Properties

Label 220.3.h.a.199.1
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99644 - 0.119294i) q^{2} +0.337678 q^{3} +(3.97154 + 0.476326i) q^{4} +(1.42257 + 4.79336i) q^{5} +(-0.674153 - 0.0402829i) q^{6} -6.79613 q^{7} +(-7.87211 - 1.42474i) q^{8} -8.88597 q^{9} +(-2.26826 - 9.73935i) q^{10} -3.31662i q^{11} +(1.34110 + 0.160845i) q^{12} +7.56772i q^{13} +(13.5681 + 0.810737i) q^{14} +(0.480371 + 1.61861i) q^{15} +(15.5462 + 3.78349i) q^{16} -26.2930i q^{17} +(17.7403 + 1.06004i) q^{18} -14.2491i q^{19} +(3.36660 + 19.7146i) q^{20} -2.29490 q^{21} +(-0.395653 + 6.62144i) q^{22} -34.5573 q^{23} +(-2.65824 - 0.481102i) q^{24} +(-20.9526 + 13.6378i) q^{25} +(0.902784 - 15.1085i) q^{26} -6.03970 q^{27} +(-26.9911 - 3.23717i) q^{28} -19.2441 q^{29} +(-0.765941 - 3.28876i) q^{30} +44.2429i q^{31} +(-30.5857 - 9.40809i) q^{32} -1.11995i q^{33} +(-3.13660 + 52.4925i) q^{34} +(-9.66799 - 32.5763i) q^{35} +(-35.2910 - 4.23262i) q^{36} -46.5774i q^{37} +(-1.69983 + 28.4475i) q^{38} +2.55545i q^{39} +(-4.36937 - 39.7606i) q^{40} -67.4821 q^{41} +(4.58163 + 0.273768i) q^{42} +54.3809 q^{43} +(1.57979 - 13.1721i) q^{44} +(-12.6409 - 42.5937i) q^{45} +(68.9914 + 4.12247i) q^{46} -7.43139 q^{47} +(5.24961 + 1.27760i) q^{48} -2.81262 q^{49} +(43.4574 - 24.7275i) q^{50} -8.87858i q^{51} +(-3.60470 + 30.0555i) q^{52} +88.6475i q^{53} +(12.0579 + 0.720499i) q^{54} +(15.8978 - 4.71814i) q^{55} +(53.4999 + 9.68269i) q^{56} -4.81161i q^{57} +(38.4196 + 2.29570i) q^{58} +74.2727i q^{59} +(1.13683 + 6.65719i) q^{60} -21.7427 q^{61} +(5.27791 - 88.3283i) q^{62} +60.3902 q^{63} +(59.9403 + 22.4314i) q^{64} +(-36.2748 + 10.7656i) q^{65} +(-0.133603 + 2.23591i) q^{66} +53.3540 q^{67} +(12.5241 - 104.424i) q^{68} -11.6692 q^{69} +(15.4154 + 66.1899i) q^{70} -107.738i q^{71} +(69.9514 + 12.6602i) q^{72} -34.9727i q^{73} +(-5.55640 + 92.9889i) q^{74} +(-7.07522 + 4.60518i) q^{75} +(6.78723 - 56.5909i) q^{76} +22.5402i q^{77} +(0.304850 - 5.10180i) q^{78} +119.442i q^{79} +(3.97999 + 79.9009i) q^{80} +77.9343 q^{81} +(134.724 + 8.05021i) q^{82} -91.9838 q^{83} +(-9.11429 - 1.09312i) q^{84} +(126.032 - 37.4038i) q^{85} +(-108.568 - 6.48731i) q^{86} -6.49830 q^{87} +(-4.72532 + 26.1088i) q^{88} +32.6768 q^{89} +(20.1557 + 86.5436i) q^{90} -51.4312i q^{91} +(-137.245 - 16.4605i) q^{92} +14.9399i q^{93} +(14.8363 + 0.886520i) q^{94} +(68.3011 - 20.2704i) q^{95} +(-10.3281 - 3.17690i) q^{96} -13.3085i q^{97} +(5.61522 + 0.335528i) q^{98} +29.4714i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99644 0.119294i −0.998220 0.0596470i
\(3\) 0.337678 0.112559 0.0562796 0.998415i \(-0.482076\pi\)
0.0562796 + 0.998415i \(0.482076\pi\)
\(4\) 3.97154 + 0.476326i 0.992884 + 0.119082i
\(5\) 1.42257 + 4.79336i 0.284514 + 0.958672i
\(6\) −0.674153 0.0402829i −0.112359 0.00671382i
\(7\) −6.79613 −0.970876 −0.485438 0.874271i \(-0.661340\pi\)
−0.485438 + 0.874271i \(0.661340\pi\)
\(8\) −7.87211 1.42474i −0.984014 0.178092i
\(9\) −8.88597 −0.987330
\(10\) −2.26826 9.73935i −0.226826 0.973935i
\(11\) 3.31662i 0.301511i
\(12\) 1.34110 + 0.160845i 0.111758 + 0.0134037i
\(13\) 7.56772i 0.582133i 0.956703 + 0.291066i \(0.0940100\pi\)
−0.956703 + 0.291066i \(0.905990\pi\)
\(14\) 13.5681 + 0.810737i 0.969147 + 0.0579098i
\(15\) 0.480371 + 1.61861i 0.0320247 + 0.107907i
\(16\) 15.5462 + 3.78349i 0.971639 + 0.236468i
\(17\) 26.2930i 1.54665i −0.634010 0.773325i \(-0.718592\pi\)
0.634010 0.773325i \(-0.281408\pi\)
\(18\) 17.7403 + 1.06004i 0.985573 + 0.0588913i
\(19\) 14.2491i 0.749953i −0.927034 0.374977i \(-0.877651\pi\)
0.927034 0.374977i \(-0.122349\pi\)
\(20\) 3.36660 + 19.7146i 0.168330 + 0.985731i
\(21\) −2.29490 −0.109281
\(22\) −0.395653 + 6.62144i −0.0179842 + 0.300975i
\(23\) −34.5573 −1.50249 −0.751245 0.660024i \(-0.770546\pi\)
−0.751245 + 0.660024i \(0.770546\pi\)
\(24\) −2.65824 0.481102i −0.110760 0.0200459i
\(25\) −20.9526 + 13.6378i −0.838103 + 0.545512i
\(26\) 0.902784 15.1085i 0.0347224 0.581096i
\(27\) −6.03970 −0.223692
\(28\) −26.9911 3.23717i −0.963967 0.115613i
\(29\) −19.2441 −0.663589 −0.331794 0.943352i \(-0.607654\pi\)
−0.331794 + 0.943352i \(0.607654\pi\)
\(30\) −0.765941 3.28876i −0.0255314 0.109625i
\(31\) 44.2429i 1.42719i 0.700558 + 0.713596i \(0.252935\pi\)
−0.700558 + 0.713596i \(0.747065\pi\)
\(32\) −30.5857 9.40809i −0.955805 0.294003i
\(33\) 1.11995i 0.0339379i
\(34\) −3.13660 + 52.4925i −0.0922530 + 1.54390i
\(35\) −9.66799 32.5763i −0.276228 0.930751i
\(36\) −35.2910 4.23262i −0.980305 0.117573i
\(37\) 46.5774i 1.25885i −0.777062 0.629424i \(-0.783291\pi\)
0.777062 0.629424i \(-0.216709\pi\)
\(38\) −1.69983 + 28.4475i −0.0447324 + 0.748618i
\(39\) 2.55545i 0.0655244i
\(40\) −4.36937 39.7606i −0.109234 0.994016i
\(41\) −67.4821 −1.64591 −0.822953 0.568110i \(-0.807675\pi\)
−0.822953 + 0.568110i \(0.807675\pi\)
\(42\) 4.58163 + 0.273768i 0.109086 + 0.00651828i
\(43\) 54.3809 1.26467 0.632336 0.774695i \(-0.282096\pi\)
0.632336 + 0.774695i \(0.282096\pi\)
\(44\) 1.57979 13.1721i 0.0359044 0.299366i
\(45\) −12.6409 42.5937i −0.280910 0.946526i
\(46\) 68.9914 + 4.12247i 1.49981 + 0.0896189i
\(47\) −7.43139 −0.158115 −0.0790574 0.996870i \(-0.525191\pi\)
−0.0790574 + 0.996870i \(0.525191\pi\)
\(48\) 5.24961 + 1.27760i 0.109367 + 0.0266167i
\(49\) −2.81262 −0.0574004
\(50\) 43.4574 24.7275i 0.869149 0.494550i
\(51\) 8.87858i 0.174090i
\(52\) −3.60470 + 30.0555i −0.0693212 + 0.577990i
\(53\) 88.6475i 1.67259i 0.548277 + 0.836297i \(0.315284\pi\)
−0.548277 + 0.836297i \(0.684716\pi\)
\(54\) 12.0579 + 0.720499i 0.223294 + 0.0133426i
\(55\) 15.8978 4.71814i 0.289050 0.0857843i
\(56\) 53.4999 + 9.68269i 0.955355 + 0.172905i
\(57\) 4.81161i 0.0844142i
\(58\) 38.4196 + 2.29570i 0.662407 + 0.0395811i
\(59\) 74.2727i 1.25886i 0.777057 + 0.629430i \(0.216712\pi\)
−0.777057 + 0.629430i \(0.783288\pi\)
\(60\) 1.13683 + 6.65719i 0.0189471 + 0.110953i
\(61\) −21.7427 −0.356438 −0.178219 0.983991i \(-0.557034\pi\)
−0.178219 + 0.983991i \(0.557034\pi\)
\(62\) 5.27791 88.3283i 0.0851276 1.42465i
\(63\) 60.3902 0.958575
\(64\) 59.9403 + 22.4314i 0.936566 + 0.350490i
\(65\) −36.2748 + 10.7656i −0.558074 + 0.165625i
\(66\) −0.133603 + 2.23591i −0.00202429 + 0.0338775i
\(67\) 53.3540 0.796328 0.398164 0.917314i \(-0.369647\pi\)
0.398164 + 0.917314i \(0.369647\pi\)
\(68\) 12.5241 104.424i 0.184177 1.53564i
\(69\) −11.6692 −0.169119
\(70\) 15.4154 + 66.1899i 0.220220 + 0.945570i
\(71\) 107.738i 1.51744i −0.651419 0.758719i \(-0.725826\pi\)
0.651419 0.758719i \(-0.274174\pi\)
\(72\) 69.9514 + 12.6602i 0.971547 + 0.175836i
\(73\) 34.9727i 0.479078i −0.970887 0.239539i \(-0.923004\pi\)
0.970887 0.239539i \(-0.0769963\pi\)
\(74\) −5.55640 + 92.9889i −0.0750865 + 1.25661i
\(75\) −7.07522 + 4.60518i −0.0943362 + 0.0614024i
\(76\) 6.78723 56.5909i 0.0893056 0.744617i
\(77\) 22.5402i 0.292730i
\(78\) 0.304850 5.10180i 0.00390833 0.0654078i
\(79\) 119.442i 1.51193i 0.654614 + 0.755963i \(0.272831\pi\)
−0.654614 + 0.755963i \(0.727169\pi\)
\(80\) 3.97999 + 79.9009i 0.0497498 + 0.998762i
\(81\) 77.9343 0.962152
\(82\) 134.724 + 8.05021i 1.64297 + 0.0981732i
\(83\) −91.9838 −1.10824 −0.554119 0.832437i \(-0.686945\pi\)
−0.554119 + 0.832437i \(0.686945\pi\)
\(84\) −9.11429 1.09312i −0.108503 0.0130134i
\(85\) 126.032 37.4038i 1.48273 0.440044i
\(86\) −108.568 6.48731i −1.26242 0.0754338i
\(87\) −6.49830 −0.0746931
\(88\) −4.72532 + 26.1088i −0.0536968 + 0.296691i
\(89\) 32.6768 0.367155 0.183577 0.983005i \(-0.441232\pi\)
0.183577 + 0.983005i \(0.441232\pi\)
\(90\) 20.1557 + 86.5436i 0.223952 + 0.961596i
\(91\) 51.4312i 0.565178i
\(92\) −137.245 16.4605i −1.49180 0.178919i
\(93\) 14.9399i 0.160644i
\(94\) 14.8363 + 0.886520i 0.157833 + 0.00943106i
\(95\) 68.3011 20.2704i 0.718959 0.213373i
\(96\) −10.3281 3.17690i −0.107585 0.0330927i
\(97\) 13.3085i 0.137201i −0.997644 0.0686006i \(-0.978147\pi\)
0.997644 0.0686006i \(-0.0218534\pi\)
\(98\) 5.61522 + 0.335528i 0.0572982 + 0.00342376i
\(99\) 29.4714i 0.297691i
\(100\) −89.7100 + 44.1828i −0.897100 + 0.441828i
\(101\) 40.3501 0.399506 0.199753 0.979846i \(-0.435986\pi\)
0.199753 + 0.979846i \(0.435986\pi\)
\(102\) −1.05916 + 17.7255i −0.0103839 + 0.173780i
\(103\) 65.9697 0.640483 0.320241 0.947336i \(-0.396236\pi\)
0.320241 + 0.947336i \(0.396236\pi\)
\(104\) 10.7820 59.5740i 0.103673 0.572827i
\(105\) −3.26466 11.0003i −0.0310920 0.104765i
\(106\) 10.5751 176.979i 0.0997652 1.66962i
\(107\) −42.8379 −0.400355 −0.200177 0.979760i \(-0.564152\pi\)
−0.200177 + 0.979760i \(0.564152\pi\)
\(108\) −23.9869 2.87686i −0.222101 0.0266376i
\(109\) 33.8101 0.310184 0.155092 0.987900i \(-0.450433\pi\)
0.155092 + 0.987900i \(0.450433\pi\)
\(110\) −32.3018 + 7.52297i −0.293653 + 0.0683906i
\(111\) 15.7282i 0.141695i
\(112\) −105.654 25.7131i −0.943341 0.229581i
\(113\) 130.528i 1.15511i 0.816351 + 0.577556i \(0.195994\pi\)
−0.816351 + 0.577556i \(0.804006\pi\)
\(114\) −0.573996 + 9.60608i −0.00503505 + 0.0842639i
\(115\) −49.1602 165.645i −0.427480 1.44039i
\(116\) −76.4286 9.16646i −0.658867 0.0790212i
\(117\) 67.2466i 0.574757i
\(118\) 8.86029 148.281i 0.0750872 1.25662i
\(119\) 178.691i 1.50160i
\(120\) −1.47544 13.4263i −0.0122953 0.111886i
\(121\) −11.0000 −0.0909091
\(122\) 43.4080 + 2.59377i 0.355803 + 0.0212604i
\(123\) −22.7872 −0.185262
\(124\) −21.0741 + 175.713i −0.169952 + 1.41704i
\(125\) −95.1774 81.0325i −0.761419 0.648260i
\(126\) −120.565 7.20419i −0.956868 0.0571761i
\(127\) 5.97899 0.0470787 0.0235393 0.999723i \(-0.492507\pi\)
0.0235393 + 0.999723i \(0.492507\pi\)
\(128\) −116.991 51.9334i −0.913993 0.405729i
\(129\) 18.3632 0.142350
\(130\) 73.7047 17.1656i 0.566960 0.132043i
\(131\) 11.3591i 0.0867105i 0.999060 + 0.0433552i \(0.0138047\pi\)
−0.999060 + 0.0433552i \(0.986195\pi\)
\(132\) 0.533462 4.44793i 0.00404138 0.0336964i
\(133\) 96.8388i 0.728112i
\(134\) −106.518 6.36481i −0.794910 0.0474985i
\(135\) −8.59190 28.9504i −0.0636437 0.214448i
\(136\) −37.4607 + 206.982i −0.275446 + 1.52192i
\(137\) 97.9040i 0.714628i −0.933984 0.357314i \(-0.883693\pi\)
0.933984 0.357314i \(-0.116307\pi\)
\(138\) 23.2969 + 1.39207i 0.168818 + 0.0100874i
\(139\) 83.2834i 0.599161i −0.954071 0.299581i \(-0.903153\pi\)
0.954071 0.299581i \(-0.0968468\pi\)
\(140\) −22.8798 133.983i −0.163427 0.957022i
\(141\) −2.50942 −0.0177973
\(142\) −12.8525 + 215.092i −0.0905105 + 1.51474i
\(143\) 25.0993 0.175520
\(144\) −138.143 33.6200i −0.959329 0.233472i
\(145\) −27.3761 92.2438i −0.188801 0.636164i
\(146\) −4.17203 + 69.8209i −0.0285756 + 0.478225i
\(147\) −0.949759 −0.00646094
\(148\) 22.1860 184.984i 0.149906 1.24989i
\(149\) 143.283 0.961632 0.480816 0.876822i \(-0.340341\pi\)
0.480816 + 0.876822i \(0.340341\pi\)
\(150\) 14.6746 8.34993i 0.0978308 0.0556662i
\(151\) 19.1317i 0.126700i 0.997991 + 0.0633500i \(0.0201784\pi\)
−0.997991 + 0.0633500i \(0.979822\pi\)
\(152\) −20.3012 + 112.171i −0.133561 + 0.737965i
\(153\) 233.639i 1.52705i
\(154\) 2.68891 45.0002i 0.0174605 0.292209i
\(155\) −212.072 + 62.9388i −1.36821 + 0.406057i
\(156\) −1.21723 + 10.1491i −0.00780275 + 0.0650582i
\(157\) 226.543i 1.44295i 0.692442 + 0.721474i \(0.256535\pi\)
−0.692442 + 0.721474i \(0.743465\pi\)
\(158\) 14.2487 238.459i 0.0901818 1.50923i
\(159\) 29.9343i 0.188266i
\(160\) 1.58589 159.992i 0.00991183 0.999951i
\(161\) 234.856 1.45873
\(162\) −155.591 9.29709i −0.960439 0.0573894i
\(163\) −249.137 −1.52845 −0.764225 0.644950i \(-0.776878\pi\)
−0.764225 + 0.644950i \(0.776878\pi\)
\(164\) −268.008 32.1435i −1.63419 0.195997i
\(165\) 5.36832 1.59321i 0.0325353 0.00965582i
\(166\) 183.640 + 10.9731i 1.10627 + 0.0661031i
\(167\) −60.2805 −0.360961 −0.180481 0.983579i \(-0.557765\pi\)
−0.180481 + 0.983579i \(0.557765\pi\)
\(168\) 18.0657 + 3.26963i 0.107534 + 0.0194621i
\(169\) 111.730 0.661122
\(170\) −256.077 + 59.6395i −1.50634 + 0.350821i
\(171\) 126.617i 0.740452i
\(172\) 215.976 + 25.9030i 1.25567 + 0.150599i
\(173\) 24.9330i 0.144121i −0.997400 0.0720607i \(-0.977042\pi\)
0.997400 0.0720607i \(-0.0229575\pi\)
\(174\) 12.9735 + 0.775207i 0.0745601 + 0.00445521i
\(175\) 142.396 92.6843i 0.813694 0.529624i
\(176\) 12.5484 51.5610i 0.0712979 0.292960i
\(177\) 25.0803i 0.141696i
\(178\) −65.2372 3.89814i −0.366501 0.0218997i
\(179\) 273.560i 1.52827i −0.645058 0.764134i \(-0.723167\pi\)
0.645058 0.764134i \(-0.276833\pi\)
\(180\) −29.9155 175.184i −0.166197 0.973242i
\(181\) −149.211 −0.824368 −0.412184 0.911101i \(-0.635234\pi\)
−0.412184 + 0.911101i \(0.635234\pi\)
\(182\) −6.13543 + 102.679i −0.0337112 + 0.564172i
\(183\) −7.34203 −0.0401204
\(184\) 272.039 + 49.2350i 1.47847 + 0.267581i
\(185\) 223.262 66.2597i 1.20682 0.358161i
\(186\) 1.78223 29.8265i 0.00958190 0.160358i
\(187\) −87.2042 −0.466332
\(188\) −29.5141 3.53977i −0.156990 0.0188285i
\(189\) 41.0466 0.217178
\(190\) −138.777 + 32.3207i −0.730406 + 0.170109i
\(191\) 227.027i 1.18862i −0.804235 0.594312i \(-0.797424\pi\)
0.804235 0.594312i \(-0.202576\pi\)
\(192\) 20.2405 + 7.57457i 0.105419 + 0.0394509i
\(193\) 255.756i 1.32516i 0.748991 + 0.662580i \(0.230539\pi\)
−0.748991 + 0.662580i \(0.769461\pi\)
\(194\) −1.58763 + 26.5697i −0.00818364 + 0.136957i
\(195\) −12.2492 + 3.63532i −0.0628164 + 0.0186426i
\(196\) −11.1704 1.33972i −0.0569919 0.00683532i
\(197\) 120.032i 0.609301i 0.952464 + 0.304650i \(0.0985396\pi\)
−0.952464 + 0.304650i \(0.901460\pi\)
\(198\) 3.51576 58.8379i 0.0177564 0.297161i
\(199\) 144.902i 0.728152i 0.931369 + 0.364076i \(0.118615\pi\)
−0.931369 + 0.364076i \(0.881385\pi\)
\(200\) 184.371 77.5064i 0.921856 0.387532i
\(201\) 18.0165 0.0896341
\(202\) −80.5565 4.81352i −0.398795 0.0238293i
\(203\) 130.785 0.644262
\(204\) 4.22910 35.2616i 0.0207309 0.172851i
\(205\) −95.9982 323.466i −0.468284 1.57788i
\(206\) −131.705 7.86979i −0.639342 0.0382029i
\(207\) 307.075 1.48345
\(208\) −28.6324 + 117.650i −0.137656 + 0.565623i
\(209\) −47.2590 −0.226119
\(210\) 5.20544 + 22.3509i 0.0247878 + 0.106433i
\(211\) 117.572i 0.557211i 0.960406 + 0.278605i \(0.0898722\pi\)
−0.960406 + 0.278605i \(0.910128\pi\)
\(212\) −42.2251 + 352.067i −0.199175 + 1.66069i
\(213\) 36.3807i 0.170802i
\(214\) 85.5233 + 5.11031i 0.399642 + 0.0238799i
\(215\) 77.3607 + 260.667i 0.359817 + 1.21240i
\(216\) 47.5452 + 8.60497i 0.220116 + 0.0398378i
\(217\) 300.681i 1.38563i
\(218\) −67.4997 4.03334i −0.309632 0.0185015i
\(219\) 11.8095i 0.0539247i
\(220\) 65.3860 11.1657i 0.297209 0.0507534i
\(221\) 198.979 0.900355
\(222\) −1.87627 + 31.4003i −0.00845168 + 0.141443i
\(223\) 262.174 1.17567 0.587833 0.808982i \(-0.299981\pi\)
0.587833 + 0.808982i \(0.299981\pi\)
\(224\) 207.865 + 63.9386i 0.927967 + 0.285440i
\(225\) 186.184 121.185i 0.827485 0.538601i
\(226\) 15.5712 260.591i 0.0688990 1.15306i
\(227\) −269.481 −1.18714 −0.593571 0.804781i \(-0.702283\pi\)
−0.593571 + 0.804781i \(0.702283\pi\)
\(228\) 2.29190 19.1095i 0.0100522 0.0838135i
\(229\) −289.225 −1.26299 −0.631496 0.775379i \(-0.717559\pi\)
−0.631496 + 0.775379i \(0.717559\pi\)
\(230\) 78.3849 + 336.565i 0.340804 + 1.46333i
\(231\) 7.61133i 0.0329495i
\(232\) 151.492 + 27.4177i 0.652981 + 0.118180i
\(233\) 40.9655i 0.175817i −0.996129 0.0879087i \(-0.971982\pi\)
0.996129 0.0879087i \(-0.0280184\pi\)
\(234\) −8.02211 + 134.254i −0.0342825 + 0.573734i
\(235\) −10.5717 35.6213i −0.0449859 0.151580i
\(236\) −35.3780 + 294.977i −0.149907 + 1.24990i
\(237\) 40.3330i 0.170181i
\(238\) 21.3167 356.746i 0.0895662 1.49893i
\(239\) 318.508i 1.33267i −0.745653 0.666334i \(-0.767862\pi\)
0.745653 0.666334i \(-0.232138\pi\)
\(240\) 1.34395 + 26.9808i 0.00559981 + 0.112420i
\(241\) −236.574 −0.981635 −0.490817 0.871262i \(-0.663302\pi\)
−0.490817 + 0.871262i \(0.663302\pi\)
\(242\) 21.9608 + 1.31223i 0.0907472 + 0.00542245i
\(243\) 80.6739 0.331992
\(244\) −86.3520 10.3566i −0.353902 0.0424452i
\(245\) −4.00115 13.4819i −0.0163312 0.0550281i
\(246\) 45.4933 + 2.71838i 0.184932 + 0.0110503i
\(247\) 107.833 0.436572
\(248\) 63.0345 348.285i 0.254171 1.40438i
\(249\) −31.0609 −0.124742
\(250\) 180.349 + 173.130i 0.721397 + 0.692522i
\(251\) 296.486i 1.18122i 0.806957 + 0.590610i \(0.201113\pi\)
−0.806957 + 0.590610i \(0.798887\pi\)
\(252\) 239.842 + 28.7654i 0.951754 + 0.114149i
\(253\) 114.613i 0.453018i
\(254\) −11.9367 0.713258i −0.0469949 0.00280810i
\(255\) 42.5582 12.6304i 0.166895 0.0495311i
\(256\) 227.370 + 117.638i 0.888165 + 0.459524i
\(257\) 53.1586i 0.206843i 0.994638 + 0.103421i \(0.0329790\pi\)
−0.994638 + 0.103421i \(0.967021\pi\)
\(258\) −36.6610 2.19062i −0.142097 0.00849077i
\(259\) 316.546i 1.22219i
\(260\) −149.195 + 25.4775i −0.573826 + 0.0979903i
\(261\) 171.002 0.655181
\(262\) 1.35507 22.6777i 0.00517202 0.0865561i
\(263\) −84.2123 −0.320199 −0.160100 0.987101i \(-0.551182\pi\)
−0.160100 + 0.987101i \(0.551182\pi\)
\(264\) −1.59563 + 8.81637i −0.00604407 + 0.0333954i
\(265\) −424.919 + 126.107i −1.60347 + 0.475877i
\(266\) 11.5523 193.333i 0.0434296 0.726815i
\(267\) 11.0342 0.0413267
\(268\) 211.897 + 25.4139i 0.790662 + 0.0948280i
\(269\) 8.89157 0.0330542 0.0165271 0.999863i \(-0.494739\pi\)
0.0165271 + 0.999863i \(0.494739\pi\)
\(270\) 13.6996 + 58.8227i 0.0507393 + 0.217862i
\(271\) 139.790i 0.515831i 0.966168 + 0.257915i \(0.0830356\pi\)
−0.966168 + 0.257915i \(0.916964\pi\)
\(272\) 99.4796 408.758i 0.365734 1.50279i
\(273\) 17.3672i 0.0636161i
\(274\) −11.6794 + 195.459i −0.0426254 + 0.713355i
\(275\) 45.2315 + 69.4918i 0.164478 + 0.252698i
\(276\) −46.3447 5.55835i −0.167916 0.0201390i
\(277\) 280.193i 1.01153i −0.862672 0.505764i \(-0.831211\pi\)
0.862672 0.505764i \(-0.168789\pi\)
\(278\) −9.93521 + 166.270i −0.0357381 + 0.598094i
\(279\) 393.142i 1.40911i
\(280\) 29.6948 + 270.218i 0.106053 + 0.965066i
\(281\) −441.298 −1.57045 −0.785227 0.619208i \(-0.787454\pi\)
−0.785227 + 0.619208i \(0.787454\pi\)
\(282\) 5.00990 + 0.299358i 0.0177656 + 0.00106155i
\(283\) 12.2834 0.0434042 0.0217021 0.999764i \(-0.493091\pi\)
0.0217021 + 0.999764i \(0.493091\pi\)
\(284\) 51.3184 427.886i 0.180699 1.50664i
\(285\) 23.0638 6.84486i 0.0809255 0.0240171i
\(286\) −50.1092 2.99419i −0.175207 0.0104692i
\(287\) 458.617 1.59797
\(288\) 271.784 + 83.6000i 0.943695 + 0.290278i
\(289\) −402.324 −1.39213
\(290\) 43.6506 + 187.425i 0.150519 + 0.646293i
\(291\) 4.49399i 0.0154433i
\(292\) 16.6584 138.895i 0.0570494 0.475669i
\(293\) 25.7448i 0.0878663i −0.999034 0.0439331i \(-0.986011\pi\)
0.999034 0.0439331i \(-0.0139889\pi\)
\(294\) 1.89614 + 0.113300i 0.00644944 + 0.000385376i
\(295\) −356.016 + 105.658i −1.20683 + 0.358164i
\(296\) −66.3605 + 366.662i −0.224191 + 1.23872i
\(297\) 20.0314i 0.0674458i
\(298\) −286.056 17.0928i −0.959920 0.0573584i
\(299\) 261.520i 0.874648i
\(300\) −30.2931 + 14.9195i −0.100977 + 0.0497318i
\(301\) −369.579 −1.22784
\(302\) 2.28230 38.1953i 0.00755727 0.126474i
\(303\) 13.6253 0.0449681
\(304\) 53.9115 221.520i 0.177340 0.728684i
\(305\) −30.9306 104.221i −0.101412 0.341707i
\(306\) 27.8718 466.447i 0.0910842 1.52434i
\(307\) −201.655 −0.656858 −0.328429 0.944529i \(-0.606519\pi\)
−0.328429 + 0.944529i \(0.606519\pi\)
\(308\) −10.7365 + 89.5193i −0.0348587 + 0.290647i
\(309\) 22.2765 0.0720923
\(310\) 430.898 100.355i 1.38999 0.323724i
\(311\) 319.387i 1.02697i −0.858099 0.513484i \(-0.828355\pi\)
0.858099 0.513484i \(-0.171645\pi\)
\(312\) 3.64085 20.1168i 0.0116694 0.0644769i
\(313\) 184.025i 0.587940i 0.955815 + 0.293970i \(0.0949765\pi\)
−0.955815 + 0.293970i \(0.905023\pi\)
\(314\) 27.0252 452.279i 0.0860674 1.44038i
\(315\) 85.9095 + 289.472i 0.272729 + 0.918959i
\(316\) −56.8934 + 474.369i −0.180042 + 1.50117i
\(317\) 96.9360i 0.305792i 0.988242 + 0.152896i \(0.0488599\pi\)
−0.988242 + 0.152896i \(0.951140\pi\)
\(318\) 3.57098 59.7620i 0.0112295 0.187931i
\(319\) 63.8254i 0.200080i
\(320\) −22.2522 + 319.225i −0.0695382 + 0.997579i
\(321\) −14.4654 −0.0450636
\(322\) −468.875 28.0168i −1.45613 0.0870088i
\(323\) −374.653 −1.15992
\(324\) 309.519 + 37.1221i 0.955306 + 0.114575i
\(325\) −103.207 158.563i −0.317560 0.487887i
\(326\) 497.387 + 29.7206i 1.52573 + 0.0911673i
\(327\) 11.4169 0.0349141
\(328\) 531.227 + 96.1442i 1.61959 + 0.293123i
\(329\) 50.5047 0.153510
\(330\) −10.9076 + 2.54034i −0.0330533 + 0.00769800i
\(331\) 129.543i 0.391370i −0.980667 0.195685i \(-0.937307\pi\)
0.980667 0.195685i \(-0.0626930\pi\)
\(332\) −365.317 43.8143i −1.10035 0.131971i
\(333\) 413.886i 1.24290i
\(334\) 120.346 + 7.19110i 0.360318 + 0.0215302i
\(335\) 75.8999 + 255.745i 0.226567 + 0.763417i
\(336\) −35.6771 8.68275i −0.106182 0.0258415i
\(337\) 435.350i 1.29184i −0.763406 0.645919i \(-0.776474\pi\)
0.763406 0.645919i \(-0.223526\pi\)
\(338\) −223.061 13.3287i −0.659944 0.0394339i
\(339\) 44.0763i 0.130019i
\(340\) 518.357 88.5181i 1.52458 0.260347i
\(341\) 146.737 0.430314
\(342\) 15.1047 252.784i 0.0441657 0.739134i
\(343\) 352.125 1.02660
\(344\) −428.092 77.4784i −1.24445 0.225228i
\(345\) −16.6003 55.9347i −0.0481168 0.162130i
\(346\) −2.97436 + 49.7772i −0.00859640 + 0.143865i
\(347\) −419.782 −1.20975 −0.604873 0.796322i \(-0.706776\pi\)
−0.604873 + 0.796322i \(0.706776\pi\)
\(348\) −25.8082 3.09531i −0.0741616 0.00889456i
\(349\) −573.417 −1.64303 −0.821514 0.570189i \(-0.806870\pi\)
−0.821514 + 0.570189i \(0.806870\pi\)
\(350\) −295.342 + 168.051i −0.843836 + 0.480147i
\(351\) 45.7068i 0.130219i
\(352\) −31.2031 + 101.441i −0.0886452 + 0.288186i
\(353\) 4.05432i 0.0114853i 0.999984 + 0.00574266i \(0.00182796\pi\)
−0.999984 + 0.00574266i \(0.998172\pi\)
\(354\) 2.99192 50.0712i 0.00845176 0.141444i
\(355\) 516.427 153.265i 1.45472 0.431733i
\(356\) 129.777 + 15.5648i 0.364542 + 0.0437213i
\(357\) 60.3400i 0.169020i
\(358\) −32.6340 + 546.146i −0.0911565 + 1.52555i
\(359\) 661.143i 1.84163i 0.390005 + 0.920813i \(0.372473\pi\)
−0.390005 + 0.920813i \(0.627527\pi\)
\(360\) 38.8262 + 353.312i 0.107850 + 0.981422i
\(361\) 157.963 0.437570
\(362\) 297.890 + 17.7999i 0.822901 + 0.0491711i
\(363\) −3.71446 −0.0102327
\(364\) 24.4980 204.261i 0.0673023 0.561157i
\(365\) 167.637 49.7512i 0.459279 0.136305i
\(366\) 14.6579 + 0.875860i 0.0400490 + 0.00239306i
\(367\) 210.234 0.572845 0.286423 0.958103i \(-0.407534\pi\)
0.286423 + 0.958103i \(0.407534\pi\)
\(368\) −537.235 130.747i −1.45988 0.355291i
\(369\) 599.644 1.62505
\(370\) −453.634 + 105.650i −1.22604 + 0.285540i
\(371\) 602.460i 1.62388i
\(372\) −7.11624 + 59.3342i −0.0191297 + 0.159501i
\(373\) 63.7890i 0.171016i 0.996337 + 0.0855080i \(0.0272513\pi\)
−0.996337 + 0.0855080i \(0.972749\pi\)
\(374\) 174.098 + 10.4029i 0.465502 + 0.0278153i
\(375\) −32.1393 27.3629i −0.0857048 0.0729676i
\(376\) 58.5007 + 10.5878i 0.155587 + 0.0281590i
\(377\) 145.634i 0.386297i
\(378\) −81.9469 4.89660i −0.216791 0.0129540i
\(379\) 553.999i 1.46174i −0.682518 0.730869i \(-0.739115\pi\)
0.682518 0.730869i \(-0.260885\pi\)
\(380\) 280.916 47.9711i 0.739252 0.126240i
\(381\) 2.01897 0.00529914
\(382\) −27.0830 + 453.246i −0.0708978 + 1.18651i
\(383\) 36.9752 0.0965411 0.0482705 0.998834i \(-0.484629\pi\)
0.0482705 + 0.998834i \(0.484629\pi\)
\(384\) −39.5053 17.5367i −0.102878 0.0456686i
\(385\) −108.043 + 32.0651i −0.280632 + 0.0832859i
\(386\) 30.5101 510.601i 0.0790418 1.32280i
\(387\) −483.227 −1.24865
\(388\) 6.33920 52.8553i 0.0163381 0.136225i
\(389\) 560.923 1.44196 0.720981 0.692955i \(-0.243691\pi\)
0.720981 + 0.692955i \(0.243691\pi\)
\(390\) 24.8885 5.79643i 0.0638165 0.0148626i
\(391\) 908.616i 2.32382i
\(392\) 22.1412 + 4.00724i 0.0564828 + 0.0102225i
\(393\) 3.83571i 0.00976006i
\(394\) 14.3191 239.637i 0.0363430 0.608216i
\(395\) −572.529 + 169.915i −1.44944 + 0.430165i
\(396\) −14.0380 + 117.047i −0.0354495 + 0.295573i
\(397\) 421.348i 1.06133i −0.847581 0.530665i \(-0.821942\pi\)
0.847581 0.530665i \(-0.178058\pi\)
\(398\) 17.2860 289.288i 0.0434321 0.726856i
\(399\) 32.7003i 0.0819557i
\(400\) −377.332 + 132.742i −0.943330 + 0.331856i
\(401\) 9.67014 0.0241151 0.0120575 0.999927i \(-0.496162\pi\)
0.0120575 + 0.999927i \(0.496162\pi\)
\(402\) −35.9687 2.14925i −0.0894745 0.00534640i
\(403\) −334.818 −0.830815
\(404\) 160.252 + 19.2198i 0.396663 + 0.0475738i
\(405\) 110.867 + 373.567i 0.273746 + 0.922388i
\(406\) −261.105 15.6019i −0.643115 0.0384283i
\(407\) −154.480 −0.379557
\(408\) −12.6496 + 69.8931i −0.0310040 + 0.171307i
\(409\) −95.1201 −0.232568 −0.116284 0.993216i \(-0.537098\pi\)
−0.116284 + 0.993216i \(0.537098\pi\)
\(410\) 153.067 + 657.232i 0.373334 + 1.60301i
\(411\) 33.0600i 0.0804380i
\(412\) 262.001 + 31.4231i 0.635925 + 0.0762697i
\(413\) 504.767i 1.22220i
\(414\) −613.056 36.6322i −1.48081 0.0884835i
\(415\) −130.854 440.911i −0.315310 1.06244i
\(416\) 71.1978 231.465i 0.171149 0.556405i
\(417\) 28.1230i 0.0674411i
\(418\) 94.3497 + 5.63771i 0.225717 + 0.0134873i
\(419\) 638.390i 1.52360i −0.647810 0.761802i \(-0.724315\pi\)
0.647810 0.761802i \(-0.275685\pi\)
\(420\) −7.72601 45.2431i −0.0183953 0.107722i
\(421\) 19.9200 0.0473160 0.0236580 0.999720i \(-0.492469\pi\)
0.0236580 + 0.999720i \(0.492469\pi\)
\(422\) 14.0256 234.724i 0.0332359 0.556219i
\(423\) 66.0352 0.156111
\(424\) 126.299 697.843i 0.297876 1.64586i
\(425\) 358.579 + 550.907i 0.843716 + 1.29625i
\(426\) −4.34000 + 72.6319i −0.0101878 + 0.170497i
\(427\) 147.766 0.346057
\(428\) −170.132 20.4048i −0.397506 0.0476748i
\(429\) 8.47548 0.0197564
\(430\) −123.350 529.634i −0.286860 1.23171i
\(431\) 117.730i 0.273155i −0.990629 0.136577i \(-0.956390\pi\)
0.990629 0.136577i \(-0.0436103\pi\)
\(432\) −93.8945 22.8512i −0.217348 0.0528962i
\(433\) 8.18765i 0.0189091i 0.999955 + 0.00945457i \(0.00300953\pi\)
−0.999955 + 0.00945457i \(0.996990\pi\)
\(434\) −35.8694 + 600.291i −0.0826484 + 1.38316i
\(435\) −9.24430 31.1487i −0.0212513 0.0716061i
\(436\) 134.278 + 16.1046i 0.307977 + 0.0369372i
\(437\) 492.410i 1.12680i
\(438\) −1.40880 + 23.5770i −0.00321644 + 0.0538287i
\(439\) 424.336i 0.966597i −0.875456 0.483298i \(-0.839439\pi\)
0.875456 0.483298i \(-0.160561\pi\)
\(440\) −131.871 + 14.4916i −0.299707 + 0.0329354i
\(441\) 24.9929 0.0566731
\(442\) −397.249 23.7369i −0.898752 0.0537035i
\(443\) −381.909 −0.862098 −0.431049 0.902329i \(-0.641856\pi\)
−0.431049 + 0.902329i \(0.641856\pi\)
\(444\) 7.49173 62.4650i 0.0168733 0.140687i
\(445\) 46.4851 + 156.631i 0.104461 + 0.351981i
\(446\) −523.414 31.2757i −1.17357 0.0701249i
\(447\) 48.3835 0.108241
\(448\) −407.362 152.446i −0.909290 0.340282i
\(449\) −665.089 −1.48127 −0.740634 0.671909i \(-0.765475\pi\)
−0.740634 + 0.671909i \(0.765475\pi\)
\(450\) −386.162 + 219.728i −0.858137 + 0.488285i
\(451\) 223.813i 0.496259i
\(452\) −62.1738 + 518.396i −0.137553 + 1.14689i
\(453\) 6.46035i 0.0142613i
\(454\) 538.003 + 32.1475i 1.18503 + 0.0708095i
\(455\) 246.528 73.1647i 0.541821 0.160801i
\(456\) −6.85528 + 37.8775i −0.0150335 + 0.0830647i
\(457\) 36.2416i 0.0793033i 0.999214 + 0.0396517i \(0.0126248\pi\)
−0.999214 + 0.0396517i \(0.987375\pi\)
\(458\) 577.421 + 34.5028i 1.26074 + 0.0753337i
\(459\) 158.802i 0.345974i
\(460\) −116.340 681.283i −0.252914 1.48105i
\(461\) 87.1977 0.189149 0.0945745 0.995518i \(-0.469851\pi\)
0.0945745 + 0.995518i \(0.469851\pi\)
\(462\) 0.907985 15.1956i 0.00196534 0.0328908i
\(463\) −244.001 −0.527001 −0.263500 0.964659i \(-0.584877\pi\)
−0.263500 + 0.964659i \(0.584877\pi\)
\(464\) −299.173 72.8099i −0.644769 0.156918i
\(465\) −71.6121 + 21.2530i −0.154005 + 0.0457054i
\(466\) −4.88693 + 81.7851i −0.0104870 + 0.175504i
\(467\) 138.792 0.297200 0.148600 0.988897i \(-0.452523\pi\)
0.148600 + 0.988897i \(0.452523\pi\)
\(468\) 32.0313 267.072i 0.0684430 0.570668i
\(469\) −362.601 −0.773136
\(470\) 16.8563 + 72.3770i 0.0358645 + 0.153994i
\(471\) 76.4985i 0.162417i
\(472\) 105.819 584.683i 0.224193 1.23874i
\(473\) 180.361i 0.381313i
\(474\) 4.81148 80.5223i 0.0101508 0.169878i
\(475\) 194.327 + 298.556i 0.409109 + 0.628538i
\(476\) −85.1152 + 709.678i −0.178813 + 1.49092i
\(477\) 787.719i 1.65140i
\(478\) −37.9960 + 635.881i −0.0794896 + 1.33030i
\(479\) 639.640i 1.33537i 0.744446 + 0.667683i \(0.232714\pi\)
−0.744446 + 0.667683i \(0.767286\pi\)
\(480\) 0.535521 54.0258i 0.00111567 0.112554i
\(481\) 352.485 0.732817
\(482\) 472.306 + 28.2218i 0.979887 + 0.0585515i
\(483\) 79.3055 0.164194
\(484\) −43.6869 5.23959i −0.0902622 0.0108256i
\(485\) 63.7925 18.9323i 0.131531 0.0390357i
\(486\) −161.061 9.62391i −0.331400 0.0198023i
\(487\) −369.872 −0.759490 −0.379745 0.925091i \(-0.623988\pi\)
−0.379745 + 0.925091i \(0.623988\pi\)
\(488\) 171.161 + 30.9776i 0.350740 + 0.0634788i
\(489\) −84.1281 −0.172041
\(490\) 6.37975 + 27.3931i 0.0130199 + 0.0559042i
\(491\) 572.905i 1.16681i 0.812180 + 0.583407i \(0.198281\pi\)
−0.812180 + 0.583407i \(0.801719\pi\)
\(492\) −90.5003 10.8541i −0.183944 0.0220613i
\(493\) 505.985i 1.02634i
\(494\) −215.283 12.8639i −0.435795 0.0260402i
\(495\) −141.267 + 41.9253i −0.285388 + 0.0846975i
\(496\) −167.393 + 687.811i −0.337486 + 1.38672i
\(497\) 732.202i 1.47324i
\(498\) 62.0112 + 3.70537i 0.124520 + 0.00744051i
\(499\) 746.848i 1.49669i −0.663310 0.748345i \(-0.730849\pi\)
0.663310 0.748345i \(-0.269151\pi\)
\(500\) −339.403 367.159i −0.678806 0.734318i
\(501\) −20.3554 −0.0406295
\(502\) 35.3690 591.917i 0.0704562 1.17912i
\(503\) 701.770 1.39517 0.697584 0.716503i \(-0.254258\pi\)
0.697584 + 0.716503i \(0.254258\pi\)
\(504\) −475.399 86.0402i −0.943251 0.170715i
\(505\) 57.4010 + 193.413i 0.113665 + 0.382995i
\(506\) 13.6727 228.819i 0.0270211 0.452211i
\(507\) 37.7286 0.0744153
\(508\) 23.7458 + 2.84795i 0.0467437 + 0.00560620i
\(509\) 652.960 1.28283 0.641415 0.767194i \(-0.278348\pi\)
0.641415 + 0.767194i \(0.278348\pi\)
\(510\) −86.4716 + 20.1389i −0.169552 + 0.0394881i
\(511\) 237.679i 0.465125i
\(512\) −439.898 261.981i −0.859175 0.511682i
\(513\) 86.0603i 0.167759i
\(514\) 6.34150 106.128i 0.0123375 0.206474i
\(515\) 93.8467 + 316.217i 0.182227 + 0.614013i
\(516\) 72.9302 + 8.74688i 0.141338 + 0.0169513i
\(517\) 24.6471i 0.0476734i
\(518\) 37.7620 631.965i 0.0728997 1.22001i
\(519\) 8.41932i 0.0162222i
\(520\) 300.898 33.0662i 0.578649 0.0635889i
\(521\) 150.656 0.289167 0.144583 0.989493i \(-0.453816\pi\)
0.144583 + 0.989493i \(0.453816\pi\)
\(522\) −341.396 20.3995i −0.654015 0.0390796i
\(523\) 286.395 0.547600 0.273800 0.961787i \(-0.411719\pi\)
0.273800 + 0.961787i \(0.411719\pi\)
\(524\) −5.41062 + 45.1130i −0.0103256 + 0.0860935i
\(525\) 48.0841 31.2974i 0.0915888 0.0596141i
\(526\) 168.125 + 10.0460i 0.319629 + 0.0190989i
\(527\) 1163.28 2.20737
\(528\) 4.23733 17.4110i 0.00802524 0.0329754i
\(529\) 665.204 1.25747
\(530\) 863.369 201.076i 1.62900 0.379388i
\(531\) 659.986i 1.24291i
\(532\) −46.1269 + 384.599i −0.0867046 + 0.722931i
\(533\) 510.686i 0.958135i
\(534\) −22.0291 1.31632i −0.0412531 0.00246501i
\(535\) −60.9401 205.338i −0.113907 0.383809i
\(536\) −420.008 76.0154i −0.783598 0.141820i
\(537\) 92.3751i 0.172021i
\(538\) −17.7515 1.06071i −0.0329953 0.00197158i
\(539\) 9.32840i 0.0173069i
\(540\) −20.3332 119.070i −0.0376541 0.220500i
\(541\) 80.1371 0.148128 0.0740639 0.997254i \(-0.476403\pi\)
0.0740639 + 0.997254i \(0.476403\pi\)
\(542\) 16.6761 279.082i 0.0307677 0.514912i
\(543\) −50.3851 −0.0927903
\(544\) −247.367 + 804.193i −0.454719 + 1.47830i
\(545\) 48.0973 + 162.064i 0.0882519 + 0.297365i
\(546\) −2.07180 + 34.6725i −0.00379450 + 0.0635028i
\(547\) 97.7575 0.178716 0.0893579 0.996000i \(-0.471519\pi\)
0.0893579 + 0.996000i \(0.471519\pi\)
\(548\) 46.6342 388.830i 0.0850990 0.709543i
\(549\) 193.205 0.351922
\(550\) −82.0119 144.132i −0.149113 0.262058i
\(551\) 274.211i 0.497661i
\(552\) 91.8614 + 16.6256i 0.166415 + 0.0301188i
\(553\) 811.745i 1.46789i
\(554\) −33.4254 + 559.389i −0.0603346 + 1.00973i
\(555\) 75.3907 22.3744i 0.135839 0.0403143i
\(556\) 39.6701 330.763i 0.0713490 0.594898i
\(557\) 864.931i 1.55284i 0.630216 + 0.776420i \(0.282966\pi\)
−0.630216 + 0.776420i \(0.717034\pi\)
\(558\) −46.8994 + 784.883i −0.0840491 + 1.40660i
\(559\) 411.539i 0.736206i
\(560\) −27.0485 543.017i −0.0483009 0.969673i
\(561\) −29.4469 −0.0524900
\(562\) 881.024 + 52.6441i 1.56766 + 0.0936728i
\(563\) 336.183 0.597128 0.298564 0.954390i \(-0.403492\pi\)
0.298564 + 0.954390i \(0.403492\pi\)
\(564\) −9.96624 1.19530i −0.0176706 0.00211933i
\(565\) −625.666 + 185.685i −1.10737 + 0.328646i
\(566\) −24.5230 1.46533i −0.0433269 0.00258893i
\(567\) −529.652 −0.934130
\(568\) −153.498 + 848.126i −0.270243 + 1.49318i
\(569\) 557.759 0.980245 0.490122 0.871654i \(-0.336952\pi\)
0.490122 + 0.871654i \(0.336952\pi\)
\(570\) −46.8620 + 10.9140i −0.0822140 + 0.0191473i
\(571\) 196.621i 0.344346i 0.985067 + 0.172173i \(0.0550788\pi\)
−0.985067 + 0.172173i \(0.944921\pi\)
\(572\) 99.6828 + 11.9555i 0.174271 + 0.0209011i
\(573\) 76.6620i 0.133791i
\(574\) −915.601 54.7102i −1.59512 0.0953140i
\(575\) 724.063 471.285i 1.25924 0.819626i
\(576\) −532.628 199.325i −0.924701 0.346050i
\(577\) 121.469i 0.210518i 0.994445 + 0.105259i \(0.0335671\pi\)
−0.994445 + 0.105259i \(0.966433\pi\)
\(578\) 803.216 + 47.9949i 1.38965 + 0.0830361i
\(579\) 86.3631i 0.149159i
\(580\) −64.7871 379.390i −0.111702 0.654120i
\(581\) 625.134 1.07596
\(582\) −0.536106 + 8.97198i −0.000921144 + 0.0154158i
\(583\) 294.010 0.504306
\(584\) −49.8269 + 275.309i −0.0853200 + 0.471420i
\(585\) 322.337 95.6632i 0.551004 0.163527i
\(586\) −3.07120 + 51.3980i −0.00524096 + 0.0877098i
\(587\) 651.846 1.11047 0.555235 0.831693i \(-0.312628\pi\)
0.555235 + 0.831693i \(0.312628\pi\)
\(588\) −3.77200 0.452395i −0.00641497 0.000769379i
\(589\) 630.423 1.07033
\(590\) 723.368 168.470i 1.22605 0.285542i
\(591\) 40.5322i 0.0685825i
\(592\) 176.225 724.103i 0.297678 1.22315i
\(593\) 723.673i 1.22036i −0.792263 0.610180i \(-0.791097\pi\)
0.792263 0.610180i \(-0.208903\pi\)
\(594\) 2.38962 39.9915i 0.00402294 0.0673257i
\(595\) −856.530 + 254.201i −1.43955 + 0.427228i
\(596\) 569.054 + 68.2495i 0.954789 + 0.114513i
\(597\) 48.9303i 0.0819602i
\(598\) −31.1977 + 522.108i −0.0521701 + 0.873091i
\(599\) 511.958i 0.854687i −0.904089 0.427344i \(-0.859449\pi\)
0.904089 0.427344i \(-0.140551\pi\)
\(600\) 62.2581 26.1722i 0.103763 0.0436203i
\(601\) 568.906 0.946598 0.473299 0.880902i \(-0.343063\pi\)
0.473299 + 0.880902i \(0.343063\pi\)
\(602\) 737.843 + 44.0886i 1.22565 + 0.0732368i
\(603\) −474.102 −0.786239
\(604\) −9.11293 + 75.9823i −0.0150876 + 0.125798i
\(605\) −15.6483 52.7269i −0.0258650 0.0871520i
\(606\) −27.2022 1.62542i −0.0448880 0.00268221i
\(607\) −618.530 −1.01899 −0.509497 0.860472i \(-0.670169\pi\)
−0.509497 + 0.860472i \(0.670169\pi\)
\(608\) −134.057 + 435.820i −0.220488 + 0.716809i
\(609\) 44.1633 0.0725177
\(610\) 49.3181 + 211.760i 0.0808494 + 0.347148i
\(611\) 56.2387i 0.0920437i
\(612\) −111.289 + 927.907i −0.181844 + 1.51619i
\(613\) 189.349i 0.308889i −0.988001 0.154445i \(-0.950641\pi\)
0.988001 0.154445i \(-0.0493588\pi\)
\(614\) 402.593 + 24.0563i 0.655688 + 0.0391796i
\(615\) −32.4165 109.227i −0.0527097 0.177605i
\(616\) 32.1139 177.439i 0.0521329 0.288050i
\(617\) 615.603i 0.997737i 0.866678 + 0.498868i \(0.166251\pi\)
−0.866678 + 0.498868i \(0.833749\pi\)
\(618\) −44.4737 2.65745i −0.0719639 0.00430008i
\(619\) 819.178i 1.32339i −0.749773 0.661695i \(-0.769837\pi\)
0.749773 0.661695i \(-0.230163\pi\)
\(620\) −872.233 + 148.948i −1.40683 + 0.240239i
\(621\) 208.715 0.336095
\(622\) −38.1009 + 637.636i −0.0612555 + 1.02514i
\(623\) −222.076 −0.356462
\(624\) −9.66854 + 39.7276i −0.0154945 + 0.0636661i
\(625\) 253.021 571.494i 0.404833 0.914390i
\(626\) 21.9531 367.395i 0.0350688 0.586893i
\(627\) −15.9583 −0.0254518
\(628\) −107.908 + 899.723i −0.171828 + 1.43268i
\(629\) −1224.66 −1.94700
\(630\) −136.981 588.162i −0.217430 0.933590i
\(631\) 347.524i 0.550751i −0.961337 0.275375i \(-0.911198\pi\)
0.961337 0.275375i \(-0.0888021\pi\)
\(632\) 170.174 940.262i 0.269262 1.48776i
\(633\) 39.7013i 0.0627193i
\(634\) 11.5639 193.527i 0.0182395 0.305247i
\(635\) 8.50555 + 28.6595i 0.0133946 + 0.0451330i
\(636\) −14.2585 + 118.885i −0.0224190 + 0.186926i
\(637\) 21.2851i 0.0334146i
\(638\) 7.61398 127.423i 0.0119341 0.199723i
\(639\) 957.357i 1.49821i
\(640\) 82.5069 634.659i 0.128917 0.991655i
\(641\) −34.9339 −0.0544990 −0.0272495 0.999629i \(-0.508675\pi\)
−0.0272495 + 0.999629i \(0.508675\pi\)
\(642\) 28.8793 + 1.72564i 0.0449834 + 0.00268791i
\(643\) −710.122 −1.10439 −0.552194 0.833715i \(-0.686209\pi\)
−0.552194 + 0.833715i \(0.686209\pi\)
\(644\) 932.738 + 111.868i 1.44835 + 0.173708i
\(645\) 26.1230 + 88.0214i 0.0405008 + 0.136467i
\(646\) 747.971 + 44.6938i 1.15785 + 0.0691854i
\(647\) −190.839 −0.294960 −0.147480 0.989065i \(-0.547116\pi\)
−0.147480 + 0.989065i \(0.547116\pi\)
\(648\) −613.507 111.036i −0.946771 0.171352i
\(649\) 246.335 0.379561
\(650\) 187.131 + 328.874i 0.287894 + 0.505960i
\(651\) 101.533i 0.155965i
\(652\) −989.458 118.671i −1.51757 0.182010i
\(653\) 106.664i 0.163344i 0.996659 + 0.0816720i \(0.0260260\pi\)
−0.996659 + 0.0816720i \(0.973974\pi\)
\(654\) −22.7932 1.36197i −0.0348519 0.00208252i
\(655\) −54.4481 + 16.1591i −0.0831269 + 0.0246704i
\(656\) −1049.09 255.318i −1.59923 0.389205i
\(657\) 310.767i 0.473008i
\(658\) −100.830 6.02490i −0.153236 0.00915639i
\(659\) 924.093i 1.40227i 0.713031 + 0.701133i \(0.247322\pi\)
−0.713031 + 0.701133i \(0.752678\pi\)
\(660\) 22.0794 3.77042i 0.0334536 0.00571276i
\(661\) −1044.05 −1.57951 −0.789753 0.613425i \(-0.789791\pi\)
−0.789753 + 0.613425i \(0.789791\pi\)
\(662\) −15.4537 + 258.626i −0.0233440 + 0.390673i
\(663\) 67.1906 0.101343
\(664\) 724.107 + 131.053i 1.09052 + 0.197368i
\(665\) −464.183 + 137.760i −0.698020 + 0.207158i
\(666\) 49.3740 826.297i 0.0741352 1.24069i
\(667\) 665.022 0.997035
\(668\) −239.406 28.7132i −0.358393 0.0429838i
\(669\) 88.5302 0.132332
\(670\) −121.021 519.633i −0.180628 0.775572i
\(671\) 72.1124i 0.107470i
\(672\) 70.1913 + 21.5906i 0.104451 + 0.0321289i
\(673\) 327.324i 0.486365i −0.969981 0.243183i \(-0.921809\pi\)
0.969981 0.243183i \(-0.0781914\pi\)
\(674\) −51.9346 + 869.149i −0.0770542 + 1.28954i
\(675\) 126.547 82.3682i 0.187477 0.122027i
\(676\) 443.738 + 53.2197i 0.656417 + 0.0787274i
\(677\) 402.278i 0.594206i 0.954845 + 0.297103i \(0.0960205\pi\)
−0.954845 + 0.297103i \(0.903979\pi\)
\(678\) 5.25804 87.9957i 0.00775522 0.129787i
\(679\) 90.4465i 0.133205i
\(680\) −1045.43 + 114.884i −1.53739 + 0.168947i
\(681\) −90.9979 −0.133624
\(682\) −292.952 17.5049i −0.429548 0.0256670i
\(683\) 1136.74 1.66433 0.832166 0.554526i \(-0.187101\pi\)
0.832166 + 0.554526i \(0.187101\pi\)
\(684\) −60.3111 + 502.865i −0.0881741 + 0.735183i
\(685\) 469.289 139.276i 0.685094 0.203322i
\(686\) −702.997 42.0064i −1.02478 0.0612338i
\(687\) −97.6650 −0.142162
\(688\) 845.417 + 205.750i 1.22880 + 0.299055i
\(689\) −670.860 −0.973672
\(690\) 26.4688 + 113.651i 0.0383606 + 0.164711i
\(691\) 280.686i 0.406202i 0.979158 + 0.203101i \(0.0651021\pi\)
−0.979158 + 0.203101i \(0.934898\pi\)
\(692\) 11.8762 99.0224i 0.0171622 0.143096i
\(693\) 200.292i 0.289021i
\(694\) 838.069 + 50.0774i 1.20759 + 0.0721577i
\(695\) 399.207 118.477i 0.574399 0.170470i
\(696\) 51.1553 + 9.25836i 0.0734990 + 0.0133022i
\(697\) 1774.31i 2.54564i
\(698\) 1144.79 + 68.4051i 1.64010 + 0.0980016i
\(699\) 13.8331i 0.0197899i
\(700\) 609.681 300.272i 0.870972 0.428960i
\(701\) −1131.37 −1.61393 −0.806967 0.590597i \(-0.798892\pi\)
−0.806967 + 0.590597i \(0.798892\pi\)
\(702\) −5.45254 + 91.2507i −0.00776715 + 0.129987i
\(703\) −663.687 −0.944078
\(704\) 74.3964 198.799i 0.105677 0.282385i
\(705\) −3.56983 12.0285i −0.00506358 0.0170617i
\(706\) 0.483655 8.09420i 0.000685064 0.0114649i
\(707\) −274.225 −0.387871
\(708\) −11.9464 + 99.6072i −0.0168734 + 0.140688i
\(709\) −123.300 −0.173907 −0.0869535 0.996212i \(-0.527713\pi\)
−0.0869535 + 0.996212i \(0.527713\pi\)
\(710\) −1049.30 + 244.378i −1.47789 + 0.344194i
\(711\) 1061.36i 1.49277i
\(712\) −257.235 46.5558i −0.361285 0.0653873i
\(713\) 1528.91i 2.14434i
\(714\) 7.19819 120.465i 0.0100815 0.168719i
\(715\) 35.7056 + 120.310i 0.0499379 + 0.168266i
\(716\) 130.304 1086.45i 0.181988 1.51739i
\(717\) 107.553i 0.150004i
\(718\) 78.8704 1319.93i 0.109847 1.83835i
\(719\) 832.447i 1.15778i 0.815404 + 0.578892i \(0.196515\pi\)
−0.815404 + 0.578892i \(0.803485\pi\)
\(720\) −35.3661 709.998i −0.0491195 0.986108i
\(721\) −448.339 −0.621829
\(722\) −315.363 18.8440i −0.436791 0.0260997i
\(723\) −79.8858 −0.110492
\(724\) −592.596 71.0729i −0.818502 0.0981670i
\(725\) 403.213 262.447i 0.556156 0.361996i
\(726\) 7.41568 + 0.443112i 0.0102144 + 0.000610347i
\(727\) −436.428 −0.600314 −0.300157 0.953890i \(-0.597039\pi\)
−0.300157 + 0.953890i \(0.597039\pi\)
\(728\) −73.2760 + 404.872i −0.100654 + 0.556143i
\(729\) −674.167 −0.924783
\(730\) −340.612 + 79.3272i −0.466591 + 0.108667i
\(731\) 1429.84i 1.95600i
\(732\) −29.1592 3.49720i −0.0398349 0.00477760i
\(733\) 269.567i 0.367759i −0.982949 0.183879i \(-0.941134\pi\)
0.982949 0.183879i \(-0.0588655\pi\)
\(734\) −419.720 25.0797i −0.571826 0.0341685i
\(735\) −1.35110 4.55253i −0.00183823 0.00619392i
\(736\) 1056.96 + 325.118i 1.43609 + 0.441736i
\(737\) 176.955i 0.240102i
\(738\) −1197.15 71.5339i −1.62216 0.0969294i
\(739\) 717.958i 0.971526i 0.874091 + 0.485763i \(0.161458\pi\)
−0.874091 + 0.485763i \(0.838542\pi\)
\(740\) 918.255 156.807i 1.24089 0.211902i
\(741\) 36.4129 0.0491403
\(742\) −71.8698 + 1202.77i −0.0968596 + 1.62099i
\(743\) −836.208 −1.12545 −0.562724 0.826645i \(-0.690247\pi\)
−0.562724 + 0.826645i \(0.690247\pi\)
\(744\) 21.2854 117.608i 0.0286094 0.158076i
\(745\) 203.831 + 686.807i 0.273598 + 0.921889i
\(746\) 7.60964 127.351i 0.0102006 0.170712i
\(747\) 817.366 1.09420
\(748\) −346.335 41.5376i −0.463014 0.0555316i
\(749\) 291.132 0.388694
\(750\) 60.8999 + 58.4623i 0.0811999 + 0.0779497i
\(751\) 86.4880i 0.115164i −0.998341 0.0575819i \(-0.981661\pi\)
0.998341 0.0575819i \(-0.0183390\pi\)
\(752\) −115.530 28.1166i −0.153630 0.0373891i
\(753\) 100.117i 0.132957i
\(754\) −17.3732 + 290.749i −0.0230414 + 0.385609i
\(755\) −91.7051 + 27.2162i −0.121464 + 0.0360480i
\(756\) 163.018 + 19.5515i 0.215632 + 0.0258618i
\(757\) 595.235i 0.786308i −0.919473 0.393154i \(-0.871384\pi\)
0.919473 0.393154i \(-0.128616\pi\)
\(758\) −66.0887 + 1106.02i −0.0871882 + 1.45914i
\(759\) 38.7024i 0.0509913i
\(760\) −566.554 + 62.2597i −0.745466 + 0.0819207i
\(761\) 549.658 0.722283 0.361142 0.932511i \(-0.382387\pi\)
0.361142 + 0.932511i \(0.382387\pi\)
\(762\) −4.03076 0.240851i −0.00528971 0.000316078i
\(763\) −229.778 −0.301150
\(764\) 108.139 901.647i 0.141543 1.18017i
\(765\) −1119.92 + 332.369i −1.46394 + 0.434469i
\(766\) −73.8188 4.41092i −0.0963692 0.00575838i
\(767\) −562.076 −0.732824
\(768\) 76.7779 + 39.7238i 0.0999712 + 0.0517237i
\(769\) −1135.49 −1.47658 −0.738291 0.674483i \(-0.764367\pi\)
−0.738291 + 0.674483i \(0.764367\pi\)
\(770\) 219.527 51.1271i 0.285100 0.0663988i
\(771\) 17.9505i 0.0232821i
\(772\) −121.823 + 1015.74i −0.157802 + 1.31573i
\(773\) 1116.93i 1.44493i −0.691410 0.722463i \(-0.743010\pi\)
0.691410 0.722463i \(-0.256990\pi\)
\(774\) 964.733 + 57.6460i 1.24643 + 0.0744781i