Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(199,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.199");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 | −1.99644 | − | 0.119294i | 0.337678 | 3.97154 | + | 0.476326i | 1.42257 | + | 4.79336i | −0.674153 | − | 0.0402829i | −6.79613 | −7.87211 | − | 1.42474i | −8.88597 | −2.26826 | − | 9.73935i | ||||||
199.2 | −1.99644 | + | 0.119294i | 0.337678 | 3.97154 | − | 0.476326i | 1.42257 | − | 4.79336i | −0.674153 | + | 0.0402829i | −6.79613 | −7.87211 | + | 1.42474i | −8.88597 | −2.26826 | + | 9.73935i | ||||||
199.3 | −1.97378 | − | 0.322758i | −4.73469 | 3.79165 | + | 1.27411i | −1.42827 | + | 4.79166i | 9.34526 | + | 1.52816i | 7.98176 | −7.07268 | − | 3.73861i | 13.4173 | 4.36565 | − | 8.99673i | ||||||
199.4 | −1.97378 | + | 0.322758i | −4.73469 | 3.79165 | − | 1.27411i | −1.42827 | − | 4.79166i | 9.34526 | − | 1.52816i | 7.98176 | −7.07268 | + | 3.73861i | 13.4173 | 4.36565 | + | 8.99673i | ||||||
199.5 | −1.87504 | − | 0.695850i | 2.63169 | 3.03158 | + | 2.60950i | 1.21581 | − | 4.84993i | −4.93453 | − | 1.83126i | 12.3259 | −3.86853 | − | 7.00246i | −2.07421 | −5.65453 | + | 8.24781i | ||||||
199.6 | −1.87504 | + | 0.695850i | 2.63169 | 3.03158 | − | 2.60950i | 1.21581 | + | 4.84993i | −4.93453 | + | 1.83126i | 12.3259 | −3.86853 | + | 7.00246i | −2.07421 | −5.65453 | − | 8.24781i | ||||||
199.7 | −1.80241 | − | 0.866788i | −2.17924 | 2.49736 | + | 3.12461i | 4.97895 | + | 0.458348i | 3.92787 | + | 1.88893i | 1.79794 | −1.79289 | − | 7.79651i | −4.25093 | −8.57681 | − | 5.14182i | ||||||
199.8 | −1.80241 | + | 0.866788i | −2.17924 | 2.49736 | − | 3.12461i | 4.97895 | − | 0.458348i | 3.92787 | − | 1.88893i | 1.79794 | −1.79289 | + | 7.79651i | −4.25093 | −8.57681 | + | 5.14182i | ||||||
199.9 | −1.77475 | − | 0.922089i | 5.34862 | 2.29950 | + | 3.27296i | 3.88532 | + | 3.14711i | −9.49248 | − | 4.93190i | −2.03277 | −1.06309 | − | 7.92905i | 19.6077 | −3.99357 | − | 9.16795i | ||||||
199.10 | −1.77475 | + | 0.922089i | 5.34862 | 2.29950 | − | 3.27296i | 3.88532 | − | 3.14711i | −9.49248 | + | 4.93190i | −2.03277 | −1.06309 | + | 7.92905i | 19.6077 | −3.99357 | + | 9.16795i | ||||||
199.11 | −1.76106 | − | 0.947973i | −3.26539 | 2.20269 | + | 3.33888i | −4.29635 | − | 2.55761i | 5.75056 | + | 3.09550i | −7.75789 | −0.713917 | − | 7.96808i | 1.66278 | 5.14160 | + | 8.57694i | ||||||
199.12 | −1.76106 | + | 0.947973i | −3.26539 | 2.20269 | − | 3.33888i | −4.29635 | + | 2.55761i | 5.75056 | − | 3.09550i | −7.75789 | −0.713917 | + | 7.96808i | 1.66278 | 5.14160 | − | 8.57694i | ||||||
199.13 | −1.58018 | − | 1.22598i | 0.354051 | 0.993967 | + | 3.87454i | −4.79515 | + | 1.41652i | −0.559466 | − | 0.434058i | 6.53369 | 3.17944 | − | 7.34106i | −8.87465 | 9.31385 | + | 3.64037i | ||||||
199.14 | −1.58018 | + | 1.22598i | 0.354051 | 0.993967 | − | 3.87454i | −4.79515 | − | 1.41652i | −0.559466 | + | 0.434058i | 6.53369 | 3.17944 | + | 7.34106i | −8.87465 | 9.31385 | − | 3.64037i | ||||||
199.15 | −1.24492 | − | 1.56530i | 2.70048 | −0.900339 | + | 3.89736i | −1.77924 | + | 4.67272i | −3.36188 | − | 4.22706i | −0.970912 | 7.22139 | − | 3.44260i | −1.70743 | 9.52923 | − | 3.03213i | ||||||
199.16 | −1.24492 | + | 1.56530i | 2.70048 | −0.900339 | − | 3.89736i | −1.77924 | − | 4.67272i | −3.36188 | + | 4.22706i | −0.970912 | 7.22139 | + | 3.44260i | −1.70743 | 9.52923 | + | 3.03213i | ||||||
199.17 | −1.20196 | − | 1.59852i | 1.87168 | −1.11056 | + | 3.84274i | 3.84060 | − | 3.20153i | −2.24970 | − | 2.99193i | −11.6487 | 7.47757 | − | 2.84358i | −5.49681 | −9.73399 | − | 2.29116i | ||||||
199.18 | −1.20196 | + | 1.59852i | 1.87168 | −1.11056 | − | 3.84274i | 3.84060 | + | 3.20153i | −2.24970 | + | 2.99193i | −11.6487 | 7.47757 | + | 2.84358i | −5.49681 | −9.73399 | + | 2.29116i | ||||||
199.19 | −1.02937 | − | 1.71476i | −4.39883 | −1.88080 | + | 3.53024i | 0.646763 | + | 4.95799i | 4.52802 | + | 7.54293i | −6.76347 | 7.98955 | − | 0.408800i | 10.3497 | 7.83601 | − | 6.21265i | ||||||
199.20 | −1.02937 | + | 1.71476i | −4.39883 | −1.88080 | − | 3.53024i | 0.646763 | − | 4.95799i | 4.52802 | − | 7.54293i | −6.76347 | 7.98955 | + | 0.408800i | 10.3497 | 7.83601 | + | 6.21265i | ||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.h.a | ✓ | 60 |
4.b | odd | 2 | 1 | inner | 220.3.h.a | ✓ | 60 |
5.b | even | 2 | 1 | inner | 220.3.h.a | ✓ | 60 |
20.d | odd | 2 | 1 | inner | 220.3.h.a | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.h.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
220.3.h.a | ✓ | 60 | 4.b | odd | 2 | 1 | inner |
220.3.h.a | ✓ | 60 | 5.b | even | 2 | 1 | inner |
220.3.h.a | ✓ | 60 | 20.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).