Properties

Label 220.3.h.a.199.11
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.11
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.76106 - 0.947973i) q^{2} -3.26539 q^{3} +(2.20269 + 3.33888i) q^{4} +(-4.29635 - 2.55761i) q^{5} +(5.75056 + 3.09550i) q^{6} -7.75789 q^{7} +(-0.713917 - 7.96808i) q^{8} +1.66278 q^{9} +(5.14160 + 8.57694i) q^{10} -3.31662i q^{11} +(-7.19266 - 10.9028i) q^{12} +7.89709i q^{13} +(13.6621 + 7.35427i) q^{14} +(14.0293 + 8.35160i) q^{15} +(-6.29627 + 14.7091i) q^{16} -2.35730i q^{17} +(-2.92826 - 1.57627i) q^{18} +1.30094i q^{19} +(-0.923982 - 19.9786i) q^{20} +25.3325 q^{21} +(-3.14407 + 5.84079i) q^{22} +8.98378 q^{23} +(2.33122 + 26.0189i) q^{24} +(11.9172 + 21.9768i) q^{25} +(7.48622 - 13.9073i) q^{26} +23.9589 q^{27} +(-17.0883 - 25.9027i) q^{28} +44.2529 q^{29} +(-16.7893 - 28.0071i) q^{30} -42.0172i q^{31} +(25.0319 - 19.9349i) q^{32} +10.8301i q^{33} +(-2.23465 + 4.15135i) q^{34} +(33.3306 + 19.8417i) q^{35} +(3.66259 + 5.55182i) q^{36} +43.6281i q^{37} +(1.23326 - 2.29104i) q^{38} -25.7871i q^{39} +(-17.3120 + 36.0596i) q^{40} -8.01223 q^{41} +(-44.6122 - 24.0146i) q^{42} +27.2677 q^{43} +(11.0738 - 7.30551i) q^{44} +(-7.14388 - 4.25274i) q^{45} +(-15.8210 - 8.51638i) q^{46} -22.8977 q^{47} +(20.5598 - 48.0309i) q^{48} +11.1848 q^{49} +(-0.153630 - 49.9998i) q^{50} +7.69750i q^{51} +(-26.3674 + 17.3949i) q^{52} -20.7576i q^{53} +(-42.1932 - 22.7124i) q^{54} +(-8.48264 + 14.2494i) q^{55} +(5.53849 + 61.8155i) q^{56} -4.24808i q^{57} +(-77.9322 - 41.9505i) q^{58} +103.619i q^{59} +(3.01716 + 65.2381i) q^{60} -62.2398 q^{61} +(-39.8312 + 73.9950i) q^{62} -12.8997 q^{63} +(-62.9806 + 11.3771i) q^{64} +(20.1977 - 33.9286i) q^{65} +(10.2666 - 19.0725i) q^{66} -24.6960 q^{67} +(7.87074 - 5.19241i) q^{68} -29.3355 q^{69} +(-39.8880 - 66.5390i) q^{70} -67.8271i q^{71} +(-1.18709 - 13.2492i) q^{72} +134.700i q^{73} +(41.3582 - 76.8318i) q^{74} +(-38.9145 - 71.7628i) q^{75} +(-4.34369 + 2.86557i) q^{76} +25.7300i q^{77} +(-24.4455 + 45.4127i) q^{78} +30.3975i q^{79} +(64.6711 - 47.0919i) q^{80} -93.2002 q^{81} +(14.1101 + 7.59538i) q^{82} +134.182 q^{83} +(55.7999 + 84.5824i) q^{84} +(-6.02905 + 10.1278i) q^{85} +(-48.0203 - 25.8491i) q^{86} -144.503 q^{87} +(-26.4271 + 2.36780i) q^{88} +105.455 q^{89} +(8.54935 + 14.2616i) q^{90} -61.2647i q^{91} +(19.7885 + 29.9958i) q^{92} +137.203i q^{93} +(40.3244 + 21.7064i) q^{94} +(3.32730 - 5.58930i) q^{95} +(-81.7391 + 65.0954i) q^{96} -187.374i q^{97} +(-19.6972 - 10.6029i) q^{98} -5.51481i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.76106 0.947973i −0.880532 0.473986i
\(3\) −3.26539 −1.08846 −0.544232 0.838935i \(-0.683179\pi\)
−0.544232 + 0.838935i \(0.683179\pi\)
\(4\) 2.20269 + 3.33888i 0.550674 + 0.834721i
\(5\) −4.29635 2.55761i −0.859270 0.511522i
\(6\) 5.75056 + 3.09550i 0.958427 + 0.515917i
\(7\) −7.75789 −1.10827 −0.554135 0.832427i \(-0.686951\pi\)
−0.554135 + 0.832427i \(0.686951\pi\)
\(8\) −0.713917 7.96808i −0.0892397 0.996010i
\(9\) 1.66278 0.184753
\(10\) 5.14160 + 8.57694i 0.514160 + 0.857694i
\(11\) 3.31662i 0.301511i
\(12\) −7.19266 10.9028i −0.599388 0.908563i
\(13\) 7.89709i 0.607468i 0.952757 + 0.303734i \(0.0982335\pi\)
−0.952757 + 0.303734i \(0.901767\pi\)
\(14\) 13.6621 + 7.35427i 0.975867 + 0.525305i
\(15\) 14.0293 + 8.35160i 0.935284 + 0.556774i
\(16\) −6.29627 + 14.7091i −0.393517 + 0.919317i
\(17\) 2.35730i 0.138665i −0.997594 0.0693323i \(-0.977913\pi\)
0.997594 0.0693323i \(-0.0220869\pi\)
\(18\) −2.92826 1.57627i −0.162681 0.0875705i
\(19\) 1.30094i 0.0684705i 0.999414 + 0.0342353i \(0.0108996\pi\)
−0.999414 + 0.0342353i \(0.989100\pi\)
\(20\) −0.923982 19.9786i −0.0461991 0.998932i
\(21\) 25.3325 1.20631
\(22\) −3.14407 + 5.84079i −0.142912 + 0.265490i
\(23\) 8.98378 0.390599 0.195300 0.980744i \(-0.437432\pi\)
0.195300 + 0.980744i \(0.437432\pi\)
\(24\) 2.33122 + 26.0189i 0.0971341 + 1.08412i
\(25\) 11.9172 + 21.9768i 0.476690 + 0.879072i
\(26\) 7.48622 13.9073i 0.287932 0.534895i
\(27\) 23.9589 0.887367
\(28\) −17.0883 25.9027i −0.610295 0.925096i
\(29\) 44.2529 1.52596 0.762981 0.646421i \(-0.223735\pi\)
0.762981 + 0.646421i \(0.223735\pi\)
\(30\) −16.7893 28.0071i −0.559645 0.933569i
\(31\) 42.0172i 1.35539i −0.735341 0.677697i \(-0.762978\pi\)
0.735341 0.677697i \(-0.237022\pi\)
\(32\) 25.0319 19.9349i 0.782248 0.622967i
\(33\) 10.8301i 0.328184i
\(34\) −2.23465 + 4.15135i −0.0657251 + 0.122099i
\(35\) 33.3306 + 19.8417i 0.952303 + 0.566905i
\(36\) 3.66259 + 5.55182i 0.101739 + 0.154217i
\(37\) 43.6281i 1.17914i 0.807718 + 0.589568i \(0.200702\pi\)
−0.807718 + 0.589568i \(0.799298\pi\)
\(38\) 1.23326 2.29104i 0.0324541 0.0602905i
\(39\) 25.7871i 0.661207i
\(40\) −17.3120 + 36.0596i −0.432801 + 0.901490i
\(41\) −8.01223 −0.195420 −0.0977101 0.995215i \(-0.531152\pi\)
−0.0977101 + 0.995215i \(0.531152\pi\)
\(42\) −44.6122 24.0146i −1.06220 0.571775i
\(43\) 27.2677 0.634134 0.317067 0.948403i \(-0.397302\pi\)
0.317067 + 0.948403i \(0.397302\pi\)
\(44\) 11.0738 7.30551i 0.251678 0.166034i
\(45\) −7.14388 4.25274i −0.158753 0.0945054i
\(46\) −15.8210 8.51638i −0.343935 0.185139i
\(47\) −22.8977 −0.487186 −0.243593 0.969878i \(-0.578326\pi\)
−0.243593 + 0.969878i \(0.578326\pi\)
\(48\) 20.5598 48.0309i 0.428329 1.00064i
\(49\) 11.1848 0.228262
\(50\) −0.153630 49.9998i −0.00307259 0.999995i
\(51\) 7.69750i 0.150931i
\(52\) −26.3674 + 17.3949i −0.507066 + 0.334517i
\(53\) 20.7576i 0.391654i −0.980638 0.195827i \(-0.937261\pi\)
0.980638 0.195827i \(-0.0627391\pi\)
\(54\) −42.1932 22.7124i −0.781355 0.420600i
\(55\) −8.48264 + 14.2494i −0.154230 + 0.259080i
\(56\) 5.53849 + 61.8155i 0.0989016 + 1.10385i
\(57\) 4.24808i 0.0745277i
\(58\) −77.9322 41.9505i −1.34366 0.723285i
\(59\) 103.619i 1.75626i 0.478422 + 0.878130i \(0.341209\pi\)
−0.478422 + 0.878130i \(0.658791\pi\)
\(60\) 3.01716 + 65.2381i 0.0502861 + 1.08730i
\(61\) −62.2398 −1.02032 −0.510162 0.860078i \(-0.670415\pi\)
−0.510162 + 0.860078i \(0.670415\pi\)
\(62\) −39.8312 + 73.9950i −0.642438 + 1.19347i
\(63\) −12.8997 −0.204756
\(64\) −62.9806 + 11.3771i −0.984073 + 0.177767i
\(65\) 20.1977 33.9286i 0.310734 0.521979i
\(66\) 10.2666 19.0725i 0.155555 0.288977i
\(67\) −24.6960 −0.368597 −0.184298 0.982870i \(-0.559001\pi\)
−0.184298 + 0.982870i \(0.559001\pi\)
\(68\) 7.87074 5.19241i 0.115746 0.0763589i
\(69\) −29.3355 −0.425153
\(70\) −39.8880 66.5390i −0.569828 0.950557i
\(71\) 67.8271i 0.955311i −0.878547 0.477656i \(-0.841487\pi\)
0.878547 0.477656i \(-0.158513\pi\)
\(72\) −1.18709 13.2492i −0.0164873 0.184016i
\(73\) 134.700i 1.84520i 0.385758 + 0.922600i \(0.373940\pi\)
−0.385758 + 0.922600i \(0.626060\pi\)
\(74\) 41.3582 76.8318i 0.558895 1.03827i
\(75\) −38.9145 71.7628i −0.518859 0.956838i
\(76\) −4.34369 + 2.86557i −0.0571538 + 0.0377049i
\(77\) 25.7300i 0.334156i
\(78\) −24.4455 + 45.4127i −0.313403 + 0.582214i
\(79\) 30.3975i 0.384779i 0.981319 + 0.192389i \(0.0616237\pi\)
−0.981319 + 0.192389i \(0.938376\pi\)
\(80\) 64.6711 47.0919i 0.808389 0.588649i
\(81\) −93.2002 −1.15062
\(82\) 14.1101 + 7.59538i 0.172074 + 0.0926266i
\(83\) 134.182 1.61665 0.808327 0.588734i \(-0.200373\pi\)
0.808327 + 0.588734i \(0.200373\pi\)
\(84\) 55.7999 + 84.5824i 0.664284 + 1.00693i
\(85\) −6.02905 + 10.1278i −0.0709300 + 0.119150i
\(86\) −48.0203 25.8491i −0.558375 0.300571i
\(87\) −144.503 −1.66095
\(88\) −26.4271 + 2.36780i −0.300308 + 0.0269068i
\(89\) 105.455 1.18488 0.592441 0.805614i \(-0.298164\pi\)
0.592441 + 0.805614i \(0.298164\pi\)
\(90\) 8.54935 + 14.2616i 0.0949927 + 0.158462i
\(91\) 61.2647i 0.673239i
\(92\) 19.7885 + 29.9958i 0.215093 + 0.326041i
\(93\) 137.203i 1.47530i
\(94\) 40.3244 + 21.7064i 0.428983 + 0.230920i
\(95\) 3.32730 5.58930i 0.0350242 0.0588347i
\(96\) −81.7391 + 65.0954i −0.851449 + 0.678077i
\(97\) 187.374i 1.93169i −0.259113 0.965847i \(-0.583430\pi\)
0.259113 0.965847i \(-0.416570\pi\)
\(98\) −19.6972 10.6029i −0.200992 0.108193i
\(99\) 5.51481i 0.0557052i
\(100\) −47.1279 + 88.1984i −0.471279 + 0.881984i
\(101\) −105.475 −1.04431 −0.522156 0.852850i \(-0.674872\pi\)
−0.522156 + 0.852850i \(0.674872\pi\)
\(102\) 7.29702 13.5558i 0.0715394 0.132900i
\(103\) −74.4753 −0.723061 −0.361531 0.932360i \(-0.617746\pi\)
−0.361531 + 0.932360i \(0.617746\pi\)
\(104\) 62.9246 5.63787i 0.605045 0.0542103i
\(105\) −108.837 64.7908i −1.03655 0.617055i
\(106\) −19.6777 + 36.5555i −0.185639 + 0.344864i
\(107\) 3.24484 0.0303256 0.0151628 0.999885i \(-0.495173\pi\)
0.0151628 + 0.999885i \(0.495173\pi\)
\(108\) 52.7741 + 79.9959i 0.488649 + 0.740703i
\(109\) 201.741 1.85084 0.925418 0.378948i \(-0.123714\pi\)
0.925418 + 0.378948i \(0.123714\pi\)
\(110\) 28.4465 17.0528i 0.258605 0.155025i
\(111\) 142.463i 1.28345i
\(112\) 48.8458 114.111i 0.436123 1.01885i
\(113\) 25.7592i 0.227958i −0.993483 0.113979i \(-0.963640\pi\)
0.993483 0.113979i \(-0.0363596\pi\)
\(114\) −4.02706 + 7.48114i −0.0353251 + 0.0656240i
\(115\) −38.5975 22.9770i −0.335630 0.199800i
\(116\) 97.4756 + 147.755i 0.840307 + 1.27375i
\(117\) 13.1311i 0.112232i
\(118\) 98.2283 182.480i 0.832443 1.54644i
\(119\) 18.2876i 0.153678i
\(120\) 56.5305 117.749i 0.471088 0.981239i
\(121\) −11.0000 −0.0909091
\(122\) 109.608 + 59.0017i 0.898429 + 0.483620i
\(123\) 26.1631 0.212708
\(124\) 140.291 92.5511i 1.13138 0.746380i
\(125\) 5.00746 124.900i 0.0400597 0.999197i
\(126\) 22.7171 + 12.2285i 0.180295 + 0.0970518i
\(127\) 109.387 0.861315 0.430657 0.902516i \(-0.358282\pi\)
0.430657 + 0.902516i \(0.358282\pi\)
\(128\) 121.698 + 39.6681i 0.950767 + 0.309907i
\(129\) −89.0399 −0.690232
\(130\) −67.7329 + 40.6037i −0.521022 + 0.312336i
\(131\) 63.4044i 0.484003i 0.970276 + 0.242002i \(0.0778039\pi\)
−0.970276 + 0.242002i \(0.922196\pi\)
\(132\) −36.1604 + 23.8554i −0.273942 + 0.180722i
\(133\) 10.0926i 0.0758838i
\(134\) 43.4912 + 23.4111i 0.324561 + 0.174710i
\(135\) −102.936 61.2776i −0.762487 0.453908i
\(136\) −18.7831 + 1.68292i −0.138111 + 0.0123744i
\(137\) 164.750i 1.20255i −0.799041 0.601277i \(-0.794659\pi\)
0.799041 0.601277i \(-0.205341\pi\)
\(138\) 51.6618 + 27.8093i 0.374361 + 0.201517i
\(139\) 210.421i 1.51382i 0.653519 + 0.756910i \(0.273292\pi\)
−0.653519 + 0.756910i \(0.726708\pi\)
\(140\) 7.16815 + 154.992i 0.0512011 + 1.10709i
\(141\) 74.7701 0.530284
\(142\) −64.2982 + 119.448i −0.452805 + 0.841182i
\(143\) 26.1917 0.183159
\(144\) −10.4693 + 24.4579i −0.0727035 + 0.169847i
\(145\) −190.126 113.182i −1.31121 0.780564i
\(146\) 127.692 237.215i 0.874600 1.62476i
\(147\) −36.5228 −0.248455
\(148\) −145.669 + 96.0993i −0.984250 + 0.649320i
\(149\) 23.1139 0.155127 0.0775635 0.996987i \(-0.475286\pi\)
0.0775635 + 0.996987i \(0.475286\pi\)
\(150\) 0.501661 + 163.269i 0.00334441 + 1.08846i
\(151\) 247.785i 1.64096i 0.571675 + 0.820480i \(0.306294\pi\)
−0.571675 + 0.820480i \(0.693706\pi\)
\(152\) 10.3660 0.928764i 0.0681974 0.00611029i
\(153\) 3.91966i 0.0256187i
\(154\) 24.3913 45.3122i 0.158385 0.294235i
\(155\) −107.464 + 180.521i −0.693314 + 1.16465i
\(156\) 86.1000 56.8011i 0.551923 0.364109i
\(157\) 127.193i 0.810149i 0.914284 + 0.405075i \(0.132754\pi\)
−0.914284 + 0.405075i \(0.867246\pi\)
\(158\) 28.8160 53.5320i 0.182380 0.338810i
\(159\) 67.7818i 0.426301i
\(160\) −158.532 + 21.6255i −0.990824 + 0.135159i
\(161\) −69.6951 −0.432889
\(162\) 164.132 + 88.3512i 1.01316 + 0.545378i
\(163\) 198.553 1.21812 0.609059 0.793125i \(-0.291547\pi\)
0.609059 + 0.793125i \(0.291547\pi\)
\(164\) −17.6485 26.7519i −0.107613 0.163121i
\(165\) 27.6991 46.5298i 0.167874 0.281999i
\(166\) −236.304 127.201i −1.42352 0.766272i
\(167\) 84.9930 0.508940 0.254470 0.967081i \(-0.418099\pi\)
0.254470 + 0.967081i \(0.418099\pi\)
\(168\) −18.0853 201.852i −0.107651 1.20150i
\(169\) 106.636 0.630982
\(170\) 20.2184 12.1203i 0.118932 0.0712958i
\(171\) 2.16318i 0.0126502i
\(172\) 60.0625 + 91.0438i 0.349201 + 0.529324i
\(173\) 34.8467i 0.201426i −0.994916 0.100713i \(-0.967888\pi\)
0.994916 0.100713i \(-0.0321124\pi\)
\(174\) 254.479 + 136.985i 1.46252 + 0.787270i
\(175\) −92.4526 170.493i −0.528301 0.974248i
\(176\) 48.7845 + 20.8824i 0.277185 + 0.118650i
\(177\) 338.358i 1.91163i
\(178\) −185.712 99.9680i −1.04333 0.561618i
\(179\) 153.372i 0.856827i 0.903583 + 0.428414i \(0.140927\pi\)
−0.903583 + 0.428414i \(0.859073\pi\)
\(180\) −1.53638 33.2201i −0.00853544 0.184556i
\(181\) 288.304 1.59284 0.796419 0.604745i \(-0.206725\pi\)
0.796419 + 0.604745i \(0.206725\pi\)
\(182\) −58.0773 + 107.891i −0.319106 + 0.592808i
\(183\) 203.237 1.11059
\(184\) −6.41368 71.5835i −0.0348569 0.389041i
\(185\) 111.584 187.441i 0.603155 1.01320i
\(186\) 130.064 241.623i 0.699271 1.29905i
\(187\) −7.81827 −0.0418089
\(188\) −50.4367 76.4529i −0.268280 0.406664i
\(189\) −185.870 −0.983441
\(190\) −11.1581 + 6.68892i −0.0587268 + 0.0352048i
\(191\) 76.5993i 0.401043i 0.979689 + 0.200522i \(0.0642637\pi\)
−0.979689 + 0.200522i \(0.935736\pi\)
\(192\) 205.656 37.1507i 1.07113 0.193493i
\(193\) 41.5349i 0.215207i 0.994194 + 0.107603i \(0.0343176\pi\)
−0.994194 + 0.107603i \(0.965682\pi\)
\(194\) −177.626 + 329.978i −0.915597 + 1.70092i
\(195\) −65.9533 + 110.790i −0.338222 + 0.568155i
\(196\) 24.6368 + 37.3448i 0.125698 + 0.190535i
\(197\) 22.2364i 0.112875i −0.998406 0.0564375i \(-0.982026\pi\)
0.998406 0.0564375i \(-0.0179742\pi\)
\(198\) −5.22789 + 9.71194i −0.0264035 + 0.0490502i
\(199\) 330.870i 1.66267i −0.555775 0.831333i \(-0.687578\pi\)
0.555775 0.831333i \(-0.312422\pi\)
\(200\) 166.605 110.647i 0.833025 0.553236i
\(201\) 80.6421 0.401204
\(202\) 185.749 + 99.9879i 0.919550 + 0.494990i
\(203\) −343.309 −1.69118
\(204\) −25.7010 + 16.9552i −0.125985 + 0.0831139i
\(205\) 34.4233 + 20.4922i 0.167919 + 0.0999618i
\(206\) 131.156 + 70.6006i 0.636679 + 0.342721i
\(207\) 14.9380 0.0721644
\(208\) −116.159 49.7222i −0.558456 0.239049i
\(209\) 4.31473 0.0206446
\(210\) 130.250 + 217.276i 0.620237 + 1.03465i
\(211\) 304.921i 1.44512i 0.691306 + 0.722562i \(0.257036\pi\)
−0.691306 + 0.722562i \(0.742964\pi\)
\(212\) 69.3073 45.7228i 0.326921 0.215673i
\(213\) 221.482i 1.03982i
\(214\) −5.71437 3.07602i −0.0267027 0.0143739i
\(215\) −117.152 69.7403i −0.544892 0.324374i
\(216\) −17.1047 190.906i −0.0791883 0.883826i
\(217\) 325.965i 1.50214i
\(218\) −355.279 191.245i −1.62972 0.877271i
\(219\) 439.847i 2.00843i
\(220\) −66.2617 + 3.06450i −0.301189 + 0.0139296i
\(221\) 18.6158 0.0842343
\(222\) −135.051 + 250.886i −0.608337 + 1.13012i
\(223\) −212.973 −0.955036 −0.477518 0.878622i \(-0.658464\pi\)
−0.477518 + 0.878622i \(0.658464\pi\)
\(224\) −194.195 + 154.653i −0.866942 + 0.690415i
\(225\) 19.8157 + 36.5425i 0.0880700 + 0.162411i
\(226\) −24.4190 + 45.3636i −0.108049 + 0.200724i
\(227\) 284.091 1.25150 0.625752 0.780022i \(-0.284792\pi\)
0.625752 + 0.780022i \(0.284792\pi\)
\(228\) 14.1838 9.35722i 0.0622098 0.0410404i
\(229\) −283.825 −1.23941 −0.619706 0.784834i \(-0.712748\pi\)
−0.619706 + 0.784834i \(0.712748\pi\)
\(230\) 46.1910 + 77.0533i 0.200830 + 0.335015i
\(231\) 84.0185i 0.363717i
\(232\) −31.5929 352.611i −0.136176 1.51987i
\(233\) 437.073i 1.87585i 0.346841 + 0.937924i \(0.387254\pi\)
−0.346841 + 0.937924i \(0.612746\pi\)
\(234\) 12.4479 23.1247i 0.0531963 0.0988236i
\(235\) 98.3767 + 58.5635i 0.418624 + 0.249207i
\(236\) −345.973 + 228.242i −1.46599 + 0.967126i
\(237\) 99.2598i 0.418818i
\(238\) 17.3362 32.2057i 0.0728411 0.135318i
\(239\) 77.4829i 0.324196i 0.986775 + 0.162098i \(0.0518261\pi\)
−0.986775 + 0.162098i \(0.948174\pi\)
\(240\) −211.176 + 153.774i −0.879902 + 0.640723i
\(241\) −62.1858 −0.258032 −0.129016 0.991642i \(-0.541182\pi\)
−0.129016 + 0.991642i \(0.541182\pi\)
\(242\) 19.3717 + 10.4277i 0.0800484 + 0.0430897i
\(243\) 88.7050 0.365041
\(244\) −137.095 207.811i −0.561866 0.851686i
\(245\) −48.0539 28.6065i −0.196139 0.116761i
\(246\) −46.0748 24.8019i −0.187296 0.100821i
\(247\) −10.2736 −0.0415937
\(248\) −334.797 + 29.9968i −1.34999 + 0.120955i
\(249\) −438.158 −1.75967
\(250\) −127.220 + 215.209i −0.508880 + 0.860838i
\(251\) 182.712i 0.727935i −0.931412 0.363967i \(-0.881422\pi\)
0.931412 0.363967i \(-0.118578\pi\)
\(252\) −28.4140 43.0704i −0.112754 0.170914i
\(253\) 29.7958i 0.117770i
\(254\) −192.637 103.696i −0.758415 0.408251i
\(255\) 19.6872 33.0711i 0.0772047 0.129691i
\(256\) −176.714 185.225i −0.690289 0.723534i
\(257\) 11.6114i 0.0451806i −0.999745 0.0225903i \(-0.992809\pi\)
0.999745 0.0225903i \(-0.00719134\pi\)
\(258\) 156.805 + 84.4074i 0.607771 + 0.327160i
\(259\) 338.462i 1.30680i
\(260\) 157.773 7.29677i 0.606820 0.0280645i
\(261\) 73.5828 0.281926
\(262\) 60.1056 111.659i 0.229411 0.426180i
\(263\) −236.675 −0.899906 −0.449953 0.893052i \(-0.648559\pi\)
−0.449953 + 0.893052i \(0.648559\pi\)
\(264\) 86.2949 7.73178i 0.326875 0.0292870i
\(265\) −53.0900 + 89.1821i −0.200340 + 0.336536i
\(266\) −9.56746 + 17.7736i −0.0359679 + 0.0668182i
\(267\) −344.350 −1.28970
\(268\) −54.3977 82.4570i −0.202977 0.307675i
\(269\) −99.2078 −0.368802 −0.184401 0.982851i \(-0.559035\pi\)
−0.184401 + 0.982851i \(0.559035\pi\)
\(270\) 123.187 + 205.494i 0.456249 + 0.761089i
\(271\) 177.193i 0.653850i −0.945050 0.326925i \(-0.893988\pi\)
0.945050 0.326925i \(-0.106012\pi\)
\(272\) 34.6737 + 14.8422i 0.127477 + 0.0545668i
\(273\) 200.053i 0.732796i
\(274\) −156.178 + 290.135i −0.569994 + 1.05889i
\(275\) 72.8888 39.5250i 0.265050 0.143727i
\(276\) −64.6173 97.9479i −0.234121 0.354884i
\(277\) 329.322i 1.18889i 0.804137 + 0.594444i \(0.202628\pi\)
−0.804137 + 0.594444i \(0.797372\pi\)
\(278\) 199.473 370.565i 0.717530 1.33297i
\(279\) 69.8653i 0.250413i
\(280\) 134.305 279.746i 0.479660 0.999094i
\(281\) 276.653 0.984529 0.492265 0.870446i \(-0.336169\pi\)
0.492265 + 0.870446i \(0.336169\pi\)
\(282\) −131.675 70.8800i −0.466932 0.251348i
\(283\) 419.633 1.48280 0.741401 0.671062i \(-0.234162\pi\)
0.741401 + 0.671062i \(0.234162\pi\)
\(284\) 226.467 149.402i 0.797418 0.526065i
\(285\) −10.8649 + 18.2512i −0.0381226 + 0.0640394i
\(286\) −46.1252 24.8290i −0.161277 0.0868147i
\(287\) 62.1580 0.216578
\(288\) 41.6226 33.1474i 0.144523 0.115095i
\(289\) 283.443 0.980772
\(290\) 227.531 + 379.555i 0.784589 + 1.30881i
\(291\) 611.850i 2.10258i
\(292\) −449.746 + 296.702i −1.54023 + 1.01610i
\(293\) 454.679i 1.55181i −0.630852 0.775903i \(-0.717295\pi\)
0.630852 0.775903i \(-0.282705\pi\)
\(294\) 64.3191 + 34.6227i 0.218772 + 0.117764i
\(295\) 265.018 445.185i 0.898366 1.50910i
\(296\) 347.632 31.1468i 1.17443 0.105226i
\(297\) 79.4627i 0.267551i
\(298\) −40.7051 21.9114i −0.136594 0.0735281i
\(299\) 70.9457i 0.237277i
\(300\) 153.891 288.002i 0.512970 0.960008i
\(301\) −211.540 −0.702791
\(302\) 234.893 436.365i 0.777793 1.44492i
\(303\) 344.419 1.13670
\(304\) −19.1356 8.19107i −0.0629462 0.0269443i
\(305\) 267.404 + 159.185i 0.876735 + 0.521919i
\(306\) −3.71574 + 6.90278i −0.0121429 + 0.0225581i
\(307\) 204.879 0.667359 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(308\) −85.9095 + 56.6753i −0.278927 + 0.184011i
\(309\) 243.191 0.787026
\(310\) 360.379 216.036i 1.16251 0.696890i
\(311\) 241.794i 0.777471i −0.921349 0.388736i \(-0.872912\pi\)
0.921349 0.388736i \(-0.127088\pi\)
\(312\) −205.474 + 18.4098i −0.658569 + 0.0590059i
\(313\) 575.705i 1.83931i 0.392725 + 0.919656i \(0.371532\pi\)
−0.392725 + 0.919656i \(0.628468\pi\)
\(314\) 120.576 223.996i 0.384000 0.713363i
\(315\) 55.4214 + 32.9923i 0.175941 + 0.104737i
\(316\) −101.494 + 66.9565i −0.321183 + 0.211888i
\(317\) 55.2238i 0.174208i −0.996199 0.0871038i \(-0.972239\pi\)
0.996199 0.0871038i \(-0.0277612\pi\)
\(318\) 64.2553 119.368i 0.202061 0.375372i
\(319\) 146.770i 0.460095i
\(320\) 299.685 + 112.200i 0.936516 + 0.350625i
\(321\) −10.5957 −0.0330083
\(322\) 122.738 + 66.0691i 0.381173 + 0.205184i
\(323\) 3.06670 0.00949444
\(324\) −205.292 311.184i −0.633616 0.960446i
\(325\) −173.553 + 94.1115i −0.534008 + 0.289574i
\(326\) −349.665 188.223i −1.07259 0.577372i
\(327\) −658.764 −2.01457
\(328\) 5.72007 + 63.8421i 0.0174392 + 0.194641i
\(329\) 177.638 0.539933
\(330\) −92.8889 + 55.6839i −0.281482 + 0.168739i
\(331\) 153.429i 0.463531i −0.972772 0.231765i \(-0.925550\pi\)
0.972772 0.231765i \(-0.0744501\pi\)
\(332\) 295.563 + 448.019i 0.890249 + 1.34945i
\(333\) 72.5438i 0.217849i
\(334\) −149.678 80.5710i −0.448138 0.241231i
\(335\) 106.103 + 63.1627i 0.316724 + 0.188546i
\(336\) −159.501 + 372.618i −0.474704 + 1.10898i
\(337\) 93.1183i 0.276315i −0.990410 0.138158i \(-0.955882\pi\)
0.990410 0.138158i \(-0.0441181\pi\)
\(338\) −187.793 101.088i −0.555600 0.299077i
\(339\) 84.1139i 0.248124i
\(340\) −47.0956 + 2.17810i −0.138516 + 0.00640618i
\(341\) −139.355 −0.408667
\(342\) 2.05063 3.80949i 0.00599600 0.0111389i
\(343\) 293.366 0.855294
\(344\) −19.4669 217.272i −0.0565899 0.631604i
\(345\) 126.036 + 75.0289i 0.365321 + 0.217475i
\(346\) −33.0337 + 61.3672i −0.0954731 + 0.177362i
\(347\) 126.540 0.364669 0.182334 0.983237i \(-0.441635\pi\)
0.182334 + 0.983237i \(0.441635\pi\)
\(348\) −318.296 482.479i −0.914644 1.38643i
\(349\) −251.421 −0.720403 −0.360201 0.932875i \(-0.617292\pi\)
−0.360201 + 0.932875i \(0.617292\pi\)
\(350\) 1.19184 + 387.893i 0.00340526 + 1.10826i
\(351\) 189.205i 0.539047i
\(352\) −66.1167 83.0216i −0.187832 0.235857i
\(353\) 253.680i 0.718641i 0.933214 + 0.359321i \(0.116992\pi\)
−0.933214 + 0.359321i \(0.883008\pi\)
\(354\) −320.754 + 595.870i −0.906084 + 1.68325i
\(355\) −173.475 + 291.409i −0.488663 + 0.820870i
\(356\) 232.284 + 352.100i 0.652483 + 0.989046i
\(357\) 59.7163i 0.167273i
\(358\) 145.393 270.098i 0.406125 0.754464i
\(359\) 70.2196i 0.195598i 0.995206 + 0.0977988i \(0.0311802\pi\)
−0.995206 + 0.0977988i \(0.968820\pi\)
\(360\) −28.7861 + 59.9591i −0.0799613 + 0.166553i
\(361\) 359.308 0.995312
\(362\) −507.722 273.304i −1.40255 0.754984i
\(363\) 35.9193 0.0989512
\(364\) 204.556 134.947i 0.561966 0.370735i
\(365\) 344.509 578.717i 0.943861 1.58552i
\(366\) −357.914 192.663i −0.977907 0.526403i
\(367\) −158.745 −0.432546 −0.216273 0.976333i \(-0.569390\pi\)
−0.216273 + 0.976333i \(0.569390\pi\)
\(368\) −56.5643 + 132.143i −0.153707 + 0.359084i
\(369\) −13.3226 −0.0361045
\(370\) −374.195 + 224.318i −1.01134 + 0.606265i
\(371\) 161.035i 0.434058i
\(372\) −458.103 + 302.216i −1.23146 + 0.812407i
\(373\) 224.454i 0.601752i 0.953663 + 0.300876i \(0.0972791\pi\)
−0.953663 + 0.300876i \(0.902721\pi\)
\(374\) 13.7685 + 7.41151i 0.0368141 + 0.0198169i
\(375\) −16.3513 + 407.846i −0.0436035 + 1.08759i
\(376\) 16.3471 + 182.451i 0.0434763 + 0.485242i
\(377\) 349.469i 0.926973i
\(378\) 327.330 + 176.200i 0.865952 + 0.466138i
\(379\) 111.817i 0.295032i 0.989060 + 0.147516i \(0.0471278\pi\)
−0.989060 + 0.147516i \(0.952872\pi\)
\(380\) 25.9910 1.20205i 0.0683974 0.00316328i
\(381\) −357.191 −0.937510
\(382\) 72.6140 134.896i 0.190089 0.353131i
\(383\) −182.846 −0.477405 −0.238703 0.971093i \(-0.576722\pi\)
−0.238703 + 0.971093i \(0.576722\pi\)
\(384\) −397.392 129.532i −1.03488 0.337323i
\(385\) 65.8074 110.545i 0.170928 0.287130i
\(386\) 39.3739 73.1456i 0.102005 0.189496i
\(387\) 45.3402 0.117158
\(388\) 625.621 412.728i 1.61242 1.06373i
\(389\) 201.340 0.517583 0.258791 0.965933i \(-0.416676\pi\)
0.258791 + 0.965933i \(0.416676\pi\)
\(390\) 221.174 132.587i 0.567114 0.339966i
\(391\) 21.1774i 0.0541622i
\(392\) −7.98504 89.1216i −0.0203700 0.227351i
\(393\) 207.040i 0.526820i
\(394\) −21.0795 + 39.1597i −0.0535013 + 0.0993901i
\(395\) 77.7451 130.598i 0.196823 0.330629i
\(396\) 18.4133 12.1475i 0.0464983 0.0306754i
\(397\) 24.8704i 0.0626459i −0.999509 0.0313230i \(-0.990028\pi\)
0.999509 0.0313230i \(-0.00997204\pi\)
\(398\) −313.656 + 582.684i −0.788081 + 1.46403i
\(399\) 32.9561i 0.0825968i
\(400\) −398.293 + 36.9198i −0.995731 + 0.0922996i
\(401\) 291.237 0.726276 0.363138 0.931735i \(-0.381705\pi\)
0.363138 + 0.931735i \(0.381705\pi\)
\(402\) −142.016 76.4465i −0.353273 0.190165i
\(403\) 331.814 0.823359
\(404\) −232.330 352.170i −0.575075 0.871708i
\(405\) 400.421 + 238.370i 0.988693 + 0.588568i
\(406\) 604.589 + 325.448i 1.48914 + 0.801595i
\(407\) 144.698 0.355523
\(408\) 61.3343 5.49538i 0.150329 0.0134691i
\(409\) 289.762 0.708465 0.354233 0.935157i \(-0.384742\pi\)
0.354233 + 0.935157i \(0.384742\pi\)
\(410\) −41.1957 68.7204i −0.100477 0.167611i
\(411\) 537.973i 1.30894i
\(412\) −164.046 248.664i −0.398171 0.603554i
\(413\) 803.867i 1.94641i
\(414\) −26.3068 14.1609i −0.0635431 0.0342050i
\(415\) −576.494 343.186i −1.38914 0.826955i
\(416\) 157.428 + 197.679i 0.378433 + 0.475191i
\(417\) 687.107i 1.64774i
\(418\) −7.59852 4.09025i −0.0181783 0.00978528i
\(419\) 525.774i 1.25483i 0.778684 + 0.627416i \(0.215887\pi\)
−0.778684 + 0.627416i \(0.784113\pi\)
\(420\) −23.4068 506.110i −0.0557305 1.20502i
\(421\) 810.112 1.92426 0.962128 0.272599i \(-0.0878833\pi\)
0.962128 + 0.272599i \(0.0878833\pi\)
\(422\) 289.057 536.986i 0.684969 1.27248i
\(423\) −38.0739 −0.0900092
\(424\) −165.399 + 14.8192i −0.390091 + 0.0349510i
\(425\) 51.8058 28.0925i 0.121896 0.0661000i
\(426\) 209.959 390.044i 0.492861 0.915596i
\(427\) 482.850 1.13080
\(428\) 7.14739 + 10.8341i 0.0166995 + 0.0253134i
\(429\) −85.5261 −0.199361
\(430\) 140.200 + 233.874i 0.326046 + 0.543893i
\(431\) 612.824i 1.42186i −0.703261 0.710932i \(-0.748273\pi\)
0.703261 0.710932i \(-0.251727\pi\)
\(432\) −150.852 + 352.413i −0.349194 + 0.815771i
\(433\) 678.614i 1.56724i 0.621242 + 0.783618i \(0.286628\pi\)
−0.621242 + 0.783618i \(0.713372\pi\)
\(434\) 309.006 574.045i 0.711995 1.32268i
\(435\) 620.835 + 369.583i 1.42721 + 0.849615i
\(436\) 444.374 + 673.590i 1.01921 + 1.54493i
\(437\) 11.6874i 0.0267445i
\(438\) −416.963 + 774.599i −0.951970 + 1.76849i
\(439\) 296.991i 0.676516i 0.941053 + 0.338258i \(0.109838\pi\)
−0.941053 + 0.338258i \(0.890162\pi\)
\(440\) 119.596 + 57.4175i 0.271809 + 0.130494i
\(441\) 18.5979 0.0421721
\(442\) −32.7836 17.6473i −0.0741710 0.0399259i
\(443\) −485.980 −1.09702 −0.548511 0.836144i \(-0.684805\pi\)
−0.548511 + 0.836144i \(0.684805\pi\)
\(444\) 475.666 313.802i 1.07132 0.706761i
\(445\) −453.069 269.712i −1.01813 0.606094i
\(446\) 375.059 + 201.893i 0.840940 + 0.452674i
\(447\) −75.4760 −0.168850
\(448\) 488.597 88.2623i 1.09062 0.197014i
\(449\) −814.879 −1.81487 −0.907437 0.420187i \(-0.861964\pi\)
−0.907437 + 0.420187i \(0.861964\pi\)
\(450\) −0.255452 83.1386i −0.000567671 0.184752i
\(451\) 26.5736i 0.0589214i
\(452\) 86.0070 56.7397i 0.190281 0.125530i
\(453\) 809.115i 1.78613i
\(454\) −500.303 269.311i −1.10199 0.593195i
\(455\) −156.691 + 263.215i −0.344377 + 0.578494i
\(456\) −33.8490 + 3.03278i −0.0742304 + 0.00665083i
\(457\) 67.5716i 0.147859i 0.997263 + 0.0739296i \(0.0235540\pi\)
−0.997263 + 0.0739296i \(0.976446\pi\)
\(458\) 499.835 + 269.059i 1.09134 + 0.587464i
\(459\) 56.4782i 0.123046i
\(460\) −8.30085 179.484i −0.0180453 0.390182i
\(461\) −814.074 −1.76589 −0.882944 0.469479i \(-0.844442\pi\)
−0.882944 + 0.469479i \(0.844442\pi\)
\(462\) −79.6473 + 147.962i −0.172397 + 0.320264i
\(463\) 238.511 0.515143 0.257571 0.966259i \(-0.417078\pi\)
0.257571 + 0.966259i \(0.417078\pi\)
\(464\) −278.628 + 650.919i −0.600492 + 1.40284i
\(465\) 350.911 589.470i 0.754647 1.26768i
\(466\) 414.333 769.713i 0.889126 1.65174i
\(467\) −562.265 −1.20399 −0.601997 0.798499i \(-0.705628\pi\)
−0.601997 + 0.798499i \(0.705628\pi\)
\(468\) −43.8432 + 28.9238i −0.0936821 + 0.0618031i
\(469\) 191.589 0.408505
\(470\) −117.731 196.393i −0.250492 0.417857i
\(471\) 415.336i 0.881818i
\(472\) 825.647 73.9756i 1.74925 0.156728i
\(473\) 90.4369i 0.191199i
\(474\) −94.0956 + 174.803i −0.198514 + 0.368783i
\(475\) −28.5905 + 15.5036i −0.0601905 + 0.0326392i
\(476\) −61.0603 + 40.2821i −0.128278 + 0.0846263i
\(477\) 34.5154i 0.0723593i
\(478\) 73.4517 136.452i 0.153665 0.285465i
\(479\) 561.970i 1.17322i −0.809871 0.586608i \(-0.800463\pi\)
0.809871 0.586608i \(-0.199537\pi\)
\(480\) 517.668 70.6156i 1.07848 0.147116i
\(481\) −344.535 −0.716288
\(482\) 109.513 + 58.9505i 0.227206 + 0.122304i
\(483\) 227.582 0.471184
\(484\) −24.2296 36.7277i −0.0500612 0.0758837i
\(485\) −479.231 + 805.026i −0.988105 + 1.65985i
\(486\) −156.215 84.0899i −0.321430 0.173024i
\(487\) −647.303 −1.32916 −0.664582 0.747216i \(-0.731390\pi\)
−0.664582 + 0.747216i \(0.731390\pi\)
\(488\) 44.4341 + 495.932i 0.0910535 + 1.01625i
\(489\) −648.354 −1.32588
\(490\) 57.5079 + 95.9316i 0.117363 + 0.195779i
\(491\) 342.511i 0.697578i −0.937201 0.348789i \(-0.886593\pi\)
0.937201 0.348789i \(-0.113407\pi\)
\(492\) 57.6293 + 87.3554i 0.117133 + 0.177552i
\(493\) 104.317i 0.211597i
\(494\) 18.0925 + 9.73913i 0.0366246 + 0.0197148i
\(495\) −14.1048 + 23.6936i −0.0284945 + 0.0478658i
\(496\) 618.034 + 264.552i 1.24604 + 0.533370i
\(497\) 526.195i 1.05874i
\(498\) 771.624 + 415.362i 1.54945 + 0.834059i
\(499\) 768.711i 1.54050i −0.637740 0.770252i \(-0.720131\pi\)
0.637740 0.770252i \(-0.279869\pi\)
\(500\) 428.055 258.397i 0.856110 0.516793i
\(501\) −277.535 −0.553963
\(502\) −173.206 + 321.767i −0.345031 + 0.640970i
\(503\) −36.0810 −0.0717316 −0.0358658 0.999357i \(-0.511419\pi\)
−0.0358658 + 0.999357i \(0.511419\pi\)
\(504\) 9.20929 + 102.785i 0.0182724 + 0.203939i
\(505\) 453.160 + 269.765i 0.897346 + 0.534189i
\(506\) −28.2456 + 52.4724i −0.0558214 + 0.103700i
\(507\) −348.208 −0.686801
\(508\) 240.946 + 365.230i 0.474303 + 0.718957i
\(509\) −549.953 −1.08046 −0.540229 0.841518i \(-0.681662\pi\)
−0.540229 + 0.841518i \(0.681662\pi\)
\(510\) −66.0210 + 39.5775i −0.129453 + 0.0776029i
\(511\) 1044.98i 2.04498i
\(512\) 135.617 + 493.713i 0.264876 + 0.964282i
\(513\) 31.1691i 0.0607585i
\(514\) −11.0073 + 20.4485i −0.0214150 + 0.0397830i
\(515\) 319.972 + 190.479i 0.621305 + 0.369862i
\(516\) −196.128 297.294i −0.380092 0.576150i
\(517\) 75.9432i 0.146892i
\(518\) −320.852 + 596.053i −0.619406 + 1.15068i
\(519\) 113.788i 0.219245i
\(520\) −284.766 136.715i −0.547626 0.262913i
\(521\) −604.392 −1.16006 −0.580031 0.814594i \(-0.696960\pi\)
−0.580031 + 0.814594i \(0.696960\pi\)
\(522\) −129.584 69.7545i −0.248245 0.133629i
\(523\) 403.082 0.770711 0.385355 0.922768i \(-0.374079\pi\)
0.385355 + 0.922768i \(0.374079\pi\)
\(524\) −211.700 + 139.661i −0.404007 + 0.266528i
\(525\) 301.894 + 556.728i 0.575036 + 1.06043i
\(526\) 416.800 + 224.362i 0.792396 + 0.426543i
\(527\) −99.0470 −0.187945
\(528\) −159.300 68.1891i −0.301705 0.129146i
\(529\) −448.292 −0.847432
\(530\) 178.037 106.728i 0.335919 0.201373i
\(531\) 172.296i 0.324475i
\(532\) 33.6978 22.2308i 0.0633418 0.0417872i
\(533\) 63.2733i 0.118712i
\(534\) 606.423 + 326.435i 1.13562 + 0.611301i
\(535\) −13.9410 8.29904i −0.0260579 0.0155122i
\(536\) 17.6309 + 196.780i 0.0328935 + 0.367126i
\(537\) 500.820i 0.932626i
\(538\) 174.711 + 94.0463i 0.324742 + 0.174807i
\(539\) 37.0959i 0.0688235i
\(540\) −22.1376 478.666i −0.0409956 0.886419i
\(541\) 1034.60 1.91238 0.956191 0.292742i \(-0.0945677\pi\)
0.956191 + 0.292742i \(0.0945677\pi\)
\(542\) −167.974 + 312.049i −0.309916 + 0.575736i
\(543\) −941.425 −1.73375
\(544\) −46.9926 59.0077i −0.0863834 0.108470i
\(545\) −866.750 515.976i −1.59037 0.946744i
\(546\) 189.645 352.307i 0.347335 0.645250i
\(547\) 408.105 0.746078 0.373039 0.927816i \(-0.378316\pi\)
0.373039 + 0.927816i \(0.378316\pi\)
\(548\) 550.081 362.894i 1.00380 0.662215i
\(549\) −103.491 −0.188508
\(550\) −165.830 + 0.509532i −0.301510 + 0.000926421i
\(551\) 57.5704i 0.104483i
\(552\) 20.9432 + 233.748i 0.0379405 + 0.423457i
\(553\) 235.821i 0.426439i
\(554\) 312.188 579.957i 0.563517 1.04685i
\(555\) −364.364 + 612.070i −0.656512 + 1.10283i
\(556\) −702.571 + 463.493i −1.26362 + 0.833621i
\(557\) 625.200i 1.12244i −0.827666 0.561221i \(-0.810332\pi\)
0.827666 0.561221i \(-0.189668\pi\)
\(558\) −66.2304 + 123.037i −0.118693 + 0.220497i
\(559\) 215.336i 0.385216i
\(560\) −501.711 + 365.334i −0.895913 + 0.652382i
\(561\) 25.5297 0.0455075
\(562\) −487.203 262.259i −0.866909 0.466653i
\(563\) −964.852 −1.71377 −0.856885 0.515508i \(-0.827603\pi\)
−0.856885 + 0.515508i \(0.827603\pi\)
\(564\) 164.696 + 249.648i 0.292014 + 0.442639i
\(565\) −65.8821 + 110.671i −0.116605 + 0.195877i
\(566\) −739.001 397.801i −1.30566 0.702828i
\(567\) 723.037 1.27520
\(568\) −540.452 + 48.4229i −0.951500 + 0.0852517i
\(569\) 419.250 0.736819 0.368410 0.929664i \(-0.379902\pi\)
0.368410 + 0.929664i \(0.379902\pi\)
\(570\) 36.4355 21.8419i 0.0639220 0.0383192i
\(571\) 480.490i 0.841488i 0.907179 + 0.420744i \(0.138231\pi\)
−0.907179 + 0.420744i \(0.861769\pi\)
\(572\) 57.6923 + 87.4509i 0.100861 + 0.152886i
\(573\) 250.127i 0.436521i
\(574\) −109.464 58.9241i −0.190704 0.102655i
\(575\) 107.062 + 197.435i 0.186195 + 0.343365i
\(576\) −104.723 + 18.9176i −0.181811 + 0.0328431i
\(577\) 530.014i 0.918568i −0.888290 0.459284i \(-0.848106\pi\)
0.888290 0.459284i \(-0.151894\pi\)
\(578\) −499.162 268.696i −0.863601 0.464873i
\(579\) 135.628i 0.234244i
\(580\) −40.8889 884.113i −0.0704981 1.52433i
\(581\) −1040.97 −1.79169
\(582\) 580.018 1077.51i 0.996594 1.85139i
\(583\) −68.8453 −0.118088
\(584\) 1073.30 96.1644i 1.83784 0.164665i
\(585\) 33.5843 56.4158i 0.0574090 0.0964373i
\(586\) −431.024 + 800.719i −0.735535 + 1.36642i
\(587\) 210.959 0.359384 0.179692 0.983723i \(-0.442490\pi\)
0.179692 + 0.983723i \(0.442490\pi\)
\(588\) −80.4487 121.945i −0.136817 0.207390i
\(589\) 54.6619 0.0928046
\(590\) −888.737 + 532.769i −1.50633 + 0.902999i
\(591\) 72.6105i 0.122860i
\(592\) −641.729 274.694i −1.08400 0.464010i
\(593\) 1.45476i 0.00245323i −0.999999 0.00122661i \(-0.999610\pi\)
0.999999 0.00122661i \(-0.000390443\pi\)
\(594\) −75.3285 + 139.939i −0.126816 + 0.235587i
\(595\) 46.7727 78.5701i 0.0786096 0.132051i
\(596\) 50.9129 + 77.1747i 0.0854244 + 0.129488i
\(597\) 1080.42i 1.80975i
\(598\) 67.2546 124.940i 0.112466 0.208930i
\(599\) 393.291i 0.656580i 0.944577 + 0.328290i \(0.106472\pi\)
−0.944577 + 0.328290i \(0.893528\pi\)
\(600\) −544.030 + 361.306i −0.906717 + 0.602177i
\(601\) 133.932 0.222848 0.111424 0.993773i \(-0.464459\pi\)
0.111424 + 0.993773i \(0.464459\pi\)
\(602\) 372.536 + 200.534i 0.618830 + 0.333113i
\(603\) −41.0640 −0.0680995
\(604\) −827.325 + 545.795i −1.36974 + 0.903634i
\(605\) 47.2598 + 28.1337i 0.0781155 + 0.0465020i
\(606\) −606.543 326.500i −1.00090 0.538778i
\(607\) −548.156 −0.903057 −0.451529 0.892257i \(-0.649121\pi\)
−0.451529 + 0.892257i \(0.649121\pi\)
\(608\) 25.9342 + 32.5651i 0.0426549 + 0.0535610i
\(609\) 1121.04 1.84079
\(610\) −320.012 533.827i −0.524610 0.875127i
\(611\) 180.825i 0.295950i
\(612\) 13.0873 8.63382i 0.0213845 0.0141076i
\(613\) 702.562i 1.14611i −0.819519 0.573053i \(-0.805759\pi\)
0.819519 0.573053i \(-0.194241\pi\)
\(614\) −360.805 194.220i −0.587631 0.316319i
\(615\) −112.406 66.9150i −0.182773 0.108805i
\(616\) 205.019 18.3691i 0.332823 0.0298200i
\(617\) 529.451i 0.858105i 0.903279 + 0.429053i \(0.141153\pi\)
−0.903279 + 0.429053i \(0.858847\pi\)
\(618\) −428.275 230.539i −0.693002 0.373040i
\(619\) 277.440i 0.448207i 0.974565 + 0.224103i \(0.0719453\pi\)
−0.974565 + 0.224103i \(0.928055\pi\)
\(620\) −839.447 + 38.8232i −1.35395 + 0.0626180i
\(621\) 215.241 0.346605
\(622\) −229.214 + 425.814i −0.368511 + 0.684588i
\(623\) −818.104 −1.31317
\(624\) 379.304 + 162.362i 0.607859 + 0.260196i
\(625\) −340.959 + 523.806i −0.545534 + 0.838089i
\(626\) 545.752 1013.85i 0.871809 1.61957i
\(627\) −14.0893 −0.0224709
\(628\) −424.684 + 280.168i −0.676248 + 0.446128i
\(629\) 102.844 0.163504
\(630\) −66.3249 110.640i −0.105278 0.175618i
\(631\) 860.452i 1.36363i 0.731523 + 0.681816i \(0.238810\pi\)
−0.731523 + 0.681816i \(0.761190\pi\)
\(632\) 242.210 21.7013i 0.383244 0.0343375i
\(633\) 995.687i 1.57297i
\(634\) −52.3506 + 97.2526i −0.0825720 + 0.153395i
\(635\) −469.965 279.769i −0.740102 0.440582i
\(636\) −226.316 + 149.303i −0.355842 + 0.234753i
\(637\) 88.3276i 0.138662i
\(638\) −139.134 + 258.472i −0.218079 + 0.405128i
\(639\) 112.781i 0.176497i
\(640\) −421.402 481.685i −0.658441 0.752632i
\(641\) −75.1870 −0.117296 −0.0586482 0.998279i \(-0.518679\pi\)
−0.0586482 + 0.998279i \(0.518679\pi\)
\(642\) 18.6597 + 10.0444i 0.0290649 + 0.0156455i
\(643\) −424.833 −0.660705 −0.330353 0.943858i \(-0.607168\pi\)
−0.330353 + 0.943858i \(0.607168\pi\)
\(644\) −153.517 232.704i −0.238381 0.361341i
\(645\) 382.546 + 227.729i 0.593095 + 0.353069i
\(646\) −5.40066 2.90715i −0.00836016 0.00450023i
\(647\) 1223.36 1.89082 0.945408 0.325888i \(-0.105663\pi\)
0.945408 + 0.325888i \(0.105663\pi\)
\(648\) 66.5372 + 742.627i 0.102681 + 1.14603i
\(649\) 343.666 0.529532
\(650\) 394.852 1.21323i 0.607465 0.00186650i
\(651\) 1064.40i 1.63503i
\(652\) 437.352 + 662.946i 0.670786 + 1.01679i
\(653\) 402.337i 0.616136i −0.951364 0.308068i \(-0.900318\pi\)
0.951364 0.308068i \(-0.0996825\pi\)
\(654\) 1160.13 + 624.490i 1.77389 + 0.954878i
\(655\) 162.164 272.407i 0.247578 0.415889i
\(656\) 50.4472 117.853i 0.0769012 0.179653i
\(657\) 223.976i 0.340907i
\(658\) −312.832 168.396i −0.475429 0.255921i
\(659\) 786.640i 1.19369i 0.802358 + 0.596844i \(0.203579\pi\)
−0.802358 + 0.596844i \(0.796421\pi\)
\(660\) 216.370 10.0068i 0.327834 0.0151618i
\(661\) −23.1541 −0.0350289 −0.0175144 0.999847i \(-0.505575\pi\)
−0.0175144 + 0.999847i \(0.505575\pi\)
\(662\) −145.446 + 270.198i −0.219707 + 0.408154i
\(663\) −60.7878 −0.0916860
\(664\) −95.7951 1069.18i −0.144270 1.61020i
\(665\) −25.8128 + 43.3611i −0.0388163 + 0.0652047i
\(666\) 68.7696 127.754i 0.103258 0.191823i
\(667\) 397.558 0.596039
\(668\) 187.214 + 283.782i 0.280260 + 0.424823i
\(669\) 695.441 1.03952
\(670\) −126.977 211.816i −0.189518 0.316143i
\(671\) 206.426i 0.307640i
\(672\) 634.123 505.003i 0.943635 0.751492i
\(673\) 517.445i 0.768863i −0.923154 0.384431i \(-0.874398\pi\)
0.923154 0.384431i \(-0.125602\pi\)
\(674\) −88.2736 + 163.987i −0.130970 + 0.243305i
\(675\) 285.524 + 526.540i 0.422998 + 0.780059i
\(676\) 234.887 + 356.045i 0.347465 + 0.526694i
\(677\) 778.816i 1.15039i 0.818015 + 0.575196i \(0.195074\pi\)
−0.818015 + 0.575196i \(0.804926\pi\)
\(678\) 79.7377 148.130i 0.117607 0.218481i
\(679\) 1453.63i 2.14084i
\(680\) 85.0032 + 40.8096i 0.125005 + 0.0600141i
\(681\) −927.669 −1.36222
\(682\) 245.414 + 132.105i 0.359844 + 0.193702i
\(683\) 464.710 0.680395 0.340198 0.940354i \(-0.389506\pi\)
0.340198 + 0.940354i \(0.389506\pi\)
\(684\) −7.22259 + 4.76482i −0.0105593 + 0.00696611i
\(685\) −421.366 + 707.823i −0.615133 + 1.03332i
\(686\) −516.636 278.103i −0.753114 0.405398i
\(687\) 926.800 1.34905
\(688\) −171.685 + 401.083i −0.249542 + 0.582970i
\(689\) 163.925 0.237917
\(690\) −150.832 251.609i −0.218597 0.364651i
\(691\) 266.654i 0.385895i 0.981209 + 0.192948i \(0.0618048\pi\)
−0.981209 + 0.192948i \(0.938195\pi\)
\(692\) 116.349 76.7566i 0.168134 0.110920i
\(693\) 42.7833i 0.0617364i
\(694\) −222.845 119.956i −0.321102 0.172848i
\(695\) 538.175 904.042i 0.774353 1.30078i
\(696\) 103.163 + 1151.41i 0.148223 + 1.65433i
\(697\) 18.8872i 0.0270979i
\(698\) 442.768 + 238.340i 0.634338 + 0.341461i
\(699\) 1427.21i 2.04179i
\(700\) 365.613 684.234i 0.522304 0.977477i
\(701\) 439.035 0.626298 0.313149 0.949704i \(-0.398616\pi\)
0.313149 + 0.949704i \(0.398616\pi\)
\(702\) 179.362 333.203i 0.255501 0.474648i
\(703\) −56.7575 −0.0807362
\(704\) 37.7336 + 208.883i 0.0535988 + 0.296709i
\(705\) −321.238 191.233i −0.455657 0.271252i
\(706\) 240.482 446.747i 0.340626 0.632787i
\(707\) 818.267 1.15738
\(708\) 1129.74 745.299i 1.59567 1.05268i
\(709\) 300.512 0.423854 0.211927 0.977286i \(-0.432026\pi\)
0.211927 + 0.977286i \(0.432026\pi\)
\(710\) 581.749 348.740i 0.819365 0.491183i
\(711\) 50.5444i 0.0710891i
\(712\) −75.2858 840.270i −0.105738 1.18015i
\(713\) 377.473i 0.529416i
\(714\) −56.6094 + 105.164i −0.0792849 + 0.147289i
\(715\) −112.529 66.9881i −0.157383 0.0936897i
\(716\) −512.091 + 337.832i −0.715212 + 0.471832i
\(717\) 253.012i 0.352876i
\(718\) 66.5662 123.661i 0.0927106 0.172230i
\(719\) 999.784i 1.39052i −0.718758 0.695260i \(-0.755289\pi\)
0.718758 0.695260i \(-0.244711\pi\)
\(720\) 107.534 78.3035i 0.149352 0.108755i
\(721\) 577.771 0.801347
\(722\) −632.764 340.614i −0.876404 0.471764i
\(723\) 203.061 0.280859
\(724\) 635.045 + 962.613i 0.877134 + 1.32958i
\(725\) 527.373 + 972.537i 0.727410 + 1.34143i
\(726\) −63.2562 34.0505i −0.0871298 0.0469015i
\(727\) 265.278 0.364894 0.182447 0.983216i \(-0.441598\pi\)
0.182447 + 0.983216i \(0.441598\pi\)
\(728\) −488.162 + 43.7379i −0.670553 + 0.0600796i
\(729\) 549.145 0.753286
\(730\) −1155.31 + 692.572i −1.58262 + 0.948728i
\(731\) 64.2782i 0.0879318i
\(732\) 447.670 + 678.586i 0.611571 + 0.927030i
\(733\) 200.371i 0.273358i 0.990615 + 0.136679i \(0.0436429\pi\)
−0.990615 + 0.136679i \(0.956357\pi\)
\(734\) 279.559 + 150.486i 0.380871 + 0.205021i
\(735\) 156.915 + 93.4112i 0.213490 + 0.127090i
\(736\) 224.881 179.091i 0.305545 0.243330i
\(737\) 81.9073i 0.111136i
\(738\) 23.4619 + 12.6294i 0.0317912 + 0.0171131i
\(739\) 1019.28i 1.37927i 0.724159 + 0.689633i \(0.242228\pi\)
−0.724159 + 0.689633i \(0.757772\pi\)
\(740\) 871.630 40.3116i 1.17788 0.0544751i
\(741\) 33.5475 0.0452732
\(742\) 152.657 283.594i 0.205738 0.382202i
\(743\) −488.362 −0.657284 −0.328642 0.944455i \(-0.606591\pi\)
−0.328642 + 0.944455i \(0.606591\pi\)
\(744\) 1093.24 97.9513i 1.46941 0.131655i
\(745\) −99.3055 59.1165i −0.133296 0.0793510i
\(746\) 212.776 395.277i 0.285222 0.529862i
\(747\) 223.115 0.298682
\(748\) −17.2213 26.1043i −0.0230231 0.0348988i
\(749\) −25.1731 −0.0336089
\(750\) 415.423 702.743i 0.553897 0.936990i
\(751\) 851.690i 1.13407i 0.823692 + 0.567037i \(0.191910\pi\)
−0.823692 + 0.567037i \(0.808090\pi\)
\(752\) 144.170 336.805i 0.191716 0.447878i
\(753\) 596.625i 0.792331i
\(754\) 331.287 615.437i 0.439373 0.816230i
\(755\) 633.738 1064.57i 0.839388 1.41003i
\(756\) −409.416 620.600i −0.541555 0.820899i
\(757\) 713.863i 0.943016i −0.881862 0.471508i \(-0.843710\pi\)
0.881862 0.471508i \(-0.156290\pi\)
\(758\) 106.000 196.917i 0.139841 0.259785i
\(759\) 97.2950i 0.128188i
\(760\) −46.9114 22.5219i −0.0617255 0.0296341i
\(761\) −783.401 −1.02944 −0.514718 0.857360i \(-0.672103\pi\)
−0.514718 + 0.857360i \(0.672103\pi\)
\(762\) 629.037 + 338.608i 0.825507 + 0.444367i
\(763\) −1565.09 −2.05123
\(764\) −255.756 + 168.725i −0.334759 + 0.220844i
\(765\) −10.0250 + 16.8402i −0.0131045 + 0.0220134i
\(766\) 322.004 + 173.333i 0.420371 + 0.226284i
\(767\) −818.291 −1.06687
\(768\) 577.040 + 604.831i 0.751354 + 0.787540i
\(769\) −373.200 −0.485305 −0.242653 0.970113i \(-0.578018\pi\)
−0.242653 + 0.970113i \(0.578018\pi\)
\(770\) −220.685 + 132.293i −0.286604 + 0.171810i
\(771\) 37.9158i 0.0491775i
\(772\) −138.680 + 91.4886i −0.179637 + 0.118509i
\(773\) 209.208i 0.270645i −0.990802 0.135322i \(-0.956793\pi\)
0.990802 0.135322i \(-0.0432070\pi\)
\(774\) −79.8471 42.9813i −0.103162 0.0555314i
\(775\) 923.403