Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(111,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.111");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111.1 | −1.99979 | − | 0.0291589i | − | 1.72793i | 3.99830 | + | 0.116623i | 2.23607 | −0.0503843 | + | 3.45548i | − | 8.42008i | −7.99235 | − | 0.349807i | 6.01427 | −4.47166 | − | 0.0652012i | ||||||
111.2 | −1.99979 | + | 0.0291589i | 1.72793i | 3.99830 | − | 0.116623i | 2.23607 | −0.0503843 | − | 3.45548i | 8.42008i | −7.99235 | + | 0.349807i | 6.01427 | −4.47166 | + | 0.0652012i | ||||||||
111.3 | −1.99818 | − | 0.0853244i | 4.89415i | 3.98544 | + | 0.340987i | −2.23607 | 0.417590 | − | 9.77938i | − | 7.01759i | −7.93453 | − | 1.02141i | −14.9527 | 4.46806 | + | 0.190791i | |||||||
111.4 | −1.99818 | + | 0.0853244i | − | 4.89415i | 3.98544 | − | 0.340987i | −2.23607 | 0.417590 | + | 9.77938i | 7.01759i | −7.93453 | + | 1.02141i | −14.9527 | 4.46806 | − | 0.190791i | |||||||
111.5 | −1.89682 | − | 0.634098i | 1.40441i | 3.19584 | + | 2.40554i | −2.23607 | 0.890535 | − | 2.66392i | − | 1.67390i | −4.53658 | − | 6.58934i | 7.02763 | 4.24141 | + | 1.41789i | |||||||
111.6 | −1.89682 | + | 0.634098i | − | 1.40441i | 3.19584 | − | 2.40554i | −2.23607 | 0.890535 | + | 2.66392i | 1.67390i | −4.53658 | + | 6.58934i | 7.02763 | 4.24141 | − | 1.41789i | |||||||
111.7 | −1.50888 | − | 1.31274i | 3.61410i | 0.553451 | + | 3.96153i | 2.23607 | 4.74436 | − | 5.45326i | − | 9.37232i | 4.36535 | − | 6.70401i | −4.06174 | −3.37396 | − | 2.93537i | |||||||
111.8 | −1.50888 | + | 1.31274i | − | 3.61410i | 0.553451 | − | 3.96153i | 2.23607 | 4.74436 | + | 5.45326i | 9.37232i | 4.36535 | + | 6.70401i | −4.06174 | −3.37396 | + | 2.93537i | |||||||
111.9 | −1.24010 | − | 1.56913i | 5.26184i | −0.924308 | + | 3.89174i | −2.23607 | 8.25649 | − | 6.52521i | 11.5241i | 7.25286 | − | 3.37579i | −18.6870 | 2.77295 | + | 3.50867i | ||||||||
111.10 | −1.24010 | + | 1.56913i | − | 5.26184i | −0.924308 | − | 3.89174i | −2.23607 | 8.25649 | + | 6.52521i | − | 11.5241i | 7.25286 | + | 3.37579i | −18.6870 | 2.77295 | − | 3.50867i | ||||||
111.11 | −1.12341 | − | 1.65468i | − | 0.776243i | −1.47591 | + | 3.71775i | −2.23607 | −1.28443 | + | 0.872037i | − | 8.96218i | 7.80973 | − | 1.73439i | 8.39745 | 2.51201 | + | 3.69997i | ||||||
111.12 | −1.12341 | + | 1.65468i | 0.776243i | −1.47591 | − | 3.71775i | −2.23607 | −1.28443 | − | 0.872037i | 8.96218i | 7.80973 | + | 1.73439i | 8.39745 | 2.51201 | − | 3.69997i | ||||||||
111.13 | −0.966908 | − | 1.75074i | − | 1.35561i | −2.13018 | + | 3.38561i | −2.23607 | −2.37333 | + | 1.31075i | 6.68479i | 7.98700 | + | 0.455814i | 7.16231 | 2.16207 | + | 3.91477i | |||||||
111.14 | −0.966908 | + | 1.75074i | 1.35561i | −2.13018 | − | 3.38561i | −2.23607 | −2.37333 | − | 1.31075i | − | 6.68479i | 7.98700 | − | 0.455814i | 7.16231 | 2.16207 | − | 3.91477i | |||||||
111.15 | −0.679211 | − | 1.88114i | − | 5.18603i | −3.07735 | + | 2.55538i | 2.23607 | −9.75563 | + | 3.52241i | − | 11.9764i | 6.89717 | + | 4.05327i | −17.8949 | −1.51876 | − | 4.20635i | ||||||
111.16 | −0.679211 | + | 1.88114i | 5.18603i | −3.07735 | − | 2.55538i | 2.23607 | −9.75563 | − | 3.52241i | 11.9764i | 6.89717 | − | 4.05327i | −17.8949 | −1.51876 | + | 4.20635i | ||||||||
111.17 | −0.536785 | − | 1.92662i | − | 0.401733i | −3.42372 | + | 2.06836i | 2.23607 | −0.773986 | + | 0.215644i | 4.24999i | 5.82275 | + | 5.48594i | 8.83861 | −1.20029 | − | 4.30805i | |||||||
111.18 | −0.536785 | + | 1.92662i | 0.401733i | −3.42372 | − | 2.06836i | 2.23607 | −0.773986 | − | 0.215644i | − | 4.24999i | 5.82275 | − | 5.48594i | 8.83861 | −1.20029 | + | 4.30805i | |||||||
111.19 | −0.274639 | − | 1.98105i | 4.52775i | −3.84915 | + | 1.08815i | 2.23607 | 8.96972 | − | 1.24350i | 1.58481i | 3.21281 | + | 7.32652i | −11.5005 | −0.614111 | − | 4.42977i | ||||||||
111.20 | −0.274639 | + | 1.98105i | − | 4.52775i | −3.84915 | − | 1.08815i | 2.23607 | 8.96972 | + | 1.24350i | − | 1.58481i | 3.21281 | − | 7.32652i | −11.5005 | −0.614111 | + | 4.42977i | ||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.c.a | ✓ | 40 |
4.b | odd | 2 | 1 | inner | 220.3.c.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.c.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
220.3.c.a | ✓ | 40 | 4.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).