 6.10455 + 21.1228i 0.169571 + 0.586745i
\(37\) 43.4012i 1.17300i −0.809948 0.586502i \(-0.800505\pi\)
0.809948 0.586502i \(-0.199495\pi\)
\(38\) −22.6820 17.0551i −0.596895 0.448818i
\(39\) 28.7613i 0.737468i
\(40\) 19.6145 + 34.8607i 0.490363 + 0.871518i
\(41\) 51.2365 1.24967 0.624836 0.780756i \(-0.285166\pi\)
0.624836 + 0.780756i \(0.285166\pi\)
\(42\) 26.2059 34.8520i 0.623951 0.829808i
\(43\) −50.3006 −1.16978 −0.584890 0.811113i \(-0.698862\pi\)
−0.584890 + 0.811113i \(0.698862\pi\)
\(44\) 12.7449 3.68332i 0.289657 0.0837118i
\(45\) −21.1110 17.5982i −0.469134 0.391072i
\(46\) −21.3077 + 28.3377i −0.463211 + 0.616037i
\(47\) −25.8323 −0.549624 −0.274812 0.961498i \(-0.588616\pi\)
−0.274812 + 0.961498i \(0.588616\pi\)
\(48\) −25.3300 + 15.9752i −0.527709 + 0.332816i
\(49\) 86.6912 1.76921
\(50\) −44.7195 22.3643i −0.894391 0.447286i
\(51\) 29.5858i 0.580114i
\(52\) 59.0496 17.0655i 1.13557 0.328183i
\(53\) 36.3196i 0.685275i −0.939468 0.342638i \(-0.888680\pi\)
0.939468 0.342638i \(-0.111320\pi\)
\(54\) 32.6134 43.3734i 0.603952 0.803212i
\(55\) −10.6183 + 12.7378i −0.193060 + 0.231597i
\(56\) −87.1037 33.1239i −1.55542 0.591497i
\(57\) 26.5579i 0.465929i
\(58\) 24.8237 33.0137i 0.427995 0.569201i
\(59\) 76.2655i 1.29263i 0.763069 + 0.646317i \(0.223692\pi\)
−0.763069 + 0.646317i \(0.776308\pi\)
\(60\) 15.0435 34.2778i 0.250726 0.571297i
\(61\) 81.2888 1.33260 0.666302 0.745682i \(-0.267876\pi\)
0.666302 + 0.745682i \(0.267876\pi\)
\(62\) 16.3001 + 12.2564i 0.262904 + 0.197683i
\(63\) 64.0304 1.01636
\(64\) 47.8281 + 42.5261i 0.747315 + 0.664470i
\(65\) −49.1965 + 59.0167i −0.756869 + 0.907949i
\(66\) −9.92311 7.46140i −0.150350 0.113051i
\(67\) 39.1221 0.583912 0.291956 0.956432i \(-0.405694\pi\)
0.291956 + 0.956432i \(0.405694\pi\)
\(68\) 60.7425 17.5547i 0.893273 0.258158i
\(69\) 33.1801 0.480870
\(70\) 113.388 26.6889i 1.61983 0.381270i
\(71\) 26.8136i 0.377657i 0.982010 + 0.188829i \(0.0604690\pi\)
−0.982010 + 0.188829i \(0.939531\pi\)
\(72\) −41.1028 15.6306i −0.570872 0.217092i
\(73\) 40.7194i 0.557801i 0.960320 + 0.278900i \(0.0899699\pi\)
−0.960320 + 0.278900i \(0.910030\pi\)
\(74\) 69.3778 + 52.1667i 0.937538 + 0.704955i
\(75\) 8.42323 + 46.0276i 0.112310 + 0.613702i
\(76\) 54.5260 15.7581i 0.717447 0.207344i
\(77\) 38.6342i 0.501743i
\(78\) −45.9756 34.5700i −0.589431 0.443205i
\(79\) 49.7047i 0.629173i −0.949229 0.314587i \(-0.898134\pi\)
0.949229 0.314587i \(-0.101866\pi\)
\(80\) −79.3017 10.5471i −0.991271 0.131839i
\(81\) −1.31384 −0.0162202
\(82\) −61.5845 + 81.9028i −0.751030 + 0.998815i
\(83\) 36.5271 0.440086 0.220043 0.975490i \(-0.429380\pi\)
0.220043 + 0.975490i \(0.429380\pi\)
\(84\) 24.2131 + 83.7816i 0.288251 + 0.997400i
\(85\) −50.6069 + 60.7086i −0.595376 + 0.714219i
\(86\) 60.4595 80.4067i 0.703017 0.934961i
\(87\) −38.6551 −0.444311
\(88\) −9.43108 + 24.8003i −0.107171 + 0.281822i
\(89\) 111.806 1.25625 0.628125 0.778112i \(-0.283823\pi\)
0.628125 + 0.778112i \(0.283823\pi\)
\(90\) 53.5059 12.5940i 0.594510 0.139934i
\(91\) 179.000i 1.96703i
\(92\) −19.6874 68.1218i −0.213993 0.740455i
\(93\) 19.0854i 0.205220i
\(94\) 31.0496 41.2936i 0.330314 0.439294i
\(95\) −45.4277 + 54.4955i −0.478186 + 0.573637i
\(96\) 4.90909 59.6923i 0.0511364 0.621795i
\(97\) 35.6621i 0.367651i −0.982959 0.183825i \(-0.941152\pi\)
0.982959 0.183825i \(-0.0588481\pi\)
\(98\) −104.200 + 138.578i −1.06326 + 1.41406i
\(99\) 18.2308i 0.184150i
\(100\) 89.5012 44.6042i 0.895012 0.446042i
\(101\) −189.155 −1.87282 −0.936409 0.350911i \(-0.885872\pi\)
−0.936409 + 0.350911i \(0.885872\pi\)
\(102\) −47.2937 35.5611i −0.463664 0.348639i
\(103\) 124.305 1.20684 0.603420 0.797423i \(-0.293804\pi\)
0.603420 + 0.797423i \(0.293804\pi\)
\(104\) −43.6959 + 114.904i −0.420153 + 1.10485i
\(105\) −83.7349 69.8017i −0.797475 0.664778i
\(106\) 58.0578 + 43.6549i 0.547715 + 0.411838i
\(107\) 30.8812 0.288610 0.144305 0.989533i \(-0.453905\pi\)
0.144305 + 0.989533i \(0.453905\pi\)
\(108\) 30.1333 + 104.267i 0.279012 + 0.965432i
\(109\) 123.311 1.13129 0.565647 0.824647i \(-0.308626\pi\)
0.565647 + 0.824647i \(0.308626\pi\)
\(110\) −7.59890 32.2840i −0.0690809 0.293491i
\(111\) 81.2331i 0.731830i
\(112\) 157.645 99.4236i 1.40754 0.887711i
\(113\) 145.468i 1.28733i −0.765308 0.643665i \(-0.777413\pi\)
0.765308 0.643665i \(-0.222587\pi\)
\(114\) −42.4535 31.9217i −0.372399 0.280015i
\(115\) 68.0838 + 56.7549i 0.592033 + 0.493521i
\(116\) 22.9360 + 79.3626i 0.197724 + 0.684160i
\(117\) 84.4669i 0.721939i
\(118\) −121.912 91.6684i −1.03315 0.776851i
\(119\) 184.131i 1.54732i
\(120\) 36.7121 + 65.2482i 0.305934 + 0.543735i
\(121\) −11.0000 −0.0909091
\(122\) −97.7063 + 129.942i −0.800871 + 1.06510i
\(123\) 95.8985 0.779662
\(124\) −39.1842 + 11.3243i −0.316002 + 0.0913254i
\(125\) −61.4468 + 108.854i −0.491575 + 0.870835i
\(126\) −76.9623 + 102.354i −0.610812 + 0.812335i
\(127\) −168.227 −1.32462 −0.662310 0.749230i \(-0.730424\pi\)
−0.662310 + 0.749230i \(0.730424\pi\)
\(128\) −125.467 + 25.3396i −0.980209 + 0.197965i
\(129\) −94.1466 −0.729819
\(130\) −35.2071 149.578i −0.270824 1.15060i
\(131\) 108.405i 0.827522i 0.910385 + 0.413761i \(0.135785\pi\)
−0.910385 + 0.413761i \(0.864215\pi\)
\(132\) 23.8544 6.89400i 0.180716 0.0522273i
\(133\) 165.287i 1.24276i
\(134\) −47.0234 + 62.5377i −0.350921 + 0.466699i
\(135\) −104.208 86.8685i −0.771915 0.643471i
\(136\) −44.9487 + 118.199i −0.330505 + 0.869107i
\(137\) 217.324i 1.58630i 0.609024 + 0.793152i \(0.291561\pi\)
−0.609024 + 0.793152i \(0.708439\pi\)
\(138\) −39.8813 + 53.0391i −0.288995 + 0.384342i
\(139\) 219.762i 1.58102i 0.612449 + 0.790510i \(0.290185\pi\)
−0.612449 + 0.790510i \(0.709815\pi\)
\(140\) −93.6255 + 213.332i −0.668753 + 1.52380i
\(141\) −48.3499 −0.342907
\(142\) −42.8623 32.2291i −0.301847 0.226965i
\(143\) −50.9650 −0.356399
\(144\) 74.3900 46.9164i 0.516597 0.325808i
\(145\) −79.3183 66.1200i −0.547023 0.456000i
\(146\) −65.0910 48.9433i −0.445829 0.335228i
\(147\) 162.258 1.10380
\(148\) −166.779 + 48.1997i −1.12689 + 0.325673i
\(149\) −109.184 −0.732776 −0.366388 0.930462i \(-0.619406\pi\)
−0.366388 + 0.930462i \(0.619406\pi\)
\(150\) −83.7008 41.8589i −0.558005 0.279059i
\(151\) 96.5663i 0.639512i 0.947500 + 0.319756i \(0.103601\pi\)
−0.947500 + 0.319756i \(0.896399\pi\)
\(152\) −40.3485 + 106.102i −0.265451 + 0.698038i
\(153\) 86.8885i 0.567899i
\(154\) 61.7578 + 46.4370i 0.401024 + 0.301539i
\(155\) 32.6459 39.1624i 0.210619 0.252660i
\(156\) 110.522 31.9412i 0.708475 0.204751i
\(157\) 265.012i 1.68798i 0.536362 + 0.843988i \(0.319798\pi\)
−0.536362 + 0.843988i \(0.680202\pi\)
\(158\) 79.4542 + 59.7433i 0.502875 + 0.378122i
\(159\) 67.9787i 0.427539i
\(160\) 112.178 114.088i 0.701110 0.713053i
\(161\) −206.500 −1.28261
\(162\) 1.57918 2.10020i 0.00974805 0.0129642i
\(163\) 22.4772 0.137897 0.0689485 0.997620i \(-0.478036\pi\)
0.0689485 + 0.997620i \(0.478036\pi\)
\(164\) −56.9013 196.889i −0.346959 1.20054i
\(165\) −19.8741 + 23.8411i −0.120449 + 0.144492i
\(166\) −43.9043 + 58.3895i −0.264484 + 0.351744i
\(167\) 177.972 1.06570 0.532849 0.846210i \(-0.321121\pi\)
0.532849 + 0.846210i \(0.321121\pi\)
\(168\) −163.030 61.9973i −0.970419 0.369032i
\(169\) −67.1305 −0.397222
\(170\) −36.2165 153.866i −0.213038 0.905095i
\(171\) 77.9961i 0.456118i
\(172\) 55.8619 + 193.292i 0.324778 + 1.12379i
\(173\) 31.7306i 0.183414i −0.995786 0.0917071i \(-0.970768\pi\)
0.995786 0.0917071i \(-0.0292323\pi\)
\(174\) 46.4620 61.7911i 0.267023 0.355121i
\(175\) −52.4231 286.459i −0.299560 1.63691i
\(176\) −28.3081 44.8849i −0.160841 0.255028i
\(177\) 142.745i 0.806467i
\(178\) −134.387 + 178.725i −0.754984 + 1.00407i
\(179\) 246.725i 1.37835i −0.724594 0.689176i \(-0.757973\pi\)
0.724594 0.689176i \(-0.242027\pi\)
\(180\) −44.1803 + 100.668i −0.245446 + 0.559267i
\(181\) 167.071 0.923043 0.461522 0.887129i \(-0.347304\pi\)
0.461522 + 0.887129i \(0.347304\pi\)
\(182\) 286.135 + 215.151i 1.57217 + 1.18215i
\(183\) 152.147 0.831403
\(184\) 132.558 + 50.4093i 0.720424 + 0.273963i
\(185\) 138.950 166.686i 0.751083 0.901007i
\(186\) 30.5086 + 22.9400i 0.164024 + 0.123334i
\(187\) −52.4262 −0.280354
\(188\) 28.6884 + 99.2670i 0.152598 + 0.528016i
\(189\) 316.068 1.67232
\(190\) −32.5100 138.119i −0.171105 0.726942i
\(191\) 159.032i 0.832626i −0.909221 0.416313i \(-0.863322\pi\)
0.909221 0.416313i \(-0.136678\pi\)
\(192\) 89.5190 + 79.5953i 0.466245 + 0.414559i
\(193\) 166.756i 0.864020i −0.901869 0.432010i \(-0.857805\pi\)
0.901869 0.432010i \(-0.142195\pi\)
\(194\) 57.0068 + 42.8646i 0.293849 + 0.220952i
\(195\) −92.0802 + 110.460i −0.472206 + 0.566464i
\(196\) −96.2759 333.132i −0.491204 1.69965i
\(197\) 261.228i 1.32603i −0.748607 0.663014i \(-0.769277\pi\)
0.748607 0.663014i \(-0.230723\pi\)
\(198\) 29.1425 + 21.9128i 0.147184 + 0.110671i
\(199\) 264.882i 1.33107i 0.746368 + 0.665534i \(0.231796\pi\)
−0.746368 + 0.665534i \(0.768204\pi\)
\(200\) −36.2764 + 196.683i −0.181382 + 0.983413i
\(201\) 73.2242 0.364299
\(202\) 227.357 302.368i 1.12553 1.49687i
\(203\) 240.575 1.18510
\(204\) 113.691 32.8569i 0.557307 0.161063i
\(205\) 196.779 + 164.035i 0.959896 + 0.800173i
\(206\) −149.410 + 198.704i −0.725290 + 0.964582i
\(207\) −97.4441 −0.470745
\(208\) −131.156 207.960i −0.630560 0.999808i
\(209\) −47.0607 −0.225171
\(210\) 212.226 49.9531i 1.01060 0.237872i
\(211\) 211.990i 1.00469i 0.864667 + 0.502345i \(0.167529\pi\)
−0.864667 + 0.502345i \(0.832471\pi\)
\(212\) −139.567 + 40.3351i −0.658334 + 0.190260i
\(213\) 50.1866i 0.235618i
\(214\) −37.1182 + 49.3644i −0.173449 + 0.230675i
\(215\) −193.184 161.039i −0.898531 0.749018i
\(216\) −202.892 77.1560i −0.939315 0.357203i
\(217\) 118.781i 0.547377i
\(218\) −148.216 + 197.116i −0.679888 + 0.904201i
\(219\) 76.2138i 0.348008i
\(220\) 60.7404 + 26.6572i 0.276093 + 0.121169i
\(221\) −242.900 −1.09910
\(222\) 129.853 + 97.6394i 0.584924 + 0.439817i
\(223\) −166.223 −0.745397 −0.372698 0.927953i \(-0.621567\pi\)
−0.372698 + 0.927953i \(0.621567\pi\)
\(224\) −30.5524 + 371.503i −0.136395 + 1.65849i
\(225\) −24.7376 135.175i −0.109945 0.600779i
\(226\) 232.535 + 174.848i 1.02891 + 0.773662i
\(227\) −12.8157 −0.0564568 −0.0282284 0.999601i \(-0.508987\pi\)
−0.0282284 + 0.999601i \(0.508987\pi\)
\(228\) 102.055 29.4942i 0.447611 0.129361i
\(229\) −389.420 −1.70052 −0.850261 0.526361i \(-0.823556\pi\)
−0.850261 + 0.526361i \(0.823556\pi\)
\(230\) −172.558 + 40.6162i −0.750254 + 0.176592i
\(231\) 72.3110i 0.313034i
\(232\) −154.431 58.7273i −0.665652 0.253135i
\(233\) 82.8772i 0.355696i 0.984058 + 0.177848i \(0.0569136\pi\)
−0.984058 + 0.177848i \(0.943086\pi\)
\(234\) 135.022 + 101.526i 0.577019 + 0.433873i
\(235\) −99.2116 82.7031i −0.422177 0.351928i
\(236\) 293.068 84.6975i 1.24181 0.358888i
\(237\) 93.0314i 0.392537i
\(238\) 294.338 + 221.319i 1.23672 + 0.929913i
\(239\) 402.695i 1.68492i −0.538762 0.842458i \(-0.681108\pi\)
0.538762 0.842458i \(-0.318892\pi\)
\(240\) −148.428 19.7408i −0.618448 0.0822533i
\(241\) 239.848 0.995219 0.497609 0.867401i \(-0.334211\pi\)
0.497609 + 0.867401i \(0.334211\pi\)
\(242\) 13.2216 17.5838i 0.0546348 0.0726602i
\(243\) 241.742 0.994821
\(244\) −90.2762 312.372i −0.369985 1.28021i
\(245\) 332.946 + 277.545i 1.35896 + 1.13284i
\(246\) −115.267 + 153.296i −0.468563 + 0.623155i
\(247\) −218.041 −0.882758
\(248\) 28.9958 76.2484i 0.116919 0.307453i
\(249\) 68.3672 0.274567
\(250\) −100.150 229.063i −0.400598 0.916254i
\(251\) 337.928i 1.34633i 0.739494 + 0.673163i \(0.235065\pi\)
−0.739494 + 0.673163i \(0.764935\pi\)
\(252\) −71.1097 246.052i −0.282182 0.976398i
\(253\) 58.7952i 0.232392i
\(254\) 202.202 268.914i 0.796073 1.05872i
\(255\) −94.7201 + 113.627i −0.371451 + 0.445597i
\(256\) 110.301 231.019i 0.430862 0.902418i
\(257\) 265.980i 1.03494i 0.855701 + 0.517471i \(0.173126\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(258\) 113.161 150.496i 0.438608 0.583317i
\(259\) 505.565i 1.95199i
\(260\) 281.421 + 123.508i 1.08239 + 0.475030i
\(261\) 113.523 0.434955
\(262\) −173.289 130.300i −0.661407 0.497326i
\(263\) 353.267 1.34322 0.671610 0.740905i \(-0.265603\pi\)
0.671610 + 0.740905i \(0.265603\pi\)
\(264\) −17.6520 + 46.4183i −0.0668636 + 0.175827i
\(265\) 116.278 139.489i 0.438786 0.526373i
\(266\) 264.215 + 198.669i 0.993290 + 0.746876i
\(267\) 209.266 0.783767
\(268\) −43.4475 150.336i −0.162118 0.560956i
\(269\) −338.463 −1.25823 −0.629113 0.777314i \(-0.716582\pi\)
−0.629113 + 0.777314i \(0.716582\pi\)
\(270\) 264.116 62.1669i 0.978209 0.230248i
\(271\) 371.846i 1.37213i 0.727542 + 0.686064i \(0.240663\pi\)
−0.727542 + 0.686064i \(0.759337\pi\)
\(272\) −134.917 213.922i −0.496017 0.786478i
\(273\) 335.030i 1.22722i
\(274\) −347.397 261.215i −1.26787 0.953341i
\(275\) −81.5611 + 14.9260i −0.296586 + 0.0542763i
\(276\) −36.8485 127.502i −0.133509 0.461965i
\(277\) 147.634i 0.532976i −0.963838 0.266488i \(-0.914137\pi\)
0.963838 0.266488i \(-0.0858632\pi\)
\(278\) −351.295 264.146i −1.26365 0.950165i
\(279\) 56.0507i 0.200898i
\(280\) −228.483 406.081i −0.816010 1.45029i
\(281\) −391.183 −1.39211 −0.696056 0.717988i \(-0.745063\pi\)
−0.696056 + 0.717988i \(0.745063\pi\)
\(282\) 58.1149 77.2885i 0.206081 0.274073i
\(283\) 431.510 1.52477 0.762384 0.647124i \(-0.224029\pi\)
0.762384 + 0.647124i \(0.224029\pi\)
\(284\) 103.038 29.7782i 0.362809 0.104853i
\(285\) −85.0262 + 101.998i −0.298337 + 0.357889i
\(286\) 61.2582 81.4689i 0.214189 0.284856i
\(287\) −596.837 −2.07957
\(288\) −14.4172 + 175.306i −0.0500596 + 0.608701i
\(289\) 39.1360 0.135419
\(290\) 201.032 47.3183i 0.693214 0.163167i
\(291\) 66.7481i 0.229375i
\(292\) 156.474 45.2215i 0.535871 0.154868i
\(293\) 431.337i 1.47214i −0.676905 0.736070i \(-0.736679\pi\)
0.676905 0.736070i \(-0.263321\pi\)
\(294\) −195.029 + 259.374i −0.663363 + 0.882224i
\(295\) −244.166 + 292.905i −0.827683 + 0.992898i
\(296\) 123.415 324.535i 0.416941 1.09640i
\(297\) 89.9913i 0.303001i
\(298\) 131.235 174.533i 0.440386 0.585680i
\(299\) 272.409i 0.911066i
\(300\) 167.518 83.4848i 0.558393 0.278283i
\(301\) 585.934 1.94662
\(302\) −154.364 116.069i −0.511138 0.384335i
\(303\) −354.037 −1.16844
\(304\) −121.109 192.029i −0.398385 0.631674i
\(305\) 312.197 + 260.249i 1.02360 + 0.853275i
\(306\) 138.893 + 104.437i 0.453900 + 0.341297i
\(307\) −439.183 −1.43056 −0.715282 0.698836i \(-0.753702\pi\)
−0.715282 + 0.698836i \(0.753702\pi\)
\(308\) −148.461 + 42.9057i −0.482017 + 0.139304i
\(309\) 232.659 0.752941
\(310\) 23.3628 + 99.2570i 0.0753639 + 0.320184i
\(311\) 147.247i 0.473463i −0.971575 0.236731i \(-0.923924\pi\)
0.971575 0.236731i \(-0.0760761\pi\)
\(312\) −81.7849 + 215.064i −0.262131 + 0.689309i
\(313\) 294.284i 0.940204i 0.882612 + 0.470102i \(0.155783\pi\)
−0.882612 + 0.470102i \(0.844217\pi\)
\(314\) −423.629 318.535i −1.34914 1.01444i
\(315\) 245.915 + 204.996i 0.780682 + 0.650780i
\(316\) −191.002 + 55.2001i −0.604438 + 0.174684i
\(317\) 98.0368i 0.309264i 0.987972 + 0.154632i \(0.0494193\pi\)
−0.987972 + 0.154632i \(0.950581\pi\)
\(318\) 108.666 + 81.7080i 0.341716 + 0.256943i
\(319\) 68.4969i 0.214724i
\(320\) 47.5397 + 316.449i 0.148562 + 0.988903i
\(321\) 57.7999 0.180062
\(322\) 248.206 330.096i 0.770827 1.02514i
\(323\) −224.292 −0.694403
\(324\) 1.45910 + 5.04873i 0.00450338 + 0.0155825i
\(325\) −377.888 + 69.1548i −1.16273 + 0.212784i
\(326\) −27.0168 + 35.9304i −0.0828736 + 0.110216i
\(327\) 230.799 0.705808
\(328\) 383.125 + 145.695i 1.16806 + 0.444192i
\(329\) 300.912 0.914626
\(330\) −14.2227 60.4254i −0.0430992 0.183107i
\(331\) 442.133i 1.33575i −0.744274 0.667874i \(-0.767204\pi\)
0.744274 0.667874i \(-0.232796\pi\)
\(332\) −40.5657 140.364i −0.122186 0.422784i
\(333\) 238.568i 0.716420i
\(334\) −213.916 + 284.492i −0.640466 + 0.851772i
\(335\) 150.252 + 125.251i 0.448514 + 0.373883i
\(336\) 295.061 186.089i 0.878157 0.553837i
\(337\) 86.8418i 0.257691i 0.991665 + 0.128845i \(0.0411271\pi\)
−0.991665 + 0.128845i \(0.958873\pi\)
\(338\) 80.6885 107.310i 0.238723 0.317484i
\(339\) 272.270i 0.803157i
\(340\) 289.490 + 127.049i 0.851440 + 0.373672i
\(341\) 33.8195 0.0991773
\(342\) 124.679 + 93.7486i 0.364558 + 0.274119i
\(343\) −439.052 −1.28003
\(344\) −376.126 143.034i −1.09339 0.415795i
\(345\) 127.431 + 106.227i 0.369366 + 0.307905i
\(346\) 50.7222 + 38.1391i 0.146596 + 0.110229i
\(347\) 234.740 0.676485 0.338242 0.941059i \(-0.390168\pi\)
0.338242 + 0.941059i \(0.390168\pi\)
\(348\) 42.9289 + 148.541i 0.123359 + 0.426843i
\(349\) 37.4021 0.107169 0.0535847 0.998563i \(-0.482935\pi\)
0.0535847 + 0.998563i \(0.482935\pi\)
\(350\) 520.923 + 260.514i 1.48835 + 0.744326i
\(351\) 416.947i 1.18788i
\(352\) 105.775 + 8.69892i 0.300497 + 0.0247129i
\(353\) 401.864i 1.13842i 0.822191 + 0.569212i \(0.192752\pi\)
−0.822191 + 0.569212i \(0.807248\pi\)
\(354\) −228.181 171.574i −0.644579 0.484672i
\(355\) −85.8448 + 102.980i −0.241816 + 0.290086i
\(356\) −124.168 429.642i −0.348786 1.20686i
\(357\) 344.635i 0.965365i
\(358\) 394.396 + 296.555i 1.10167 + 0.828366i
\(359\) 433.553i 1.20767i −0.797110 0.603834i \(-0.793639\pi\)
0.797110 0.603834i \(-0.206361\pi\)
\(360\) −107.817 191.623i −0.299492 0.532285i
\(361\) 159.662 0.442278
\(362\) −200.813 + 267.067i −0.554733 + 0.737753i
\(363\) −20.5885 −0.0567176
\(364\) −687.849 + 198.790i −1.88969 + 0.546126i
\(365\) −130.365 + 156.387i −0.357164 + 0.428457i
\(366\) −182.875 + 243.210i −0.499659 + 0.664509i
\(367\) 148.004 0.403280 0.201640 0.979460i \(-0.435373\pi\)
0.201640 + 0.979460i \(0.435373\pi\)
\(368\) −239.910 + 151.307i −0.651930 + 0.411160i
\(369\) −281.637 −0.763245
\(370\) 99.4388 + 422.466i 0.268753 + 1.14180i
\(371\) 423.074i 1.14036i
\(372\) −73.3404 + 21.1956i −0.197152 + 0.0569773i
\(373\) 367.813i 0.986094i 0.870003 + 0.493047i \(0.164117\pi\)
−0.870003 + 0.493047i \(0.835883\pi\)
\(374\) 63.0144 83.8045i 0.168488 0.224076i
\(375\) −115.009 + 203.741i −0.306690 + 0.543309i
\(376\) −193.163 73.4563i −0.513732 0.195362i
\(377\) 317.359i 0.841801i
\(378\) −379.902 + 505.242i −1.00503 + 1.33662i
\(379\) 266.654i 0.703571i −0.936081 0.351786i \(-0.885575\pi\)
0.936081 0.351786i \(-0.114425\pi\)
\(380\) 259.862 + 114.046i 0.683849 + 0.300121i
\(381\) −314.867 −0.826422
\(382\) 254.216 + 191.150i 0.665486 + 0.500393i
\(383\) −406.879 −1.06235 −0.531174 0.847263i \(-0.678249\pi\)
−0.531174 + 0.847263i \(0.678249\pi\)
\(384\) −234.834 + 47.4276i −0.611546 + 0.123509i
\(385\) 123.689 148.378i 0.321270 0.385399i
\(386\) 266.563 + 200.435i 0.690578 + 0.519261i
\(387\) 276.492 0.714451
\(388\) −137.040 + 39.6050i −0.353197 + 0.102075i
\(389\) −80.3605 −0.206582 −0.103291 0.994651i \(-0.532937\pi\)
−0.103291 + 0.994651i \(0.532937\pi\)
\(390\) −65.8965 279.962i −0.168965 0.717851i
\(391\) 280.219i 0.716672i
\(392\) 648.240 + 246.513i 1.65367 + 0.628860i
\(393\) 202.900i 0.516286i
\(394\) 417.579 + 313.986i 1.05984 + 0.796919i
\(395\) 159.131 190.896i 0.402864 0.483280i
\(396\) −70.0564 + 20.2465i −0.176910 + 0.0511275i
\(397\) 183.692i 0.462701i 0.972870 + 0.231350i \(0.0743144\pi\)
−0.972870 + 0.231350i \(0.925686\pi\)
\(398\) −423.421 318.379i −1.06387 0.799948i
\(399\) 309.364i 0.775349i
\(400\) −270.799 294.394i −0.676997 0.735986i
\(401\) 131.109 0.326955 0.163478 0.986547i \(-0.447729\pi\)
0.163478 + 0.986547i \(0.447729\pi\)
\(402\) −88.0129 + 117.051i −0.218937 + 0.291171i
\(403\) 156.692 0.388813
\(404\) 210.068 + 726.872i 0.519970 + 1.79919i
\(405\) −5.04591 4.20629i −0.0124590 0.0103859i
\(406\) −289.163 + 384.565i −0.712223 + 0.947204i
\(407\) 143.945 0.353674
\(408\) −84.1296 + 221.230i −0.206200 + 0.542231i
\(409\) −513.687 −1.25596 −0.627979 0.778231i \(-0.716118\pi\)
−0.627979 + 0.778231i \(0.716118\pi\)
\(410\) −498.736 + 117.391i −1.21643 + 0.286319i
\(411\) 406.761i 0.989685i
\(412\) −138.048 477.670i −0.335068 1.15939i
\(413\) 888.390i 2.15107i
\(414\) 117.124 155.767i 0.282909 0.376248i
\(415\) 140.286 + 116.943i 0.338039 + 0.281790i
\(416\) 490.075 + 40.3037i 1.17806 + 0.0968840i
\(417\) 411.324i 0.986389i
\(418\) 56.5653 75.2277i 0.135324 0.179971i
\(419\) 534.713i 1.27616i 0.769968 + 0.638082i \(0.220272\pi\)
−0.769968 + 0.638082i \(0.779728\pi\)
\(420\) −175.237 + 399.291i −0.417231 + 0.950692i
\(421\) −95.6323 −0.227155 −0.113578 0.993529i \(-0.536231\pi\)
−0.113578 + 0.993529i \(0.536231\pi\)
\(422\) −338.871 254.804i −0.803011 0.603801i
\(423\) 141.995 0.335687
\(424\) 103.278 271.582i 0.243579 0.640524i
\(425\) −388.722 + 71.1375i −0.914639 + 0.167382i
\(426\) −80.2245 60.3225i −0.188321 0.141602i
\(427\) −946.905 −2.21758
\(428\) −34.2955 118.669i −0.0801297 0.277263i
\(429\) −95.3903 −0.222355
\(430\) 489.625 115.246i 1.13866 0.268015i
\(431\) 351.962i 0.816617i −0.912844 0.408308i \(-0.866119\pi\)
0.912844 0.408308i \(-0.133881\pi\)
\(432\) 367.205 231.589i 0.850011 0.536086i
\(433\) 103.965i 0.240103i 0.992768 + 0.120052i \(0.0383060\pi\)
−0.992768 + 0.120052i \(0.961694\pi\)
\(434\) −189.874 142.770i −0.437498 0.328964i
\(435\) −148.459 123.756i −0.341284 0.284496i
\(436\) −136.945 473.853i −0.314093 1.08682i
\(437\) 251.540i 0.575607i
\(438\) −121.830 91.6063i −0.278150 0.209147i
\(439\) 673.854i 1.53498i −0.641064 0.767488i \(-0.721507\pi\)
0.641064 0.767488i \(-0.278493\pi\)
\(440\) −115.620 + 65.0540i −0.262773 + 0.147850i
\(441\) −476.525 −1.08056
\(442\) 291.957 388.282i 0.660537 0.878466i
\(443\) 535.342 1.20845 0.604223 0.796815i \(-0.293484\pi\)
0.604223 + 0.796815i \(0.293484\pi\)
\(444\) −312.158 + 90.2144i −0.703058 + 0.203186i
\(445\) 429.403 + 357.952i 0.964950 + 0.804386i
\(446\) 199.795 265.712i 0.447970 0.595768i
\(447\) −204.357 −0.457175
\(448\) −557.134 495.372i −1.24360 1.10574i
\(449\) −290.972 −0.648045 −0.324022 0.946049i \(-0.605035\pi\)
−0.324022 + 0.946049i \(0.605035\pi\)
\(450\) 245.815 + 122.932i 0.546255 + 0.273183i
\(451\) 169.932i 0.376790i
\(452\) −558.997 + 161.551i −1.23672 + 0.357415i
\(453\) 180.741i 0.398987i
\(454\) 15.4040 20.4862i 0.0339295 0.0451238i
\(455\) 573.073 687.465i 1.25950 1.51091i
\(456\) −75.5196 + 198.589i −0.165613 + 0.435502i
\(457\) 733.910i 1.60593i −0.596026 0.802965i \(-0.703255\pi\)
0.596026 0.802965i \(-0.296745\pi\)
\(458\) 468.069 622.497i 1.02198 1.35916i
\(459\) 428.900i 0.934423i
\(460\) 142.483 324.658i 0.309746 0.705779i
\(461\) 127.878 0.277392 0.138696 0.990335i \(-0.455709\pi\)
0.138696 + 0.990335i \(0.455709\pi\)
\(462\) 115.591 + 86.9152i 0.250197 + 0.188128i
\(463\) 173.856 0.375499 0.187749 0.982217i \(-0.439881\pi\)
0.187749 + 0.982217i \(0.439881\pi\)
\(464\) 279.498 176.274i 0.602366 0.379901i
\(465\) 61.1027 73.2995i 0.131404 0.157633i
\(466\) −132.481 99.6155i −0.284295 0.213767i
\(467\) 670.447 1.43565 0.717823 0.696225i \(-0.245138\pi\)
0.717823 + 0.696225i \(0.245138\pi\)
\(468\) −324.584 + 93.8057i −0.693556 + 0.200440i
\(469\) −455.720 −0.971685
\(470\) 251.452 59.1859i 0.535004 0.125927i
\(471\) 496.019i 1.05312i
\(472\) −216.867 + 570.280i −0.459463 + 1.20822i
\(473\) 166.828i 0.352702i
\(474\) 148.713 + 111.820i 0.313740 + 0.235908i
\(475\) −348.939 + 63.8571i −0.734608 + 0.134436i
\(476\) −707.569 + 204.489i −1.48649 + 0.429599i
\(477\) 199.642i 0.418536i
\(478\) 643.718 + 484.025i 1.34669 + 1.01260i
\(479\) 729.204i 1.52235i 0.648549 + 0.761173i \(0.275376\pi\)
−0.648549 + 0.761173i \(0.724624\pi\)
\(480\) 209.961 213.537i 0.437418 0.444869i
\(481\) 666.925 1.38654
\(482\) −288.289 + 383.403i −0.598109 + 0.795441i
\(483\) −386.503 −0.800214
\(484\) 12.2162 + 42.2701i 0.0252400 + 0.0873350i
\(485\) 114.174 136.964i 0.235409 0.282400i
\(486\) −290.565 + 386.430i −0.597870 + 0.795123i
\(487\) 456.198 0.936752 0.468376 0.883529i \(-0.344839\pi\)
0.468376 + 0.883529i \(0.344839\pi\)
\(488\) 607.843 + 231.151i 1.24558 + 0.473670i
\(489\) 42.0702 0.0860330
\(490\) −843.851 + 198.623i −1.72215 + 0.405353i
\(491\) 612.698i 1.24786i −0.781482 0.623928i \(-0.785536\pi\)
0.781482 0.623928i \(-0.214464\pi\)
\(492\) −106.501 368.513i −0.216466 0.749010i
\(493\) 326.457i 0.662185i
\(494\) 262.078 348.544i 0.530522 0.705555i
\(495\) 58.3667 70.0173i 0.117913 0.141449i
\(496\) 87.0330 + 137.998i 0.175470 + 0.278223i
\(497\) 312.343i 0.628457i
\(498\) −82.1749 + 109.287i −0.165010 + 0.219451i
\(499\) 922.765i 1.84923i 0.380904 + 0.924614i \(0.375613\pi\)
−0.380904 + 0.924614i \(0.624387\pi\)
\(500\) 486.540 + 115.235i 0.973080 + 0.230469i
\(501\) 333.106 0.664883
\(502\) −540.186 406.177i −1.07607 0.809118i
\(503\) −197.816 −0.393272 −0.196636 0.980477i \(-0.563002\pi\)
−0.196636 + 0.980477i \(0.563002\pi\)
\(504\) 478.792 + 182.075i 0.949984 + 0.361261i
\(505\) −726.466 605.585i −1.43855 1.19918i
\(506\) −93.9855 70.6697i −0.185742 0.139663i
\(507\) −125.647 −0.247824
\(508\) 186.826 + 646.451i 0.367768 + 1.27254i
\(509\) 652.830 1.28257 0.641287 0.767301i \(-0.278401\pi\)
0.641287 + 0.767301i \(0.278401\pi\)
\(510\) −67.7858 287.988i −0.132913 0.564683i
\(511\) 474.327i 0.928233i
\(512\) 236.712 + 453.995i 0.462328 + 0.886709i
\(513\) 385.005i 0.750498i
\(514\) −425.176 319.699i −0.827190 0.621982i
\(515\) 477.404 + 397.966i 0.926998 + 0.772749i
\(516\) 104.556 + 361.781i 0.202627 + 0.701126i
\(517\) 85.6762i 0.165718i
\(518\) −808.158 607.671i −1.56015 1.17311i
\(519\) 59.3897i 0.114431i
\(520\) −535.689 + 301.407i −1.03017 + 0.579629i
\(521\) −317.045 −0.608531 −0.304266 0.952587i \(-0.598411\pi\)
−0.304266 + 0.952587i \(0.598411\pi\)
\(522\) −136.451 + 181.470i −0.261400 + 0.347643i
\(523\) −57.7480 −0.110417 −0.0552084 0.998475i \(-0.517582\pi\)
−0.0552084 + 0.998475i \(0.517582\pi\)
\(524\) 416.574 120.391i 0.794988 0.229754i
\(525\) −98.1193 536.160i −0.186894 1.02126i
\(526\) −424.614 + 564.706i −0.807252 + 1.07359i
\(527\) 161.184 0.305852
\(528\) −52.9837 84.0102i −0.100348 0.159110i
\(529\) −214.739 −0.405934
\(530\) 83.2138 + 353.535i 0.157007 + 0.667046i
\(531\) 419.217i 0.789485i
\(532\) −635.154 + 183.561i −1.19390 + 0.345040i
\(533\) 787.328i 1.47716i
\(534\) −251.530 + 334.516i −0.471030 + 0.626435i
\(535\) 118.602 + 98.8674i 0.221687 + 0.184799i
\(536\) 292.539 + 111.247i 0.545781 + 0.207550i
\(537\) 461.791i 0.859946i
\(538\) 406.821 541.041i 0.756172 1.00565i
\(539\) 287.522i 0.533436i
\(540\) −218.083 + 496.919i −0.403858 + 0.920220i
\(541\) 77.7702 0.143753 0.0718764 0.997414i \(-0.477101\pi\)
0.0718764 + 0.997414i \(0.477101\pi\)
\(542\) −594.406 446.946i −1.09669 0.824624i
\(543\) 312.703 0.575881
\(544\) 504.125 + 41.4592i 0.926700 + 0.0762118i
\(545\) 473.588 + 394.785i 0.868969 + 0.724376i
\(546\) 535.554 + 402.694i 0.980868 + 0.737535i
\(547\) 156.036 0.285257 0.142629 0.989776i \(-0.454445\pi\)
0.142629 + 0.989776i \(0.454445\pi\)
\(548\) 835.118 241.351i 1.52394 0.440422i
\(549\) −446.829 −0.813896
\(550\) 74.1740 148.318i 0.134862 0.269669i
\(551\) 293.047i 0.531845i
\(552\) 248.106 + 94.3501i 0.449468 + 0.170924i
\(553\) 578.993i 1.04700i
\(554\) 235.997 + 177.451i 0.425987 + 0.320309i
\(555\) 260.071 311.984i 0.468596 0.562133i
\(556\) 844.488 244.059i 1.51886 0.438955i
\(557\) 274.108i 0.492116i −0.969255 0.246058i \(-0.920865\pi\)
0.969255 0.246058i \(-0.0791353\pi\)
\(558\) −89.5984 67.3709i −0.160571 0.120736i
\(559\) 772.945i 1.38273i
\(560\) 923.758 + 122.859i 1.64957 + 0.219392i
\(561\) −98.1251 −0.174911
\(562\) 470.189 625.316i 0.836635 1.11266i
\(563\) −31.2910 −0.0555790 −0.0277895 0.999614i \(-0.508847\pi\)
−0.0277895 + 0.999614i \(0.508847\pi\)
\(564\) 53.6956 + 185.796i 0.0952049 + 0.329426i
\(565\) 465.722 558.685i 0.824286 0.988823i
\(566\) −518.659 + 689.779i −0.916359 + 1.21869i
\(567\) 15.3044 0.0269919
\(568\) −76.2467 + 200.501i −0.134237 + 0.352995i
\(569\) −363.431 −0.638719 −0.319360 0.947634i \(-0.603468\pi\)
−0.319360 + 0.947634i \(0.603468\pi\)
\(570\) −60.8484 258.515i −0.106752 0.453535i
\(571\) 694.121i 1.21562i 0.794081 + 0.607812i \(0.207953\pi\)
−0.794081 + 0.607812i \(0.792047\pi\)
\(572\) 56.5998 + 195.845i 0.0989508 + 0.342387i
\(573\) 297.656i 0.519470i
\(574\) 717.376 954.058i 1.24978 1.66212i
\(575\) 79.7796 + 435.945i 0.138747 + 0.758166i
\(576\) −262.902 233.758i −0.456427 0.405830i
\(577\) 6.57594i 0.0113968i 0.999984 + 0.00569839i \(0.00181386\pi\)
−0.999984 + 0.00569839i \(0.998186\pi\)
\(578\) −47.0401 + 62.5598i −0.0813842 + 0.108235i
\(579\) 312.114i 0.539057i
\(580\) −165.994 + 378.230i −0.286197 + 0.652120i
\(581\) −425.492 −0.732344
\(582\) 106.699 + 80.2289i 0.183331 + 0.137850i
\(583\) 120.458 0.206618
\(584\) −115.789 + 304.483i −0.198269 + 0.521374i
\(585\) 270.424 324.403i 0.462263 0.554535i
\(586\) 689.503 + 518.452i 1.17663 + 0.884731i
\(587\) 78.5744 0.133858 0.0669288 0.997758i \(-0.478680\pi\)
0.0669288 + 0.997758i \(0.478680\pi\)
\(588\) −180.198 623.517i −0.306459 1.06040i
\(589\) 144.688 0.245650
\(590\) −174.736 742.367i −0.296163 1.25825i
\(591\) 488.935i 0.827301i
\(592\) 370.438 + 587.361i 0.625739 + 0.992164i
\(593\) 493.290i 0.831855i −0.909398 0.415927i \(-0.863457\pi\)
0.909398 0.415927i \(-0.136543\pi\)
\(594\) 143.853 + 108.166i 0.242177 + 0.182098i
\(595\) 589.503 707.174i 0.990761 1.18853i
\(596\) 121.255 + 419.564i 0.203448 + 0.703967i
\(597\) 495.776i 0.830445i
\(598\) −435.452 327.426i −0.728181 0.547535i
\(599\) 90.0018i 0.150253i 0.997174 + 0.0751267i \(0.0239361\pi\)
−0.997174 + 0.0751267i \(0.976064\pi\)
\(600\) −67.8979 + 368.127i −0.113163 + 0.613545i
\(601\) 525.158 0.873807 0.436903 0.899509i \(-0.356075\pi\)
0.436903 + 0.899509i \(0.356075\pi\)
\(602\) −704.272 + 936.630i −1.16989 + 1.55586i
\(603\) −215.047 −0.356628
\(604\) 371.079 107.243i 0.614369 0.177554i
\(605\) −42.2466 35.2169i −0.0698290 0.0582097i
\(606\) 425.540 565.937i 0.702212 0.933890i
\(607\) 852.633 1.40467 0.702334 0.711848i \(-0.252141\pi\)
0.702334 + 0.711848i \(0.252141\pi\)
\(608\) 452.531 + 37.2162i 0.744295 + 0.0612108i
\(609\) 450.280 0.739376
\(610\) −791.265 + 186.245i −1.29715 + 0.305320i
\(611\) 396.954i 0.649679i
\(612\) −333.890 + 96.4951i −0.545572 + 0.157672i
\(613\) 640.325i 1.04458i 0.852769 + 0.522288i \(0.174922\pi\)
−0.852769 + 0.522288i \(0.825078\pi\)
\(614\) 527.883 702.045i 0.859744 1.14340i
\(615\) 368.307 + 307.022i 0.598873 + 0.499223i
\(616\) 109.859 288.890i 0.178343 0.468978i
\(617\) 687.291i 1.11392i −0.830538 0.556962i \(-0.811967\pi\)
0.830538 0.556962i \(-0.188033\pi\)
\(618\) −279.648 + 371.911i −0.452504 + 0.601797i
\(619\) 455.133i 0.735271i 0.929970 + 0.367635i \(0.119833\pi\)
−0.929970 + 0.367635i \(0.880167\pi\)
\(620\) −186.746 81.9574i −0.301203 0.132189i
\(621\) −481.005 −0.774565
\(622\) 235.378 + 176.986i 0.378421 + 0.284543i
\(623\) −1302.39 −2.09052
\(624\) −245.483 389.235i −0.393403 0.623774i
\(625\) −584.494 + 221.342i −0.935190 + 0.354147i
\(626\) −470.420 353.719i −0.751469 0.565046i
\(627\) −88.0827 −0.140483
\(628\) 1018.37 294.313i 1.62161 0.468650i
\(629\) 686.046 1.09069
\(630\) −623.272 + 146.704i −0.989320 + 0.232863i
\(631\) 319.662i 0.506596i −0.967388 0.253298i \(-0.918485\pi\)
0.967388 0.253298i \(-0.0815153\pi\)
\(632\) 141.339 371.670i 0.223638 0.588086i
\(633\) 396.777i 0.626820i
\(634\) −156.714 117.837i −0.247183 0.185862i
\(635\) −646.091 538.583i −1.01747 0.848163i
\(636\) −261.224 + 75.4946i −0.410730 + 0.118702i
\(637\) 1332.14i 2.09128i
\(638\) 109.494 + 82.3309i 0.171621 + 0.129045i
\(639\) 147.389i 0.230656i
\(640\) −562.993 304.367i −0.879676 0.475574i
\(641\) 800.239 1.24842 0.624211 0.781256i \(-0.285420\pi\)
0.624211 + 0.781256i \(0.285420\pi\)
\(642\) −69.4734 + 92.3945i −0.108214 + 0.143917i
\(643\) −363.629 −0.565519 −0.282759 0.959191i \(-0.591250\pi\)
−0.282759 + 0.959191i \(0.591250\pi\)
\(644\) 229.332 + 793.528i 0.356105 + 1.23219i
\(645\) −361.579 301.414i −0.560588 0.467308i
\(646\) 269.591 358.537i 0.417324 0.555010i
\(647\) 467.325 0.722296 0.361148 0.932509i \(-0.382385\pi\)
0.361148 + 0.932509i \(0.382385\pi\)
\(648\) −9.82430 3.73599i −0.0151610 0.00576542i
\(649\) −252.944 −0.389744
\(650\) 343.662 687.185i 0.528711 1.05721i
\(651\) 222.320i 0.341505i
\(652\) −24.9623 86.3740i −0.0382858 0.132476i
\(653\) 517.515i 0.792520i −0.918138 0.396260i \(-0.870308\pi\)
0.918138 0.396260i \(-0.129692\pi\)
\(654\) −277.412 + 368.938i −0.424178 + 0.564126i
\(655\) −347.064 + 416.341i −0.529868 + 0.635636i
\(656\) −693.399 + 437.314i −1.05701 + 0.666637i
\(657\) 223.827i 0.340680i
\(658\) −361.686 + 481.015i −0.549674 + 0.731026i
\(659\) 880.339i 1.33587i 0.744219 + 0.667936i \(0.232822\pi\)
−0.744219 + 0.667936i \(0.767178\pi\)
\(660\) 113.687 + 49.8938i 0.172253 + 0.0755966i
\(661\) 382.765 0.579069 0.289535 0.957168i \(-0.406499\pi\)
0.289535 + 0.957168i \(0.406499\pi\)
\(662\) 706.760 + 531.428i 1.06761 + 0.802762i
\(663\) −454.632 −0.685719
\(664\) 273.134 + 103.868i 0.411347 + 0.156427i
\(665\) 529.171 634.800i 0.795747 0.954586i
\(666\) −381.356 286.750i −0.572607 0.430556i
\(667\) −366.117 −0.548901
\(668\) −197.648 683.899i −0.295881 1.02380i
\(669\) −311.117 −0.465049
\(670\) −380.815 + 89.6349i −0.568380 + 0.133783i
\(671\) 269.604i 0.401795i
\(672\) −57.1843 + 695.335i −0.0850957 + 1.03472i
\(673\) 751.235i 1.11625i 0.829757 + 0.558124i \(0.188479\pi\)
−0.829757 + 0.558124i \(0.811521\pi\)
\(674\) −138.819 104.381i −0.205962 0.154868i
\(675\) −122.110 667.254i −0.180904 0.988524i
\(676\) 74.5526 + 257.965i 0.110285 + 0.381605i
\(677\) 302.142i 0.446296i −0.974785 0.223148i \(-0.928367\pi\)
0.974785 0.223148i \(-0.0716333\pi\)
\(678\) 435.231 + 327.259i 0.641933 + 0.482683i
\(679\) 415.416i 0.611805i
\(680\) −551.047 + 310.048i −0.810363 + 0.455953i
\(681\) −23.9869 −0.0352230
\(682\) −40.6498 + 54.0612i −0.0596038 + 0.0792687i
\(683\) −338.096 −0.495017 −0.247508 0.968886i \(-0.579612\pi\)
−0.247508 + 0.968886i \(0.579612\pi\)
\(684\) −299.719 + 86.6195i −0.438185 + 0.126637i
\(685\) −695.769 + 834.652i −1.01572 + 1.21847i
\(686\) 527.725 701.835i 0.769278 1.02308i
\(687\) −728.870 −1.06095
\(688\) 680.733 429.325i 0.989437 0.624019i
\(689\) 558.106 0.810024
\(690\) −322.974 + 76.0207i −0.468079 + 0.110175i
\(691\) 176.823i 0.255894i −0.991781 0.127947i \(-0.959161\pi\)
0.991781 0.127947i \(-0.0408387\pi\)
\(692\) −121.933 + 35.2389i −0.176203 + 0.0509232i
\(693\) 212.365i 0.306443i
\(694\) −282.150 + 375.238i −0.406556 + 0.540689i
\(695\) −703.575 + 844.016i −1.01234 + 1.21441i
\(696\) −289.046 109.919i −0.415296 0.157929i
\(697\) 809.900i 1.16198i
\(698\) −44.9560 + 59.7882i −0.0644069 + 0.0856565i
\(699\) 155.120i 0.221917i
\(700\) −1042.57 + 519.579i −1.48938 + 0.742255i
\(701\) 34.8582 0.0497263 0.0248632 0.999691i \(-0.492085\pi\)
0.0248632 + 0.999691i \(0.492085\pi\)
\(702\) 666.499 + 501.155i 0.949429 + 0.713896i
\(703\) 615.834 0.876009
\(704\) −141.043 + 158.628i −0.200345 + 0.225324i
\(705\) −185.693 154.794i −0.263394 0.219566i
\(706\) −642.389 483.026i −0.909899 0.684173i
\(707\) 2203.40 3.11654
\(708\) 548.531 158.527i 0.774761 0.223908i
\(709\) 1065.71 1.50312 0.751561 0.659664i \(-0.229301\pi\)
0.751561 + 0.659664i \(0.229301\pi\)
\(710\) −61.4342 261.004i −0.0865271 0.367611i
\(711\) 273.217i 0.384272i
\(712\) 836.039 + 317.930i 1.17421 + 0.446531i
\(713\) 180.765i 0.253528i
\(714\) 550.908 + 414.239i 0.771580 + 0.580167i
\(715\) −195.736 163.166i −0.273757 0.228205i
\(716\) −948.101 + 274.004i −1.32416 + 0.382686i
\(717\) 753.717i 1.05121i
\(718\) 693.045 + 521.115i 0.965244 + 0.725787i
\(719\) 620.988i 0.863683i −0.901949 0.431842i \(-0.857864\pi\)
0.901949 0.431842i \(-0.142136\pi\)
\(720\) 435.906 + 57.9753i 0.605425 + 0.0805212i
\(721\) −1447.98 −2.00830
\(722\) −191.909 + 255.224i −0.265801 + 0.353496i
\(723\) 448.919 0.620911
\(724\) −185.542 642.010i −0.256274 0.886754i
\(725\) −92.9440 507.880i −0.128199 0.700525i
\(726\) 24.7466 32.9112i 0.0340863 0.0453323i
\(727\) −471.311 −0.648295 −0.324148 0.946006i \(-0.605077\pi\)
−0.324148 + 0.946006i \(0.605077\pi\)
\(728\) 508.999 1338.48i 0.699174 1.83857i
\(729\) 464.288 0.636883
\(730\) −93.2946 396.363i −0.127801 0.542963i
\(731\) 795.105i 1.08770i
\(732\) −168.968 584.660i −0.230831 0.798716i
\(733\) 382.451i 0.521761i −0.965371 0.260880i \(-0.915987\pi\)
0.965371 0.260880i \(-0.0840128\pi\)
\(734\) −177.895 + 236.587i −0.242364 + 0.322326i
\(735\) 623.169 + 519.476i 0.847849 + 0.706770i
\(736\) 46.4959 565.368i 0.0631737 0.768163i
\(737\) 129.753i 0.176056i
\(738\) 338.518 450.204i 0.458697 0.610033i
\(739\) 1273.04i 1.72265i −0.508051 0.861327i \(-0.669634\pi\)
0.508051 0.861327i \(-0.330366\pi\)
\(740\) −794.845 348.834i −1.07411 0.471398i
\(741\) −408.104 −0.550747
\(742\) −676.295 508.520i −0.911449 0.685338i
\(743\) −754.743 −1.01580 −0.507902 0.861415i \(-0.669579\pi\)
−0.507902 + 0.861415i \(0.669579\pi\)
\(744\) 54.2709 142.713i 0.0729448 0.191818i
\(745\) −419.330 349.555i −0.562860 0.469202i
\(746\) −587.958 442.098i −0.788147 0.592625i
\(747\) −200.783 −0.268785
\(748\) 58.2225 + 201.460i 0.0778376 + 0.269332i
\(749\) −359.725 −0.480274
\(750\) −187.448 428.734i −0.249931 0.571645i
\(751\) 951.384i 1.26682i 0.773815 + 0.633412i \(0.218346\pi\)
−0.773815 + 0.633412i \(0.781654\pi\)
\(752\) 349.597 220.484i 0.464890 0.293197i
\(753\) 632.493i 0.839964i
\(754\) 507.306 + 381.454i 0.672820 + 0.505907i
\(755\) −309.160 + 370.872i −0.409484 + 0.491221i
\(756\) −351.013 1214.57i −0.464303 1.60657i
\(757\) 925.077i 1.22203i 0.791619 + 0.611015i \(0.209238\pi\)
−0.791619 + 0.611015i \(0.790762\pi\)
\(758\) 426.252 + 320.508i 0.562338 + 0.422834i
\(759\) 110.046i 0.144988i
\(760\) −494.651 + 278.317i −0.650857 + 0.366207i
\(761\) 365.227 0.479930 0.239965 0.970782i \(-0.422864\pi\)
0.239965 + 0.970782i \(0.422864\pi\)
\(762\) 378.459 503.322i 0.496665 0.660528i
\(763\) −1436.41 −1.88258
\(764\) −611.117 + 176.614i −0.799891 + 0.231171i
\(765\) 278.177 333.704i 0.363630 0.436214i
\(766\) 489.055 650.407i 0.638453 0.849095i
\(767\) −1171.94 −1.52795
\(768\) 206.448 432.394i 0.268812 0.563013i
\(769\) 230.757 0.300074 0.150037 0.988680i \(-0.452061\pi\)
0.150037 + 0.988680i \(0.452061\pi\)
\(770\) 88.5170 + 376.065i 0.114957 + 0.488396i
\(771\) 497.830i 0.645694i
\(772\) −640.799 + 185.193i −0.830051 + 0.239887i
\(773\) 490.699i 0.634799i −0.948292 0.317399i \(-0.897190\pi\)
0.948292 0.317399i \(-0.102810\pi\)
\(774\) −332.334 + 441.980i −0.429372 + 0.571034i
\(775\) 250.759