Properties

Label 220.3.h.a.199.13
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.13
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58018 - 1.22598i) q^{2} +0.354051 q^{3} +(0.993967 + 3.87454i) q^{4} +(-4.79515 + 1.41652i) q^{5} +(-0.559466 - 0.434058i) q^{6} +6.53369 q^{7} +(3.17944 - 7.34106i) q^{8} -8.87465 q^{9} +(9.31385 + 3.64037i) q^{10} +3.31662i q^{11} +(0.351915 + 1.37178i) q^{12} -17.8331i q^{13} +(-10.3244 - 8.01014i) q^{14} +(-1.69773 + 0.501522i) q^{15} +(-14.0241 + 7.70232i) q^{16} -10.2601i q^{17} +(14.0236 + 10.8801i) q^{18} -24.2213i q^{19} +(-10.2546 - 17.1710i) q^{20} +2.31326 q^{21} +(4.06610 - 5.24088i) q^{22} -30.4450 q^{23} +(1.12568 - 2.59911i) q^{24} +(20.9869 - 13.5849i) q^{25} +(-21.8629 + 28.1796i) q^{26} -6.32853 q^{27} +(6.49427 + 25.3150i) q^{28} -22.6440 q^{29} +(3.29757 + 1.28887i) q^{30} -1.17131i q^{31} +(31.6035 + 5.02207i) q^{32} +1.17425i q^{33} +(-12.5787 + 16.2129i) q^{34} +(-31.3300 + 9.25513i) q^{35} +(-8.82111 - 34.3851i) q^{36} -20.5178i q^{37} +(-29.6947 + 38.2741i) q^{38} -6.31382i q^{39} +(-4.84707 + 39.7052i) q^{40} -39.0053 q^{41} +(-3.65537 - 2.83600i) q^{42} -35.0449 q^{43} +(-12.8504 + 3.29662i) q^{44} +(42.5553 - 12.5712i) q^{45} +(48.1087 + 37.3248i) q^{46} +18.3279 q^{47} +(-4.96523 + 2.72701i) q^{48} -6.31094 q^{49} +(-49.8180 - 4.26280i) q^{50} -3.63261i q^{51} +(69.0949 - 17.7255i) q^{52} -60.6114i q^{53} +(10.0003 + 7.75863i) q^{54} +(-4.69808 - 15.9037i) q^{55} +(20.7734 - 47.9642i) q^{56} -8.57557i q^{57} +(35.7817 + 27.7610i) q^{58} -24.8880i q^{59} +(-3.63065 - 6.07941i) q^{60} +99.4176 q^{61} +(-1.43600 + 1.85088i) q^{62} -57.9842 q^{63} +(-43.7824 - 46.6809i) q^{64} +(25.2610 + 85.5123i) q^{65} +(1.43961 - 1.85554i) q^{66} +66.1083 q^{67} +(39.7533 - 10.1982i) q^{68} -10.7791 q^{69} +(60.8538 + 23.7850i) q^{70} +73.5040i q^{71} +(-28.2164 + 65.1493i) q^{72} -11.7094i q^{73} +(-25.1543 + 32.4219i) q^{74} +(7.43043 - 4.80974i) q^{75} +(93.8463 - 24.0752i) q^{76} +21.6698i q^{77} +(-7.74059 + 9.97700i) q^{78} +91.6424i q^{79} +(56.3369 - 56.7992i) q^{80} +77.6312 q^{81} +(61.6356 + 47.8195i) q^{82} +123.435 q^{83} +(2.29930 + 8.96280i) q^{84} +(14.5337 + 49.1989i) q^{85} +(55.3774 + 42.9642i) q^{86} -8.01712 q^{87} +(24.3475 + 10.5450i) q^{88} -6.98478 q^{89} +(-82.6571 - 32.3070i) q^{90} -116.516i q^{91} +(-30.2613 - 117.960i) q^{92} -0.414703i q^{93} +(-28.9614 - 22.4695i) q^{94} +(34.3101 + 116.145i) q^{95} +(11.1892 + 1.77807i) q^{96} -113.558i q^{97} +(9.97246 + 7.73706i) q^{98} -29.4339i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58018 1.22598i −0.790092 0.612988i
\(3\) 0.354051 0.118017 0.0590085 0.998257i \(-0.481206\pi\)
0.0590085 + 0.998257i \(0.481206\pi\)
\(4\) 0.993967 + 3.87454i 0.248492 + 0.968634i
\(5\) −4.79515 + 1.41652i −0.959030 + 0.283305i
\(6\) −0.559466 0.434058i −0.0932443 0.0723429i
\(7\) 6.53369 0.933384 0.466692 0.884420i \(-0.345446\pi\)
0.466692 + 0.884420i \(0.345446\pi\)
\(8\) 3.17944 7.34106i 0.397429 0.917633i
\(9\) −8.87465 −0.986072
\(10\) 9.31385 + 3.64037i 0.931385 + 0.364037i
\(11\) 3.31662i 0.301511i
\(12\) 0.351915 + 1.37178i 0.0293262 + 0.114315i
\(13\) 17.8331i 1.37178i −0.727707 0.685888i \(-0.759414\pi\)
0.727707 0.685888i \(-0.240586\pi\)
\(14\) −10.3244 8.01014i −0.737459 0.572153i
\(15\) −1.69773 + 0.501522i −0.113182 + 0.0334348i
\(16\) −14.0241 + 7.70232i −0.876504 + 0.481395i
\(17\) 10.2601i 0.603538i −0.953381 0.301769i \(-0.902423\pi\)
0.953381 0.301769i \(-0.0975771\pi\)
\(18\) 14.0236 + 10.8801i 0.779088 + 0.604450i
\(19\) 24.2213i 1.27480i −0.770531 0.637402i \(-0.780009\pi\)
0.770531 0.637402i \(-0.219991\pi\)
\(20\) −10.2546 17.1710i −0.512730 0.858550i
\(21\) 2.31326 0.110155
\(22\) 4.06610 5.24088i 0.184823 0.238222i
\(23\) −30.4450 −1.32369 −0.661847 0.749639i \(-0.730227\pi\)
−0.661847 + 0.749639i \(0.730227\pi\)
\(24\) 1.12568 2.59911i 0.0469034 0.108296i
\(25\) 20.9869 13.5849i 0.839477 0.543396i
\(26\) −21.8629 + 28.1796i −0.840882 + 1.08383i
\(27\) −6.32853 −0.234390
\(28\) 6.49427 + 25.3150i 0.231938 + 0.904107i
\(29\) −22.6440 −0.780827 −0.390414 0.920640i \(-0.627668\pi\)
−0.390414 + 0.920640i \(0.627668\pi\)
\(30\) 3.29757 + 1.28887i 0.109919 + 0.0429625i
\(31\) 1.17131i 0.0377842i −0.999822 0.0188921i \(-0.993986\pi\)
0.999822 0.0188921i \(-0.00601389\pi\)
\(32\) 31.6035 + 5.02207i 0.987608 + 0.156940i
\(33\) 1.17425i 0.0355834i
\(34\) −12.5787 + 16.2129i −0.369961 + 0.476851i
\(35\) −31.3300 + 9.25513i −0.895143 + 0.264432i
\(36\) −8.82111 34.3851i −0.245031 0.955143i
\(37\) 20.5178i 0.554536i −0.960793 0.277268i \(-0.910571\pi\)
0.960793 0.277268i \(-0.0894289\pi\)
\(38\) −29.6947 + 38.2741i −0.781440 + 1.00721i
\(39\) 6.31382i 0.161893i
\(40\) −4.84707 + 39.7052i −0.121177 + 0.992631i
\(41\) −39.0053 −0.951349 −0.475674 0.879621i \(-0.657796\pi\)
−0.475674 + 0.879621i \(0.657796\pi\)
\(42\) −3.65537 2.83600i −0.0870327 0.0675237i
\(43\) −35.0449 −0.814998 −0.407499 0.913206i \(-0.633599\pi\)
−0.407499 + 0.913206i \(0.633599\pi\)
\(44\) −12.8504 + 3.29662i −0.292054 + 0.0749231i
\(45\) 42.5553 12.5712i 0.945673 0.279359i
\(46\) 48.1087 + 37.3248i 1.04584 + 0.811409i
\(47\) 18.3279 0.389954 0.194977 0.980808i \(-0.437537\pi\)
0.194977 + 0.980808i \(0.437537\pi\)
\(48\) −4.96523 + 2.72701i −0.103442 + 0.0568128i
\(49\) −6.31094 −0.128795
\(50\) −49.8180 4.26280i −0.996359 0.0852560i
\(51\) 3.63261i 0.0712277i
\(52\) 69.0949 17.7255i 1.32875 0.340875i
\(53\) 60.6114i 1.14361i −0.820389 0.571806i \(-0.806243\pi\)
0.820389 0.571806i \(-0.193757\pi\)
\(54\) 10.0003 + 7.75863i 0.185190 + 0.143678i
\(55\) −4.69808 15.9037i −0.0854197 0.289158i
\(56\) 20.7734 47.9642i 0.370954 0.856503i
\(57\) 8.57557i 0.150449i
\(58\) 35.7817 + 27.7610i 0.616926 + 0.478638i
\(59\) 24.8880i 0.421830i −0.977504 0.210915i \(-0.932356\pi\)
0.977504 0.210915i \(-0.0676444\pi\)
\(60\) −3.63065 6.07941i −0.0605108 0.101323i
\(61\) 99.4176 1.62980 0.814899 0.579604i \(-0.196793\pi\)
0.814899 + 0.579604i \(0.196793\pi\)
\(62\) −1.43600 + 1.85088i −0.0231612 + 0.0298530i
\(63\) −57.9842 −0.920384
\(64\) −43.7824 46.6809i −0.684100 0.729389i
\(65\) 25.2610 + 85.5123i 0.388631 + 1.31557i
\(66\) 1.43961 1.85554i 0.0218122 0.0281142i
\(67\) 66.1083 0.986691 0.493346 0.869833i \(-0.335774\pi\)
0.493346 + 0.869833i \(0.335774\pi\)
\(68\) 39.7533 10.1982i 0.584607 0.149974i
\(69\) −10.7791 −0.156218
\(70\) 60.8538 + 23.7850i 0.869339 + 0.339786i
\(71\) 73.5040i 1.03527i 0.855602 + 0.517634i \(0.173187\pi\)
−0.855602 + 0.517634i \(0.826813\pi\)
\(72\) −28.2164 + 65.1493i −0.391894 + 0.904852i
\(73\) 11.7094i 0.160403i −0.996779 0.0802013i \(-0.974444\pi\)
0.996779 0.0802013i \(-0.0255563\pi\)
\(74\) −25.1543 + 32.4219i −0.339924 + 0.438134i
\(75\) 7.43043 4.80974i 0.0990724 0.0641299i
\(76\) 93.8463 24.0752i 1.23482 0.316778i
\(77\) 21.6698i 0.281426i
\(78\) −7.74059 + 9.97700i −0.0992383 + 0.127910i
\(79\) 91.6424i 1.16003i 0.814606 + 0.580015i \(0.196953\pi\)
−0.814606 + 0.580015i \(0.803047\pi\)
\(80\) 56.3369 56.7992i 0.704212 0.709990i
\(81\) 77.6312 0.958410
\(82\) 61.6356 + 47.8195i 0.751653 + 0.583165i
\(83\) 123.435 1.48717 0.743583 0.668643i \(-0.233125\pi\)
0.743583 + 0.668643i \(0.233125\pi\)
\(84\) 2.29930 + 8.96280i 0.0273726 + 0.106700i
\(85\) 14.5337 + 49.1989i 0.170985 + 0.578811i
\(86\) 55.3774 + 42.9642i 0.643924 + 0.499584i
\(87\) −8.01712 −0.0921508
\(88\) 24.3475 + 10.5450i 0.276677 + 0.119829i
\(89\) −6.98478 −0.0784807 −0.0392403 0.999230i \(-0.512494\pi\)
−0.0392403 + 0.999230i \(0.512494\pi\)
\(90\) −82.6571 32.3070i −0.918412 0.358966i
\(91\) 116.516i 1.28039i
\(92\) −30.2613 117.960i −0.328927 1.28218i
\(93\) 0.414703i 0.00445917i
\(94\) −28.9614 22.4695i −0.308100 0.239037i
\(95\) 34.3101 + 116.145i 0.361159 + 1.22258i
\(96\) 11.1892 + 1.77807i 0.116554 + 0.0185215i
\(97\) 113.558i 1.17070i −0.810780 0.585352i \(-0.800956\pi\)
0.810780 0.585352i \(-0.199044\pi\)
\(98\) 9.97246 + 7.73706i 0.101760 + 0.0789496i
\(99\) 29.4339i 0.297312i
\(100\) 73.4955 + 67.8116i 0.734955 + 0.678116i
\(101\) −37.7496 −0.373758 −0.186879 0.982383i \(-0.559837\pi\)
−0.186879 + 0.982383i \(0.559837\pi\)
\(102\) −4.45349 + 5.74020i −0.0436617 + 0.0562764i
\(103\) −172.276 −1.67259 −0.836293 0.548283i \(-0.815282\pi\)
−0.836293 + 0.548283i \(0.815282\pi\)
\(104\) −130.914 56.6991i −1.25879 0.545184i
\(105\) −11.0924 + 3.27679i −0.105642 + 0.0312075i
\(106\) −74.3081 + 95.7773i −0.701020 + 0.903559i
\(107\) −55.1292 −0.515226 −0.257613 0.966248i \(-0.582936\pi\)
−0.257613 + 0.966248i \(0.582936\pi\)
\(108\) −6.29035 24.5201i −0.0582440 0.227038i
\(109\) −117.871 −1.08139 −0.540693 0.841220i \(-0.681838\pi\)
−0.540693 + 0.841220i \(0.681838\pi\)
\(110\) −12.0737 + 30.8905i −0.109761 + 0.280823i
\(111\) 7.26435i 0.0654446i
\(112\) −91.6288 + 50.3246i −0.818114 + 0.449326i
\(113\) 14.9494i 0.132296i −0.997810 0.0661478i \(-0.978929\pi\)
0.997810 0.0661478i \(-0.0210709\pi\)
\(114\) −10.5134 + 13.5510i −0.0922231 + 0.118868i
\(115\) 145.988 43.1261i 1.26946 0.375009i
\(116\) −22.5074 87.7349i −0.194029 0.756336i
\(117\) 158.262i 1.35267i
\(118\) −30.5121 + 39.3276i −0.258577 + 0.333285i
\(119\) 67.0366i 0.563332i
\(120\) −1.71611 + 14.0577i −0.0143009 + 0.117147i
\(121\) −11.0000 −0.0909091
\(122\) −157.098 121.884i −1.28769 0.999046i
\(123\) −13.8099 −0.112275
\(124\) 4.53828 1.16424i 0.0365990 0.00938905i
\(125\) −81.3920 + 94.8701i −0.651136 + 0.758961i
\(126\) 91.6257 + 71.0872i 0.727188 + 0.564184i
\(127\) 17.5623 0.138286 0.0691430 0.997607i \(-0.477974\pi\)
0.0691430 + 0.997607i \(0.477974\pi\)
\(128\) 11.9546 + 127.441i 0.0933955 + 0.995629i
\(129\) −12.4077 −0.0961836
\(130\) 64.9189 166.095i 0.499376 1.27765i
\(131\) 249.534i 1.90484i −0.304795 0.952418i \(-0.598588\pi\)
0.304795 0.952418i \(-0.401412\pi\)
\(132\) −4.54969 + 1.16717i −0.0344673 + 0.00884219i
\(133\) 158.254i 1.18988i
\(134\) −104.463 81.0472i −0.779577 0.604830i
\(135\) 30.3463 8.96453i 0.224787 0.0664039i
\(136\) −75.3203 32.6215i −0.553826 0.239864i
\(137\) 174.228i 1.27174i 0.771797 + 0.635869i \(0.219358\pi\)
−0.771797 + 0.635869i \(0.780642\pi\)
\(138\) 17.0329 + 13.2149i 0.123427 + 0.0957600i
\(139\) 184.565i 1.32781i 0.747819 + 0.663903i \(0.231101\pi\)
−0.747819 + 0.663903i \(0.768899\pi\)
\(140\) −67.0003 112.190i −0.478574 0.801357i
\(141\) 6.48899 0.0460212
\(142\) 90.1141 116.150i 0.634606 0.817957i
\(143\) 59.1456 0.413606
\(144\) 124.459 68.3554i 0.864296 0.474690i
\(145\) 108.581 32.0758i 0.748837 0.221212i
\(146\) −14.3554 + 18.5030i −0.0983249 + 0.126733i
\(147\) −2.23439 −0.0152000
\(148\) 79.4970 20.3940i 0.537142 0.137798i
\(149\) −153.906 −1.03293 −0.516465 0.856308i \(-0.672752\pi\)
−0.516465 + 0.856308i \(0.672752\pi\)
\(150\) −17.6381 1.50925i −0.117587 0.0100617i
\(151\) 257.202i 1.70333i 0.524090 + 0.851663i \(0.324405\pi\)
−0.524090 + 0.851663i \(0.675595\pi\)
\(152\) −177.810 77.0100i −1.16980 0.506645i
\(153\) 91.0552i 0.595132i
\(154\) 26.5666 34.2423i 0.172511 0.222352i
\(155\) 1.65919 + 5.61660i 0.0107044 + 0.0362361i
\(156\) 24.4631 6.27572i 0.156815 0.0402290i
\(157\) 291.323i 1.85556i 0.373128 + 0.927780i \(0.378285\pi\)
−0.373128 + 0.927780i \(0.621715\pi\)
\(158\) 112.351 144.812i 0.711085 0.916531i
\(159\) 21.4595i 0.134966i
\(160\) −158.657 + 20.6855i −0.991608 + 0.129285i
\(161\) −198.918 −1.23551
\(162\) −122.672 95.1740i −0.757232 0.587494i
\(163\) 47.0391 0.288583 0.144292 0.989535i \(-0.453910\pi\)
0.144292 + 0.989535i \(0.453910\pi\)
\(164\) −38.7700 151.127i −0.236402 0.921509i
\(165\) −1.66336 5.63072i −0.0100810 0.0341256i
\(166\) −195.050 151.328i −1.17500 0.911615i
\(167\) 110.048 0.658968 0.329484 0.944161i \(-0.393125\pi\)
0.329484 + 0.944161i \(0.393125\pi\)
\(168\) 7.35485 16.9818i 0.0437789 0.101082i
\(169\) −149.019 −0.881768
\(170\) 37.3507 95.5614i 0.219710 0.562126i
\(171\) 214.955i 1.25705i
\(172\) −34.8335 135.783i −0.202520 0.789435i
\(173\) 7.40275i 0.0427904i 0.999771 + 0.0213952i \(0.00681083\pi\)
−0.999771 + 0.0213952i \(0.993189\pi\)
\(174\) 12.6685 + 9.82880i 0.0728077 + 0.0564873i
\(175\) 137.122 88.7595i 0.783554 0.507197i
\(176\) −25.5457 46.5125i −0.145146 0.264276i
\(177\) 8.81161i 0.0497831i
\(178\) 11.0372 + 8.56317i 0.0620070 + 0.0481077i
\(179\) 295.467i 1.65065i −0.564654 0.825327i \(-0.690991\pi\)
0.564654 0.825327i \(-0.309009\pi\)
\(180\) 91.0059 + 152.387i 0.505589 + 0.846592i
\(181\) 40.6345 0.224500 0.112250 0.993680i \(-0.464194\pi\)
0.112250 + 0.993680i \(0.464194\pi\)
\(182\) −142.845 + 184.116i −0.784865 + 1.01163i
\(183\) 35.1989 0.192344
\(184\) −96.7978 + 223.498i −0.526075 + 1.21467i
\(185\) 29.0640 + 98.3860i 0.157103 + 0.531816i
\(186\) −0.508416 + 0.655307i −0.00273342 + 0.00352316i
\(187\) 34.0290 0.181974
\(188\) 18.2173 + 71.0119i 0.0969005 + 0.377723i
\(189\) −41.3486 −0.218776
\(190\) 88.1743 225.593i 0.464075 1.18733i
\(191\) 264.076i 1.38260i 0.722570 + 0.691298i \(0.242961\pi\)
−0.722570 + 0.691298i \(0.757039\pi\)
\(192\) −15.5012 16.5274i −0.0807353 0.0860802i
\(193\) 304.864i 1.57961i −0.613361 0.789803i \(-0.710183\pi\)
0.613361 0.789803i \(-0.289817\pi\)
\(194\) −139.220 + 179.443i −0.717627 + 0.924964i
\(195\) 8.94368 + 30.2757i 0.0458650 + 0.155260i
\(196\) −6.27287 24.4520i −0.0320044 0.124755i
\(197\) 129.546i 0.657592i −0.944401 0.328796i \(-0.893357\pi\)
0.944401 0.328796i \(-0.106643\pi\)
\(198\) −36.0852 + 46.5110i −0.182249 + 0.234904i
\(199\) 24.7630i 0.124437i 0.998063 + 0.0622187i \(0.0198176\pi\)
−0.998063 + 0.0622187i \(0.980182\pi\)
\(200\) −33.0010 197.259i −0.165005 0.986293i
\(201\) 23.4057 0.116446
\(202\) 59.6513 + 46.2801i 0.295304 + 0.229109i
\(203\) −147.949 −0.728811
\(204\) 14.0747 3.61070i 0.0689936 0.0176995i
\(205\) 187.036 55.2520i 0.912372 0.269522i
\(206\) 272.229 + 211.207i 1.32150 + 1.02528i
\(207\) 270.188 1.30526
\(208\) 137.356 + 250.092i 0.660366 + 1.20237i
\(209\) 80.3329 0.384368
\(210\) 21.5453 + 8.42110i 0.102597 + 0.0401005i
\(211\) 236.345i 1.12012i −0.828453 0.560059i \(-0.810779\pi\)
0.828453 0.560059i \(-0.189221\pi\)
\(212\) 234.841 60.2458i 1.10774 0.284178i
\(213\) 26.0241i 0.122179i
\(214\) 87.1142 + 67.5870i 0.407076 + 0.315827i
\(215\) 168.046 49.6420i 0.781608 0.230893i
\(216\) −20.1212 + 46.4582i −0.0931535 + 0.215084i
\(217\) 7.65296i 0.0352671i
\(218\) 186.258 + 144.507i 0.854394 + 0.662876i
\(219\) 4.14572i 0.0189302i
\(220\) 56.9498 34.0107i 0.258863 0.154594i
\(221\) −182.970 −0.827918
\(222\) −8.90592 + 11.4790i −0.0401167 + 0.0517073i
\(223\) −429.110 −1.92426 −0.962129 0.272594i \(-0.912118\pi\)
−0.962129 + 0.272594i \(0.912118\pi\)
\(224\) 206.487 + 32.8126i 0.921817 + 0.146485i
\(225\) −186.251 + 120.561i −0.827784 + 0.535827i
\(226\) −18.3276 + 23.6228i −0.0810956 + 0.104526i
\(227\) −105.352 −0.464106 −0.232053 0.972703i \(-0.574544\pi\)
−0.232053 + 0.972703i \(0.574544\pi\)
\(228\) 33.2263 8.52383i 0.145730 0.0373852i
\(229\) 412.612 1.80180 0.900900 0.434026i \(-0.142907\pi\)
0.900900 + 0.434026i \(0.142907\pi\)
\(230\) −283.560 110.831i −1.23287 0.481873i
\(231\) 7.67220i 0.0332130i
\(232\) −71.9951 + 166.231i −0.310324 + 0.716513i
\(233\) 294.910i 1.26571i −0.774272 0.632854i \(-0.781884\pi\)
0.774272 0.632854i \(-0.218116\pi\)
\(234\) 194.026 250.084i 0.829170 1.06873i
\(235\) −87.8848 + 25.9619i −0.373978 + 0.110476i
\(236\) 96.4294 24.7378i 0.408599 0.104821i
\(237\) 32.4461i 0.136903i
\(238\) −82.1852 + 105.930i −0.345316 + 0.445085i
\(239\) 27.8481i 0.116519i −0.998301 0.0582596i \(-0.981445\pi\)
0.998301 0.0582596i \(-0.0185551\pi\)
\(240\) 19.9461 20.1098i 0.0831089 0.0837909i
\(241\) 247.367 1.02642 0.513210 0.858263i \(-0.328456\pi\)
0.513210 + 0.858263i \(0.328456\pi\)
\(242\) 17.3820 + 13.4857i 0.0718266 + 0.0557262i
\(243\) 84.4422 0.347499
\(244\) 98.8178 + 385.197i 0.404991 + 1.57868i
\(245\) 30.2619 8.93961i 0.123518 0.0364882i
\(246\) 21.8221 + 16.9305i 0.0887078 + 0.0688234i
\(247\) −431.940 −1.74875
\(248\) −8.59865 3.72410i −0.0346720 0.0150165i
\(249\) 43.7022 0.175511
\(250\) 244.923 50.1276i 0.979692 0.200510i
\(251\) 68.7817i 0.274031i −0.990569 0.137015i \(-0.956249\pi\)
0.990569 0.137015i \(-0.0437509\pi\)
\(252\) −57.6343 224.662i −0.228708 0.891515i
\(253\) 100.975i 0.399109i
\(254\) −27.7517 21.5310i −0.109259 0.0847677i
\(255\) 5.14569 + 17.4189i 0.0201792 + 0.0683095i
\(256\) 137.348 216.036i 0.536517 0.843889i
\(257\) 91.7718i 0.357089i −0.983932 0.178544i \(-0.942861\pi\)
0.983932 0.178544i \(-0.0571388\pi\)
\(258\) 19.6064 + 15.2115i 0.0759939 + 0.0589594i
\(259\) 134.057i 0.517595i
\(260\) −306.212 + 182.871i −1.17774 + 0.703350i
\(261\) 200.957 0.769952
\(262\) −305.922 + 394.309i −1.16764 + 1.50500i
\(263\) 175.553 0.667502 0.333751 0.942661i \(-0.391685\pi\)
0.333751 + 0.942661i \(0.391685\pi\)
\(264\) 8.62027 + 3.73346i 0.0326525 + 0.0141419i
\(265\) 85.8576 + 290.641i 0.323991 + 1.09676i
\(266\) −194.016 + 250.071i −0.729383 + 0.940117i
\(267\) −2.47297 −0.00926205
\(268\) 65.7095 + 256.139i 0.245185 + 0.955743i
\(269\) 38.7131 0.143915 0.0719575 0.997408i \(-0.477075\pi\)
0.0719575 + 0.997408i \(0.477075\pi\)
\(270\) −58.9430 23.0382i −0.218307 0.0853266i
\(271\) 74.0663i 0.273307i 0.990619 + 0.136654i \(0.0436347\pi\)
−0.990619 + 0.136654i \(0.956365\pi\)
\(272\) 79.0269 + 143.889i 0.290540 + 0.529003i
\(273\) 41.2525i 0.151108i
\(274\) 213.599 275.313i 0.779560 1.00479i
\(275\) 45.0560 + 69.6057i 0.163840 + 0.253112i
\(276\) −10.7140 41.7639i −0.0388190 0.151318i
\(277\) 330.409i 1.19281i 0.802682 + 0.596407i \(0.203406\pi\)
−0.802682 + 0.596407i \(0.796594\pi\)
\(278\) 226.272 291.647i 0.813929 1.04909i
\(279\) 10.3950i 0.0372579i
\(280\) −31.6693 + 259.422i −0.113104 + 0.926506i
\(281\) 247.162 0.879580 0.439790 0.898101i \(-0.355053\pi\)
0.439790 + 0.898101i \(0.355053\pi\)
\(282\) −10.2538 7.95535i −0.0363610 0.0282105i
\(283\) −280.371 −0.990712 −0.495356 0.868690i \(-0.664962\pi\)
−0.495356 + 0.868690i \(0.664962\pi\)
\(284\) −284.794 + 73.0605i −1.00279 + 0.257255i
\(285\) 12.1475 + 41.1211i 0.0426228 + 0.144285i
\(286\) −93.4610 72.5111i −0.326787 0.253535i
\(287\) −254.848 −0.887973
\(288\) −280.470 44.5691i −0.973853 0.154754i
\(289\) 183.729 0.635742
\(290\) −210.903 82.4324i −0.727250 0.284250i
\(291\) 40.2054i 0.138163i
\(292\) 45.3685 11.6388i 0.155371 0.0398587i
\(293\) 297.344i 1.01482i −0.861703 0.507412i \(-0.830602\pi\)
0.861703 0.507412i \(-0.169398\pi\)
\(294\) 3.53076 + 2.73931i 0.0120094 + 0.00931739i
\(295\) 35.2545 + 119.342i 0.119507 + 0.404548i
\(296\) −150.623 65.2351i −0.508860 0.220389i
\(297\) 20.9894i 0.0706713i
\(298\) 243.201 + 188.686i 0.816110 + 0.633173i
\(299\) 542.928i 1.81581i
\(300\) 26.0211 + 24.0088i 0.0867371 + 0.0800292i
\(301\) −228.973 −0.760706
\(302\) 315.324 406.427i 1.04412 1.34578i
\(303\) −13.3653 −0.0441098
\(304\) 186.560 + 339.681i 0.613685 + 1.11737i
\(305\) −476.722 + 140.828i −1.56302 + 0.461730i
\(306\) 111.631 143.884i 0.364809 0.470209i
\(307\) −129.766 −0.422689 −0.211344 0.977412i \(-0.567784\pi\)
−0.211344 + 0.977412i \(0.567784\pi\)
\(308\) −83.9604 + 21.5391i −0.272599 + 0.0699320i
\(309\) −60.9946 −0.197393
\(310\) 4.26399 10.9094i 0.0137548 0.0351916i
\(311\) 334.287i 1.07488i −0.843302 0.537440i \(-0.819392\pi\)
0.843302 0.537440i \(-0.180608\pi\)
\(312\) −46.3501 20.0744i −0.148558 0.0643409i
\(313\) 111.216i 0.355323i −0.984092 0.177662i \(-0.943147\pi\)
0.984092 0.177662i \(-0.0568533\pi\)
\(314\) 357.155 460.344i 1.13744 1.46606i
\(315\) 278.043 82.1360i 0.882675 0.260749i
\(316\) −355.072 + 91.0895i −1.12364 + 0.288258i
\(317\) 491.831i 1.55152i −0.631030 0.775759i \(-0.717367\pi\)
0.631030 0.775759i \(-0.282633\pi\)
\(318\) −26.3089 + 33.9100i −0.0827323 + 0.106635i
\(319\) 75.1016i 0.235428i
\(320\) 276.068 + 161.823i 0.862711 + 0.505697i
\(321\) −19.5185 −0.0608054
\(322\) 314.327 + 243.869i 0.976171 + 0.757356i
\(323\) −248.514 −0.769393
\(324\) 77.1629 + 300.785i 0.238157 + 0.928349i
\(325\) −242.261 374.261i −0.745417 1.15157i
\(326\) −74.3304 57.6688i −0.228007 0.176898i
\(327\) −41.7323 −0.127622
\(328\) −124.015 + 286.340i −0.378094 + 0.872989i
\(329\) 119.748 0.363977
\(330\) −4.27471 + 10.9368i −0.0129537 + 0.0331419i
\(331\) 305.401i 0.922662i −0.887228 0.461331i \(-0.847372\pi\)
0.887228 0.461331i \(-0.152628\pi\)
\(332\) 122.690 + 478.253i 0.369549 + 1.44052i
\(333\) 182.088i 0.546812i
\(334\) −173.896 134.916i −0.520646 0.403940i
\(335\) −316.999 + 93.6441i −0.946266 + 0.279534i
\(336\) −32.4412 + 17.8174i −0.0965513 + 0.0530281i
\(337\) 525.976i 1.56076i −0.625306 0.780379i \(-0.715026\pi\)
0.625306 0.780379i \(-0.284974\pi\)
\(338\) 235.477 + 182.693i 0.696678 + 0.540513i
\(339\) 5.29285i 0.0156131i
\(340\) −176.177 + 105.214i −0.518167 + 0.309452i
\(341\) 3.88479 0.0113924
\(342\) 263.530 339.669i 0.770556 0.993185i
\(343\) −361.384 −1.05360
\(344\) −111.423 + 257.267i −0.323904 + 0.747869i
\(345\) 51.6872 15.2688i 0.149818 0.0442574i
\(346\) 9.07559 11.6977i 0.0262300 0.0338084i
\(347\) 663.664 1.91258 0.956288 0.292426i \(-0.0944625\pi\)
0.956288 + 0.292426i \(0.0944625\pi\)
\(348\) −7.96875 31.0626i −0.0228987 0.0892604i
\(349\) 161.733 0.463419 0.231709 0.972785i \(-0.425568\pi\)
0.231709 + 0.972785i \(0.425568\pi\)
\(350\) −325.495 27.8518i −0.929985 0.0795766i
\(351\) 112.857i 0.321531i
\(352\) −16.6563 + 104.817i −0.0473191 + 0.297775i
\(353\) 452.336i 1.28141i 0.767789 + 0.640703i \(0.221357\pi\)
−0.767789 + 0.640703i \(0.778643\pi\)
\(354\) −10.8028 + 13.9240i −0.0305164 + 0.0393333i
\(355\) −104.120 352.462i −0.293296 0.992852i
\(356\) −6.94264 27.0628i −0.0195018 0.0760190i
\(357\) 23.7343i 0.0664828i
\(358\) −362.236 + 466.893i −1.01183 + 1.30417i
\(359\) 409.040i 1.13939i 0.821858 + 0.569693i \(0.192938\pi\)
−0.821858 + 0.569693i \(0.807062\pi\)
\(360\) 43.0161 352.370i 0.119489 0.978806i
\(361\) −225.671 −0.625127
\(362\) −64.2101 49.8169i −0.177376 0.137616i
\(363\) −3.89456 −0.0107288
\(364\) 451.444 115.813i 1.24023 0.318167i
\(365\) 16.5867 + 56.1483i 0.0454429 + 0.153831i
\(366\) −55.6207 43.1530i −0.151969 0.117904i
\(367\) 183.633 0.500361 0.250181 0.968199i \(-0.419510\pi\)
0.250181 + 0.968199i \(0.419510\pi\)
\(368\) 426.962 234.497i 1.16022 0.637220i
\(369\) 346.158 0.938098
\(370\) 74.6924 191.100i 0.201871 0.516486i
\(371\) 396.016i 1.06743i
\(372\) 1.60678 0.412201i 0.00431930 0.00110807i
\(373\) 444.907i 1.19278i −0.802695 0.596390i \(-0.796601\pi\)
0.802695 0.596390i \(-0.203399\pi\)
\(374\) −53.7722 41.7188i −0.143776 0.111548i
\(375\) −28.8169 + 33.5888i −0.0768451 + 0.0895702i
\(376\) 58.2723 134.546i 0.154979 0.357835i
\(377\) 403.812i 1.07112i
\(378\) 65.3385 + 50.6924i 0.172853 + 0.134107i
\(379\) 282.809i 0.746199i −0.927791 0.373100i \(-0.878295\pi\)
0.927791 0.373100i \(-0.121705\pi\)
\(380\) −415.904 + 248.380i −1.09448 + 0.653630i
\(381\) 6.21796 0.0163201
\(382\) 323.751 417.289i 0.847515 1.09238i
\(383\) 395.624 1.03296 0.516480 0.856299i \(-0.327242\pi\)
0.516480 + 0.856299i \(0.327242\pi\)
\(384\) 4.23254 + 45.1204i 0.0110222 + 0.117501i
\(385\) −30.6958 103.910i −0.0797293 0.269896i
\(386\) −373.756 + 481.741i −0.968279 + 1.24803i
\(387\) 311.011 0.803647
\(388\) 439.985 112.873i 1.13398 0.290910i
\(389\) 408.322 1.04967 0.524836 0.851204i \(-0.324127\pi\)
0.524836 + 0.851204i \(0.324127\pi\)
\(390\) 22.9846 58.8059i 0.0589349 0.150784i
\(391\) 312.370i 0.798900i
\(392\) −20.0652 + 46.3290i −0.0511868 + 0.118186i
\(393\) 88.3475i 0.224803i
\(394\) −158.820 + 204.706i −0.403096 + 0.519559i
\(395\) −129.814 439.439i −0.328642 1.11250i
\(396\) 114.043 29.2563i 0.287986 0.0738796i
\(397\) 632.825i 1.59402i −0.603968 0.797009i \(-0.706414\pi\)
0.603968 0.797009i \(-0.293586\pi\)
\(398\) 30.3589 39.1302i 0.0762786 0.0983170i
\(399\) 56.0301i 0.140426i
\(400\) −189.686 + 352.163i −0.474216 + 0.880408i
\(401\) −147.429 −0.367654 −0.183827 0.982959i \(-0.558849\pi\)
−0.183827 + 0.982959i \(0.558849\pi\)
\(402\) −36.9853 28.6948i −0.0920033 0.0713801i
\(403\) −20.8880 −0.0518314
\(404\) −37.5218 146.262i −0.0928759 0.362035i
\(405\) −372.253 + 109.967i −0.919144 + 0.271522i
\(406\) 233.786 + 181.382i 0.575828 + 0.446753i
\(407\) 68.0499 0.167199
\(408\) −26.6672 11.5497i −0.0653609 0.0283080i
\(409\) −301.796 −0.737887 −0.368944 0.929452i \(-0.620280\pi\)
−0.368944 + 0.929452i \(0.620280\pi\)
\(410\) −363.289 141.994i −0.886071 0.346326i
\(411\) 61.6856i 0.150087i
\(412\) −171.237 667.491i −0.415624 1.62012i
\(413\) 162.610i 0.393730i
\(414\) −426.948 331.244i −1.03127 0.800107i
\(415\) −591.888 + 174.849i −1.42624 + 0.421322i
\(416\) 89.5589 563.587i 0.215286 1.35478i
\(417\) 65.3454i 0.156704i
\(418\) −126.941 98.4862i −0.303686 0.235613i
\(419\) 12.4944i 0.0298197i 0.999889 + 0.0149098i \(0.00474612\pi\)
−0.999889 + 0.0149098i \(0.995254\pi\)
\(420\) −23.7215 39.7209i −0.0564798 0.0945736i
\(421\) −763.149 −1.81270 −0.906352 0.422523i \(-0.861145\pi\)
−0.906352 + 0.422523i \(0.861145\pi\)
\(422\) −289.753 + 373.468i −0.686618 + 0.884996i
\(423\) −162.653 −0.384523
\(424\) −444.952 192.710i −1.04942 0.454505i
\(425\) −139.383 215.329i −0.327960 0.506656i
\(426\) 31.9050 41.1229i 0.0748943 0.0965327i
\(427\) 649.564 1.52123
\(428\) −54.7966 213.600i −0.128029 0.499065i
\(429\) 20.9406 0.0488125
\(430\) −326.403 127.576i −0.759077 0.296689i
\(431\) 437.127i 1.01421i 0.861883 + 0.507107i \(0.169285\pi\)
−0.861883 + 0.507107i \(0.830715\pi\)
\(432\) 88.7517 48.7444i 0.205444 0.112834i
\(433\) 454.224i 1.04902i 0.851406 + 0.524508i \(0.175751\pi\)
−0.851406 + 0.524508i \(0.824249\pi\)
\(434\) −9.38235 + 12.0931i −0.0216183 + 0.0278643i
\(435\) 38.4433 11.3565i 0.0883754 0.0261068i
\(436\) −117.160 456.695i −0.268715 1.04747i
\(437\) 737.416i 1.68745i
\(438\) −5.08255 + 6.55100i −0.0116040 + 0.0149566i
\(439\) 348.609i 0.794098i 0.917797 + 0.397049i \(0.129966\pi\)
−0.917797 + 0.397049i \(0.870034\pi\)
\(440\) −131.687 16.0759i −0.299289 0.0365362i
\(441\) 56.0074 0.127001
\(442\) 289.126 + 224.317i 0.654132 + 0.507504i
\(443\) −166.492 −0.375828 −0.187914 0.982185i \(-0.560173\pi\)
−0.187914 + 0.982185i \(0.560173\pi\)
\(444\) 28.1460 7.22052i 0.0633919 0.0162624i
\(445\) 33.4931 9.89411i 0.0752653 0.0222340i
\(446\) 678.072 + 526.078i 1.52034 + 1.17955i
\(447\) −54.4907 −0.121903
\(448\) −286.060 304.998i −0.638527 0.680799i
\(449\) −266.939 −0.594519 −0.297259 0.954797i \(-0.596073\pi\)
−0.297259 + 0.954797i \(0.596073\pi\)
\(450\) 442.117 + 37.8309i 0.982482 + 0.0840686i
\(451\) 129.366i 0.286842i
\(452\) 57.9220 14.8592i 0.128146 0.0328744i
\(453\) 91.0626i 0.201021i
\(454\) 166.476 + 129.159i 0.366687 + 0.284492i
\(455\) 165.047 + 558.710i 0.362742 + 1.22794i
\(456\) −62.9538 27.2655i −0.138056 0.0597927i
\(457\) 103.640i 0.226784i −0.993550 0.113392i \(-0.963828\pi\)
0.993550 0.113392i \(-0.0361716\pi\)
\(458\) −652.004 505.853i −1.42359 1.10448i
\(459\) 64.9317i 0.141463i
\(460\) 312.201 + 522.771i 0.678698 + 1.13646i
\(461\) 149.998 0.325376 0.162688 0.986678i \(-0.447984\pi\)
0.162688 + 0.986678i \(0.447984\pi\)
\(462\) 9.40594 12.1235i 0.0203592 0.0262413i
\(463\) 297.906 0.643426 0.321713 0.946837i \(-0.395741\pi\)
0.321713 + 0.946837i \(0.395741\pi\)
\(464\) 317.561 174.411i 0.684398 0.375886i
\(465\) 0.587437 + 1.98856i 0.00126331 + 0.00427648i
\(466\) −361.552 + 466.012i −0.775863 + 1.00003i
\(467\) −189.087 −0.404896 −0.202448 0.979293i \(-0.564890\pi\)
−0.202448 + 0.979293i \(0.564890\pi\)
\(468\) −613.193 + 157.308i −1.31024 + 0.336127i
\(469\) 431.931 0.920961
\(470\) 170.703 + 66.7201i 0.363198 + 0.141958i
\(471\) 103.143i 0.218987i
\(472\) −182.704 79.1298i −0.387085 0.167648i
\(473\) 116.231i 0.245731i
\(474\) 39.7781 51.2708i 0.0839200 0.108166i
\(475\) −329.044 508.330i −0.692724 1.07017i
\(476\) 259.736 66.6321i 0.545663 0.139983i
\(477\) 537.905i 1.12768i
\(478\) −34.1411 + 44.0051i −0.0714248 + 0.0920609i
\(479\) 45.7640i 0.0955408i −0.998858 0.0477704i \(-0.984788\pi\)
0.998858 0.0477704i \(-0.0152116\pi\)
\(480\) −56.1727 + 7.32373i −0.117026 + 0.0152578i
\(481\) −365.896 −0.760698
\(482\) −390.886 303.266i −0.810967 0.629183i
\(483\) −70.4270 −0.145812
\(484\) −10.9336 42.6199i −0.0225902 0.0880576i
\(485\) 160.858 + 544.529i 0.331666 + 1.12274i
\(486\) −133.434 103.524i −0.274556 0.213012i
\(487\) −448.388 −0.920715 −0.460357 0.887734i \(-0.652279\pi\)
−0.460357 + 0.887734i \(0.652279\pi\)
\(488\) 316.092 729.831i 0.647729 1.49556i
\(489\) 16.6542 0.0340577
\(490\) −58.7792 22.9741i −0.119957 0.0468860i
\(491\) 11.8893i 0.0242145i −0.999927 0.0121072i \(-0.996146\pi\)
0.999927 0.0121072i \(-0.00385394\pi\)
\(492\) −13.7265 53.5068i −0.0278995 0.108754i
\(493\) 232.331i 0.471259i
\(494\) 682.545 + 529.548i 1.38167 + 1.07196i
\(495\) 41.6938 + 141.140i 0.0842299 + 0.285131i
\(496\) 9.02180 + 16.4265i 0.0181891 + 0.0331180i
\(497\) 480.252i 0.966301i
\(498\) −69.0575 53.5778i −0.138670 0.107586i
\(499\) 857.568i 1.71857i −0.511495 0.859286i \(-0.670908\pi\)
0.511495 0.859286i \(-0.329092\pi\)
\(500\) −448.479 221.059i −0.896957 0.442117i
\(501\) 38.9625 0.0777694
\(502\) −84.3247 + 108.688i −0.167977 + 0.216509i
\(503\) 737.996 1.46719 0.733595 0.679587i \(-0.237841\pi\)
0.733595 + 0.679587i \(0.237841\pi\)
\(504\) −184.357 + 425.665i −0.365788 + 0.844574i
\(505\) 181.015 53.4732i 0.358445 0.105888i
\(506\) −123.792 + 159.558i −0.244649 + 0.315333i
\(507\) −52.7602 −0.104064
\(508\) 17.4564 + 68.0459i 0.0343629 + 0.133949i
\(509\) −130.675 −0.256729 −0.128365 0.991727i \(-0.540973\pi\)
−0.128365 + 0.991727i \(0.540973\pi\)
\(510\) 13.2240 33.8336i 0.0259295 0.0663404i
\(511\) 76.5055i 0.149717i
\(512\) −481.890 + 172.990i −0.941192 + 0.337872i
\(513\) 153.285i 0.298802i
\(514\) −112.510 + 145.016i −0.218891 + 0.282133i
\(515\) 826.091 244.034i 1.60406 0.473852i
\(516\) −12.3328 48.0740i −0.0239008 0.0931667i
\(517\) 60.7866i 0.117576i
\(518\) −164.351 + 211.835i −0.317279 + 0.408948i
\(519\) 2.62095i 0.00505000i
\(520\) 708.067 + 86.4382i 1.36167 + 0.166227i
\(521\) −136.275 −0.261565 −0.130782 0.991411i \(-0.541749\pi\)
−0.130782 + 0.991411i \(0.541749\pi\)
\(522\) −317.550 246.369i −0.608333 0.471971i
\(523\) 370.734 0.708861 0.354431 0.935082i \(-0.384675\pi\)
0.354431 + 0.935082i \(0.384675\pi\)
\(524\) 966.827 248.028i 1.84509 0.473336i
\(525\) 48.5481 31.4254i 0.0924726 0.0598578i
\(526\) −277.406 215.224i −0.527389 0.409171i
\(527\) −12.0178 −0.0228042
\(528\) −9.04448 16.4678i −0.0171297 0.0311890i
\(529\) 397.896 0.752167
\(530\) 220.648 564.526i 0.416317 1.06514i
\(531\) 220.872i 0.415955i
\(532\) 613.162 157.300i 1.15256 0.295676i
\(533\) 695.585i 1.30504i
\(534\) 3.90774 + 3.03180i 0.00731787 + 0.00567752i
\(535\) 264.353 78.0918i 0.494117 0.145966i
\(536\) 210.187 485.305i 0.392140 0.905420i
\(537\) 104.610i 0.194805i
\(538\) −61.1739 47.4614i −0.113706 0.0882182i
\(539\) 20.9310i 0.0388331i
\(540\) 64.8966 + 108.667i 0.120179 + 0.201236i
\(541\) 441.525 0.816127 0.408064 0.912953i \(-0.366204\pi\)
0.408064 + 0.912953i \(0.366204\pi\)
\(542\) 90.8034 117.038i 0.167534 0.215938i
\(543\) 14.3867 0.0264948
\(544\) 51.5271 324.256i 0.0947190 0.596059i
\(545\) 565.209 166.967i 1.03708 0.306362i
\(546\) −50.5746 + 65.1866i −0.0926274 + 0.119389i
\(547\) −588.923 −1.07664 −0.538321 0.842740i \(-0.680941\pi\)
−0.538321 + 0.842740i \(0.680941\pi\)
\(548\) −675.053 + 173.177i −1.23185 + 0.316016i
\(549\) −882.296 −1.60710
\(550\) 14.1381 165.227i 0.0257057 0.300414i
\(551\) 548.467i 0.995402i
\(552\) −34.2713 + 79.1298i −0.0620858 + 0.143351i
\(553\) 598.763i 1.08275i
\(554\) 405.074 522.108i 0.731180 0.942433i
\(555\) 10.2901 + 34.8336i 0.0185408 + 0.0627633i
\(556\) −715.104 + 183.451i −1.28616 + 0.329949i
\(557\) 234.944i 0.421802i −0.977507 0.210901i \(-0.932360\pi\)
0.977507 0.210901i \(-0.0676398\pi\)
\(558\) 12.7440 16.4259i 0.0228386 0.0294372i
\(559\) 624.959i 1.11799i
\(560\) 368.088 371.108i 0.657300 0.662693i
\(561\) 12.0480 0.0214760
\(562\) −390.562 303.015i −0.694950 0.539172i
\(563\) 1089.05 1.93437 0.967185 0.254075i \(-0.0817710\pi\)
0.967185 + 0.254075i \(0.0817710\pi\)
\(564\) 6.44984 + 25.1418i 0.0114359 + 0.0445777i
\(565\) 21.1762 + 71.6846i 0.0374800 + 0.126875i
\(566\) 443.039 + 343.729i 0.782754 + 0.607294i
\(567\) 507.218 0.894564
\(568\) 539.597 + 233.701i 0.949995 + 0.411446i
\(569\) 8.71234 0.0153117 0.00765583 0.999971i \(-0.497563\pi\)
0.00765583 + 0.999971i \(0.497563\pi\)
\(570\) 31.2182 79.8715i 0.0547688 0.140125i
\(571\) 158.034i 0.276768i 0.990379 + 0.138384i \(0.0441907\pi\)
−0.990379 + 0.138384i \(0.955809\pi\)
\(572\) 58.7888 + 229.162i 0.102778 + 0.400633i
\(573\) 93.4963i 0.163170i
\(574\) 402.707 + 312.438i 0.701581 + 0.544317i
\(575\) −638.946 + 413.592i −1.11121 + 0.719290i
\(576\) 388.553 + 414.276i 0.674571 + 0.719230i
\(577\) 515.203i 0.892900i −0.894809 0.446450i \(-0.852688\pi\)
0.894809 0.446450i \(-0.147312\pi\)
\(578\) −290.326 225.248i −0.502295 0.389702i
\(579\) 107.937i 0.186420i
\(580\) 232.205 + 388.820i 0.400353 + 0.670379i
\(581\) 806.484 1.38810
\(582\) −49.2908 + 63.5319i −0.0846921 + 0.109161i
\(583\) 201.025 0.344812
\(584\) −85.9594 37.2293i −0.147191 0.0637488i
\(585\) −224.183 758.891i −0.383218 1.29725i
\(586\) −364.536 + 469.858i −0.622075 + 0.801805i
\(587\) −853.172 −1.45345 −0.726723 0.686931i \(-0.758957\pi\)
−0.726723 + 0.686931i \(0.758957\pi\)
\(588\) −2.22091 8.65724i −0.00377707 0.0147232i
\(589\) −28.3706 −0.0481674
\(590\) 90.6014 231.803i 0.153562 0.392886i
\(591\) 45.8658i 0.0776070i
\(592\) 158.035 + 287.743i 0.266951 + 0.486053i
\(593\) 907.797i 1.53086i 0.643522 + 0.765428i \(0.277472\pi\)
−0.643522 + 0.765428i \(0.722528\pi\)
\(594\) −25.7325 + 33.1671i −0.0433206 + 0.0558368i
\(595\) 94.9590 + 321.450i 0.159595 + 0.540253i
\(596\) −152.978 596.316i −0.256674 1.00053i
\(597\) 8.76737i 0.0146857i
\(598\) 665.616 857.926i 1.11307 1.43466i
\(599\) 519.661i 0.867548i −0.901022 0.433774i \(-0.857182\pi\)
0.901022 0.433774i \(-0.142818\pi\)
\(600\) −11.6840 69.8395i −0.0194734 0.116399i
\(601\) 138.114 0.229807 0.114904 0.993377i \(-0.463344\pi\)
0.114904 + 0.993377i \(0.463344\pi\)
\(602\) 361.819 + 280.715i 0.601028 + 0.466304i
\(603\) −586.688 −0.972948
\(604\) −996.539 + 255.650i −1.64990 + 0.423262i
\(605\) 52.7466 15.5818i 0.0871845 0.0257550i
\(606\) 21.1196 + 16.3855i 0.0348508 + 0.0270388i
\(607\) 177.510 0.292438 0.146219 0.989252i \(-0.453290\pi\)
0.146219 + 0.989252i \(0.453290\pi\)
\(608\) 121.641 765.477i 0.200067 1.25901i
\(609\) −52.3814 −0.0860121
\(610\) 925.960 + 361.917i 1.51797 + 0.593306i
\(611\) 326.842i 0.534930i
\(612\) −352.797 + 90.5058i −0.576465 + 0.147885i
\(613\) 13.7473i 0.0224263i −0.999937 0.0112132i \(-0.996431\pi\)
0.999937 0.0112132i \(-0.00356934\pi\)
\(614\) 205.053 + 159.089i 0.333963 + 0.259103i
\(615\) 66.2203 19.5620i 0.107675 0.0318081i
\(616\) 159.079 + 68.8977i 0.258246 + 0.111847i
\(617\) 434.502i 0.704216i −0.935959 0.352108i \(-0.885465\pi\)
0.935959 0.352108i \(-0.114535\pi\)
\(618\) 96.3827 + 74.7779i 0.155959 + 0.121000i
\(619\) 1108.67i 1.79106i 0.445000 + 0.895530i \(0.353204\pi\)
−0.445000 + 0.895530i \(0.646796\pi\)
\(620\) −20.1125 + 12.0113i −0.0324396 + 0.0193731i
\(621\) 192.672 0.310261
\(622\) −409.828 + 528.236i −0.658888 + 0.849254i
\(623\) −45.6364 −0.0732526
\(624\) 48.6310 + 88.5453i 0.0779344 + 0.141900i
\(625\) 255.901 570.210i 0.409442 0.912336i
\(626\) −136.348 + 175.742i −0.217809 + 0.280738i
\(627\) 28.4419 0.0453619
\(628\) −1128.74 + 289.565i −1.79736 + 0.461091i
\(629\) −210.516 −0.334683
\(630\) −540.056 211.084i −0.857231 0.335053i
\(631\) 1095.05i 1.73543i −0.497066 0.867713i \(-0.665589\pi\)
0.497066 0.867713i \(-0.334411\pi\)
\(632\) 672.753 + 291.371i 1.06448 + 0.461030i
\(633\) 83.6781i 0.132193i
\(634\) −602.973 + 777.184i −0.951061 + 1.22584i
\(635\) −84.2140 + 24.8775i −0.132620 + 0.0391771i
\(636\) 83.1457 21.3301i 0.130732 0.0335378i
\(637\) 112.544i 0.176678i
\(638\) −92.0728 + 118.674i −0.144315 + 0.186010i
\(639\) 652.322i 1.02085i
\(640\) −237.847 594.162i −0.371636 0.928379i
\(641\) 999.847 1.55982 0.779912 0.625889i \(-0.215264\pi\)
0.779912 + 0.625889i \(0.215264\pi\)
\(642\) 30.8429 + 23.9292i 0.0480418 + 0.0372729i
\(643\) 527.808 0.820853 0.410426 0.911894i \(-0.365380\pi\)
0.410426 + 0.911894i \(0.365380\pi\)
\(644\) −197.718 770.715i −0.307015 1.19676i
\(645\) 59.4967 17.5758i 0.0922429 0.0272493i
\(646\) 392.698 + 304.672i 0.607891 + 0.471628i
\(647\) −952.327 −1.47191 −0.735956 0.677029i \(-0.763267\pi\)
−0.735956 + 0.677029i \(0.763267\pi\)
\(648\) 246.823 569.896i 0.380900 0.879468i
\(649\) 82.5441 0.127187
\(650\) −76.0189 + 888.408i −0.116952 + 1.36678i
\(651\) 2.70954i 0.00416212i
\(652\) 46.7553 + 182.255i 0.0717106 + 0.279532i
\(653\) 201.502i 0.308578i 0.988026 + 0.154289i \(0.0493088\pi\)
−0.988026 + 0.154289i \(0.950691\pi\)
\(654\) 65.9448 + 51.1628i 0.100833 + 0.0782306i
\(655\) 353.470 + 1196.55i 0.539650 + 1.82679i
\(656\) 547.013 300.431i 0.833861 0.457975i
\(657\) 103.917i 0.158169i
\(658\) −189.225 146.809i −0.287576 0.223114i
\(659\) 651.891i 0.989212i 0.869117 + 0.494606i \(0.164688\pi\)
−0.869117 + 0.494606i \(0.835312\pi\)
\(660\) 20.1631 12.0415i 0.0305502 0.0182447i
\(661\) −558.690 −0.845220 −0.422610 0.906312i \(-0.638886\pi\)
−0.422610 + 0.906312i \(0.638886\pi\)
\(662\) −374.414 + 482.590i −0.565581 + 0.728988i
\(663\) −64.7807 −0.0977084
\(664\) 392.453 906.143i 0.591044 1.36467i
\(665\) 224.171 + 758.853i 0.337099 + 1.14113i
\(666\) 223.236 287.733i 0.335189 0.432032i
\(667\) 689.396 1.03358
\(668\) 109.384 + 426.384i 0.163748 + 0.638299i
\(669\) −151.927 −0.227095
\(670\) 615.723 + 240.658i 0.918989 + 0.359192i
\(671\) 329.731i 0.491402i
\(672\) 73.1069 + 11.6173i 0.108790 + 0.0172877i
\(673\) 455.656i 0.677052i −0.940957 0.338526i \(-0.890072\pi\)
0.940957 0.338526i \(-0.109928\pi\)
\(674\) −644.833 + 831.139i −0.956726 + 1.23314i
\(675\) −132.816 + 85.9725i −0.196765 + 0.127367i
\(676\) −148.120 577.379i −0.219112 0.854110i
\(677\) 751.415i 1.10992i −0.831877 0.554959i \(-0.812734\pi\)
0.831877 0.554959i \(-0.187266\pi\)
\(678\) −6.48890 + 8.36367i −0.00957065 + 0.0123358i
\(679\) 741.954i 1.09272i
\(680\) 407.381 + 49.7317i 0.599090 + 0.0731348i
\(681\) −37.3000 −0.0547724
\(682\) −6.13869 4.76266i −0.00900101 0.00698337i
\(683\) 792.308 1.16004 0.580020 0.814602i \(-0.303045\pi\)
0.580020 + 0.814602i \(0.303045\pi\)
\(684\) −832.852 + 213.659i −1.21762 + 0.312366i
\(685\) −246.798 835.450i −0.360290 1.21963i
\(686\) 571.054 + 443.048i 0.832440 + 0.645843i
\(687\) 146.086 0.212643
\(688\) 491.472 269.927i 0.714349 0.392336i
\(689\) −1080.89 −1.56878
\(690\) −100.395 39.2397i −0.145499 0.0568692i
\(691\) 306.154i 0.443059i 0.975154 + 0.221530i \(0.0711050\pi\)
−0.975154 + 0.221530i \(0.928895\pi\)
\(692\) −28.6822 + 7.35809i −0.0414483 + 0.0106331i
\(693\) 192.312i 0.277506i
\(694\) −1048.71 813.636i −1.51111 1.17239i
\(695\) −261.441 885.017i −0.376174 1.27341i
\(696\) −25.4899 + 58.8542i −0.0366235 + 0.0845606i
\(697\) 400.200i 0.574175i
\(698\) −255.568 198.281i −0.366144 0.284070i
\(699\) 104.413i 0.149375i
\(700\) 480.196 + 443.060i 0.685995 + 0.632943i
\(701\) 58.5372 0.0835053 0.0417526 0.999128i \(-0.486706\pi\)
0.0417526 + 0.999128i \(0.486706\pi\)
\(702\) 138.360 178.335i 0.197094 0.254039i
\(703\) −496.968 −0.706925
\(704\) 154.823 145.210i 0.219919 0.206264i
\(705\) −31.1157 + 9.19182i −0.0441357 + 0.0130380i
\(706\) 554.553 714.775i 0.785486 1.01243i
\(707\) −246.644 −0.348860
\(708\) 34.1409 8.75845i 0.0482216 0.0123707i
\(709\) 47.3009 0.0667150 0.0333575 0.999443i \(-0.489380\pi\)
0.0333575 + 0.999443i \(0.489380\pi\)
\(710\) −267.581 + 684.605i −0.376875 + 0.964232i
\(711\) 813.294i 1.14387i
\(712\) −22.2077 + 51.2757i −0.0311905 + 0.0720164i
\(713\) 35.6605i 0.0500147i
\(714\) −29.0977 + 37.5046i −0.0407531 + 0.0525275i
\(715\) −283.612 + 83.7813i −0.396660 + 0.117177i
\(716\) 1144.80 293.685i 1.59888 0.410174i
\(717\) 9.85964i 0.0137512i
\(718\) 501.473 646.358i 0.698430 0.900220i
\(719\) 1129.40i 1.57079i −0.618994 0.785396i \(-0.712459\pi\)
0.618994 0.785396i \(-0.287541\pi\)
\(720\) −499.970 + 504.073i −0.694403 + 0.700101i
\(721\) −1125.60 −1.56116
\(722\) 356.601 + 276.667i 0.493908 + 0.383195i
\(723\) 87.5806 0.121135
\(724\) 40.3894 + 157.440i 0.0557864 + 0.217458i
\(725\) −475.227 + 307.616i −0.655486 + 0.424298i
\(726\) 6.15412 + 4.77463i 0.00847675 + 0.00657663i
\(727\) −310.672 −0.427335 −0.213667 0.976906i \(-0.568541\pi\)
−0.213667 + 0.976906i \(0.568541\pi\)
\(728\) −855.349 370.454i −1.17493 0.508866i
\(729\) −668.784 −0.917399
\(730\) 42.6265 109.060i 0.0583924 0.149397i
\(731\) 359.566i 0.491882i
\(732\) 34.9865 + 136.379i 0.0477958 + 0.186311i
\(733\) 1164.11i 1.58815i 0.607823 + 0.794073i \(0.292043\pi\)
−0.607823 + 0.794073i \(0.707957\pi\)
\(734\) −290.173 225.129i −0.395332 0.306715i
\(735\) 10.7143 3.16508i 0.0145772 0.00430623i
\(736\) −962.167 152.897i −1.30729 0.207740i
\(737\) 219.256i 0.297499i
\(738\) −546.994 424.382i −0.741184 0.575043i
\(739\) 52.7151i 0.0713330i −0.999364 0.0356665i \(-0.988645\pi\)
0.999364 0.0356665i \(-0.0113554\pi\)
\(740\) −352.311 + 210.402i −0.476097 + 0.284327i
\(741\) −152.929 −0.206382
\(742\) −485.506 + 625.779i −0.654321 + 0.843367i
\(743\) 208.365 0.280437 0.140219 0.990121i \(-0.455219\pi\)
0.140219 + 0.990121i \(0.455219\pi\)
\(744\) −3.04436 1.31852i −0.00409188 0.00177221i
\(745\) 738.005 218.012i 0.990610 0.292634i
\(746\) −545.445 + 703.035i −0.731159 + 0.942406i
\(747\) −1095.44 −1.46645
\(748\) 33.8237 + 131.847i 0.0452189 + 0.176266i
\(749\) −360.197 −0.480903
\(750\) 86.7151 17.7477i 0.115620 0.0236636i
\(751\) 534.169i 0.711277i 0.934624 + 0.355639i \(0.115737\pi\)
−0.934624 + 0.355639i \(0.884263\pi\)
\(752\) −257.031 + 141.167i −0.341797 + 0.187722i
\(753\) 24.3522i 0.0323402i
\(754\) 495.064 638.098i 0.656583 0.846283i
\(755\) −364.333 1233.32i −0.482561 1.63354i
\(756\) −41.0992 160.207i −0.0543640 0.211914i
\(757\) 708.766i 0.936283i −0.883654 0.468141i \(-0.844924\pi\)
0.883654 0.468141i \(-0.155076\pi\)
\(758\) −346.718 + 446.891i −0.457411 + 0.589566i
\(759\) 35.7501i 0.0471016i
\(760\) 961.712 + 117.402i 1.26541 + 0.154477i
\(761\) −118.261 −0.155402 −0.0777009 0.996977i \(-0.524758\pi\)
−0.0777009 + 0.996977i \(0.524758\pi\)
\(762\) −9.82552 7.62306i −0.0128944 0.0100040i
\(763\) −770.132 −1.00935
\(764\) −1023.17 + 262.483i −1.33923 + 0.343564i
\(765\) −128.982 436.623i −0.168604 0.570749i
\(766\) −625.158 485.025i −0.816134 0.633192i
\(767\) −443.829 −0.578656
\(768\) 48.6283 76.4876i 0.0633181 0.0995932i
\(769\) 145.212 0.188832 0.0944158 0.995533i \(-0.469902\pi\)
0.0944158 + 0.995533i \(0.469902\pi\)
\(770\) −78.8859 + 201.829i −0.102449 + 0.262116i
\(771\) 32.4919i 0.0421425i
\(772\) 1181.21 303.025i 1.53006 0.392519i
\(773\) 31.4250i 0.0406533i −0.999793 0.0203266i \(-0.993529\pi\)
0.999793 0.0203266i \(-0.00647062\pi\)
\(774\) −491.455 381.292i −0.634955 0.492626i