Properties

Label 220.3.h.a
Level $220$
Weight $3$
Character orbit 220.h
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40} - 200 q^{41} + 44 q^{44} + 84 q^{45} + 260 q^{46} + 420 q^{49} - 198 q^{50} - 116 q^{54} - 128 q^{56} - 4 q^{60} + 136 q^{61} + 116 q^{64} - 288 q^{65} - 544 q^{69} + 152 q^{70} + 436 q^{74} - 72 q^{76} - 176 q^{80} + 300 q^{81} - 136 q^{84} + 176 q^{85} - 348 q^{86} + 760 q^{89} + 40 q^{90} + 112 q^{94} + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1 −1.99644 0.119294i 0.337678 3.97154 + 0.476326i 1.42257 + 4.79336i −0.674153 0.0402829i −6.79613 −7.87211 1.42474i −8.88597 −2.26826 9.73935i
199.2 −1.99644 + 0.119294i 0.337678 3.97154 0.476326i 1.42257 4.79336i −0.674153 + 0.0402829i −6.79613 −7.87211 + 1.42474i −8.88597 −2.26826 + 9.73935i
199.3 −1.97378 0.322758i −4.73469 3.79165 + 1.27411i −1.42827 + 4.79166i 9.34526 + 1.52816i 7.98176 −7.07268 3.73861i 13.4173 4.36565 8.99673i
199.4 −1.97378 + 0.322758i −4.73469 3.79165 1.27411i −1.42827 4.79166i 9.34526 1.52816i 7.98176 −7.07268 + 3.73861i 13.4173 4.36565 + 8.99673i
199.5 −1.87504 0.695850i 2.63169 3.03158 + 2.60950i 1.21581 4.84993i −4.93453 1.83126i 12.3259 −3.86853 7.00246i −2.07421 −5.65453 + 8.24781i
199.6 −1.87504 + 0.695850i 2.63169 3.03158 2.60950i 1.21581 + 4.84993i −4.93453 + 1.83126i 12.3259 −3.86853 + 7.00246i −2.07421 −5.65453 8.24781i
199.7 −1.80241 0.866788i −2.17924 2.49736 + 3.12461i 4.97895 + 0.458348i 3.92787 + 1.88893i 1.79794 −1.79289 7.79651i −4.25093 −8.57681 5.14182i
199.8 −1.80241 + 0.866788i −2.17924 2.49736 3.12461i 4.97895 0.458348i 3.92787 1.88893i 1.79794 −1.79289 + 7.79651i −4.25093 −8.57681 + 5.14182i
199.9 −1.77475 0.922089i 5.34862 2.29950 + 3.27296i 3.88532 + 3.14711i −9.49248 4.93190i −2.03277 −1.06309 7.92905i 19.6077 −3.99357 9.16795i
199.10 −1.77475 + 0.922089i 5.34862 2.29950 3.27296i 3.88532 3.14711i −9.49248 + 4.93190i −2.03277 −1.06309 + 7.92905i 19.6077 −3.99357 + 9.16795i
199.11 −1.76106 0.947973i −3.26539 2.20269 + 3.33888i −4.29635 2.55761i 5.75056 + 3.09550i −7.75789 −0.713917 7.96808i 1.66278 5.14160 + 8.57694i
199.12 −1.76106 + 0.947973i −3.26539 2.20269 3.33888i −4.29635 + 2.55761i 5.75056 3.09550i −7.75789 −0.713917 + 7.96808i 1.66278 5.14160 8.57694i
199.13 −1.58018 1.22598i 0.354051 0.993967 + 3.87454i −4.79515 + 1.41652i −0.559466 0.434058i 6.53369 3.17944 7.34106i −8.87465 9.31385 + 3.64037i
199.14 −1.58018 + 1.22598i 0.354051 0.993967 3.87454i −4.79515 1.41652i −0.559466 + 0.434058i 6.53369 3.17944 + 7.34106i −8.87465 9.31385 3.64037i
199.15 −1.24492 1.56530i 2.70048 −0.900339 + 3.89736i −1.77924 + 4.67272i −3.36188 4.22706i −0.970912 7.22139 3.44260i −1.70743 9.52923 3.03213i
199.16 −1.24492 + 1.56530i 2.70048 −0.900339 3.89736i −1.77924 4.67272i −3.36188 + 4.22706i −0.970912 7.22139 + 3.44260i −1.70743 9.52923 + 3.03213i
199.17 −1.20196 1.59852i 1.87168 −1.11056 + 3.84274i 3.84060 3.20153i −2.24970 2.99193i −11.6487 7.47757 2.84358i −5.49681 −9.73399 2.29116i
199.18 −1.20196 + 1.59852i 1.87168 −1.11056 3.84274i 3.84060 + 3.20153i −2.24970 + 2.99193i −11.6487 7.47757 + 2.84358i −5.49681 −9.73399 + 2.29116i
199.19 −1.02937 1.71476i −4.39883 −1.88080 + 3.53024i 0.646763 + 4.95799i 4.52802 + 7.54293i −6.76347 7.98955 0.408800i 10.3497 7.83601 6.21265i
199.20 −1.02937 + 1.71476i −4.39883 −1.88080 3.53024i 0.646763 4.95799i 4.52802 7.54293i −6.76347 7.98955 + 0.408800i 10.3497 7.83601 + 6.21265i
See all 60 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.60
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.3.h.a 60
4.b odd 2 1 inner 220.3.h.a 60
5.b even 2 1 inner 220.3.h.a 60
20.d odd 2 1 inner 220.3.h.a 60
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.3.h.a 60 1.a even 1 1 trivial
220.3.h.a 60 4.b odd 2 1 inner
220.3.h.a 60 5.b even 2 1 inner
220.3.h.a 60 20.d odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).