Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(3,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([10, 15, 16]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.3");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.v (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(256\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −1.38961 | + | 0.262645i | 2.82414 | + | 1.43897i | 1.86204 | − | 0.729949i | −2.14085 | + | 0.645564i | −4.30240 | − | 1.25786i | 2.11465 | − | 1.07747i | −2.39579 | + | 1.50340i | 4.14178 | + | 5.70067i | 2.80540 | − | 1.45937i |
3.2 | −1.38610 | + | 0.280565i | −0.481605 | − | 0.245390i | 1.84257 | − | 0.777784i | 1.65529 | − | 1.50333i | 0.736402 | + | 0.205014i | −0.559468 | + | 0.285063i | −2.33577 | + | 1.59505i | −1.59163 | − | 2.19069i | −1.87263 | + | 2.54819i |
3.3 | −1.36366 | − | 0.374731i | −0.0905018 | − | 0.0461129i | 1.71915 | + | 1.02201i | −1.28673 | + | 1.82875i | 0.106134 | + | 0.0967963i | −2.47893 | + | 1.26308i | −1.96137 | − | 2.03790i | −1.75729 | − | 2.41870i | 2.43996 | − | 2.01162i |
3.4 | −1.35127 | − | 0.417227i | −2.00530 | − | 1.02175i | 1.65184 | + | 1.12757i | −1.34468 | − | 1.78657i | 2.28340 | + | 2.21733i | 3.86673 | − | 1.97020i | −1.76163 | − | 2.21284i | 1.21390 | + | 1.67079i | 1.07162 | + | 2.97517i |
3.5 | −1.31645 | + | 0.516682i | 0.249901 | + | 0.127331i | 1.46608 | − | 1.36037i | 1.01317 | + | 1.99336i | −0.394772 | − | 0.0385054i | 3.32120 | − | 1.69223i | −1.22714 | + | 2.54836i | −1.71712 | − | 2.36341i | −2.36372 | − | 2.10067i |
3.6 | −1.21176 | + | 0.729133i | −2.01401 | − | 1.02619i | 0.936729 | − | 1.76707i | −2.19782 | − | 0.411812i | 3.18873 | − | 0.224986i | −1.87240 | + | 0.954035i | 0.153338 | + | 2.82427i | 1.23982 | + | 1.70646i | 2.96350 | − | 1.10349i |
3.7 | −1.17385 | − | 0.788721i | 1.93820 | + | 0.987564i | 0.755839 | + | 1.85168i | 1.94109 | + | 1.11003i | −1.49624 | − | 2.68795i | −0.647272 | + | 0.329802i | 0.573215 | − | 2.76973i | 1.01800 | + | 1.40115i | −1.40305 | − | 2.83398i |
3.8 | −1.05295 | − | 0.944087i | 1.34150 | + | 0.683529i | 0.217399 | + | 1.98815i | −0.948637 | − | 2.02487i | −0.767221 | − | 1.98622i | 0.566907 | − | 0.288854i | 1.64808 | − | 2.29866i | −0.430940 | − | 0.593138i | −0.912785 | + | 3.02768i |
3.9 | −0.986606 | + | 1.01322i | 2.54367 | + | 1.29607i | −0.0532170 | − | 1.99929i | 2.18490 | − | 0.475619i | −3.82280 | + | 1.29859i | −2.92618 | + | 1.49096i | 2.07822 | + | 1.91859i | 3.02712 | + | 4.16648i | −1.67373 | + | 2.68303i |
3.10 | −0.798140 | − | 1.16746i | −2.10822 | − | 1.07419i | −0.725945 | + | 1.86360i | −0.446641 | + | 2.19101i | 0.428575 | + | 3.31863i | 0.857802 | − | 0.437072i | 2.75509 | − | 0.639900i | 1.52735 | + | 2.10222i | 2.91440 | − | 1.22729i |
3.11 | −0.747186 | + | 1.20071i | −1.63676 | − | 0.833969i | −0.883427 | − | 1.79431i | 1.66521 | + | 1.49234i | 2.22432 | − | 1.34215i | −2.18680 | + | 1.11423i | 2.81454 | + | 0.279941i | 0.220109 | + | 0.302954i | −3.03609 | + | 0.884393i |
3.12 | −0.557475 | + | 1.29970i | 0.996151 | + | 0.507564i | −1.37844 | − | 1.44910i | 0.0455245 | − | 2.23560i | −1.21501 | + | 1.01174i | 3.44949 | − | 1.75760i | 2.65185 | − | 0.983725i | −1.02866 | − | 1.41583i | 2.88024 | + | 1.30546i |
3.13 | −0.544739 | − | 1.30509i | −0.771035 | − | 0.392862i | −1.40652 | + | 1.42187i | 2.10061 | − | 0.766443i | −0.0927074 | + | 1.22028i | 1.98436 | − | 1.01108i | 2.62185 | + | 1.06109i | −1.32320 | − | 1.82123i | −2.14456 | − | 2.32397i |
3.14 | −0.268903 | − | 1.38841i | 0.131087 | + | 0.0667921i | −1.85538 | + | 0.746697i | −2.22160 | − | 0.253930i | 0.0574854 | − | 0.199963i | −2.72311 | + | 1.38749i | 1.53564 | + | 2.37525i | −1.75063 | − | 2.40954i | 0.244837 | + | 3.15279i |
3.15 | −0.262448 | + | 1.38965i | −1.70123 | − | 0.866818i | −1.86224 | − | 0.729420i | −1.70162 | + | 1.45068i | 1.65105 | − | 2.13661i | 3.08760 | − | 1.57321i | 1.50238 | − | 2.39643i | 0.379441 | + | 0.522256i | −1.56935 | − | 2.74538i |
3.16 | −0.179822 | + | 1.40273i | 1.70123 | + | 0.866818i | −1.93533 | − | 0.504485i | −1.70162 | + | 1.45068i | −1.52183 | + | 2.23050i | −3.08760 | + | 1.57321i | 1.05567 | − | 2.62403i | 0.379441 | + | 0.522256i | −1.72894 | − | 2.64779i |
3.17 | 0.128561 | + | 1.40836i | −0.996151 | − | 0.507564i | −1.96694 | + | 0.362119i | 0.0455245 | − | 2.23560i | 0.586766 | − | 1.46819i | −3.44949 | + | 1.75760i | −0.762865 | − | 2.72361i | −1.02866 | − | 1.41583i | 3.15438 | − | 0.223296i |
3.18 | 0.165017 | − | 1.40455i | 2.76215 | + | 1.40739i | −1.94554 | − | 0.463549i | 0.373763 | − | 2.20461i | 2.43255 | − | 3.64734i | 1.22421 | − | 0.623768i | −0.972126 | + | 2.65612i | 3.88538 | + | 5.34777i | −3.03481 | − | 0.888767i |
3.19 | 0.277091 | − | 1.38680i | −2.76215 | − | 1.40739i | −1.84644 | − | 0.768540i | 0.373763 | − | 2.20461i | −2.71713 | + | 3.44058i | −1.22421 | + | 0.623768i | −1.57744 | + | 2.34769i | 3.88538 | + | 5.34777i | −2.95379 | − | 1.12921i |
3.20 | 0.339575 | + | 1.37284i | 1.63676 | + | 0.833969i | −1.76938 | + | 0.932363i | 1.66521 | + | 1.49234i | −0.589104 | + | 2.53020i | 2.18680 | − | 1.11423i | −1.88082 | − | 2.11247i | 0.220109 | + | 0.302954i | −1.48327 | + | 2.79283i |
See next 80 embeddings (of 256 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
11.c | even | 5 | 1 | inner |
20.e | even | 4 | 1 | inner |
44.h | odd | 10 | 1 | inner |
55.k | odd | 20 | 1 | inner |
220.v | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.v.a | ✓ | 256 |
4.b | odd | 2 | 1 | inner | 220.2.v.a | ✓ | 256 |
5.c | odd | 4 | 1 | inner | 220.2.v.a | ✓ | 256 |
11.c | even | 5 | 1 | inner | 220.2.v.a | ✓ | 256 |
20.e | even | 4 | 1 | inner | 220.2.v.a | ✓ | 256 |
44.h | odd | 10 | 1 | inner | 220.2.v.a | ✓ | 256 |
55.k | odd | 20 | 1 | inner | 220.2.v.a | ✓ | 256 |
220.v | even | 20 | 1 | inner | 220.2.v.a | ✓ | 256 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.v.a | ✓ | 256 | 1.a | even | 1 | 1 | trivial |
220.2.v.a | ✓ | 256 | 4.b | odd | 2 | 1 | inner |
220.2.v.a | ✓ | 256 | 5.c | odd | 4 | 1 | inner |
220.2.v.a | ✓ | 256 | 11.c | even | 5 | 1 | inner |
220.2.v.a | ✓ | 256 | 20.e | even | 4 | 1 | inner |
220.2.v.a | ✓ | 256 | 44.h | odd | 10 | 1 | inner |
220.2.v.a | ✓ | 256 | 55.k | odd | 20 | 1 | inner |
220.2.v.a | ✓ | 256 | 220.v | even | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).