Properties

Label 220.2.v.a
Level $220$
Weight $2$
Character orbit 220.v
Analytic conductor $1.757$
Analytic rank $0$
Dimension $256$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(3,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 15, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.v (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(32\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 256 q - 6 q^{2} - 12 q^{5} - 12 q^{6} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 256 q - 6 q^{2} - 12 q^{5} - 12 q^{6} - 6 q^{8} - 32 q^{10} - 20 q^{12} - 12 q^{13} - 4 q^{16} - 12 q^{17} - 26 q^{18} - 52 q^{20} - 64 q^{21} - 10 q^{22} - 12 q^{25} - 36 q^{26} + 10 q^{28} - 10 q^{30} + 4 q^{32} - 20 q^{33} + 4 q^{36} - 12 q^{37} + 30 q^{38} - 42 q^{40} - 48 q^{41} - 30 q^{42} - 72 q^{45} + 60 q^{46} - 18 q^{48} + 14 q^{50} - 46 q^{52} - 36 q^{53} + 8 q^{56} + 12 q^{57} - 18 q^{58} + 70 q^{60} - 24 q^{61} - 124 q^{62} - 32 q^{65} - 20 q^{66} - 38 q^{68} - 26 q^{70} - 116 q^{72} + 12 q^{73} - 48 q^{76} - 20 q^{77} + 100 q^{78} - 26 q^{80} - 24 q^{81} - 2 q^{82} + 36 q^{85} + 28 q^{86} + 126 q^{88} + 8 q^{90} - 56 q^{92} + 36 q^{93} + 104 q^{96} - 92 q^{97} + 236 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1 −1.38961 + 0.262645i 2.82414 + 1.43897i 1.86204 0.729949i −2.14085 + 0.645564i −4.30240 1.25786i 2.11465 1.07747i −2.39579 + 1.50340i 4.14178 + 5.70067i 2.80540 1.45937i
3.2 −1.38610 + 0.280565i −0.481605 0.245390i 1.84257 0.777784i 1.65529 1.50333i 0.736402 + 0.205014i −0.559468 + 0.285063i −2.33577 + 1.59505i −1.59163 2.19069i −1.87263 + 2.54819i
3.3 −1.36366 0.374731i −0.0905018 0.0461129i 1.71915 + 1.02201i −1.28673 + 1.82875i 0.106134 + 0.0967963i −2.47893 + 1.26308i −1.96137 2.03790i −1.75729 2.41870i 2.43996 2.01162i
3.4 −1.35127 0.417227i −2.00530 1.02175i 1.65184 + 1.12757i −1.34468 1.78657i 2.28340 + 2.21733i 3.86673 1.97020i −1.76163 2.21284i 1.21390 + 1.67079i 1.07162 + 2.97517i
3.5 −1.31645 + 0.516682i 0.249901 + 0.127331i 1.46608 1.36037i 1.01317 + 1.99336i −0.394772 0.0385054i 3.32120 1.69223i −1.22714 + 2.54836i −1.71712 2.36341i −2.36372 2.10067i
3.6 −1.21176 + 0.729133i −2.01401 1.02619i 0.936729 1.76707i −2.19782 0.411812i 3.18873 0.224986i −1.87240 + 0.954035i 0.153338 + 2.82427i 1.23982 + 1.70646i 2.96350 1.10349i
3.7 −1.17385 0.788721i 1.93820 + 0.987564i 0.755839 + 1.85168i 1.94109 + 1.11003i −1.49624 2.68795i −0.647272 + 0.329802i 0.573215 2.76973i 1.01800 + 1.40115i −1.40305 2.83398i
3.8 −1.05295 0.944087i 1.34150 + 0.683529i 0.217399 + 1.98815i −0.948637 2.02487i −0.767221 1.98622i 0.566907 0.288854i 1.64808 2.29866i −0.430940 0.593138i −0.912785 + 3.02768i
3.9 −0.986606 + 1.01322i 2.54367 + 1.29607i −0.0532170 1.99929i 2.18490 0.475619i −3.82280 + 1.29859i −2.92618 + 1.49096i 2.07822 + 1.91859i 3.02712 + 4.16648i −1.67373 + 2.68303i
3.10 −0.798140 1.16746i −2.10822 1.07419i −0.725945 + 1.86360i −0.446641 + 2.19101i 0.428575 + 3.31863i 0.857802 0.437072i 2.75509 0.639900i 1.52735 + 2.10222i 2.91440 1.22729i
3.11 −0.747186 + 1.20071i −1.63676 0.833969i −0.883427 1.79431i 1.66521 + 1.49234i 2.22432 1.34215i −2.18680 + 1.11423i 2.81454 + 0.279941i 0.220109 + 0.302954i −3.03609 + 0.884393i
3.12 −0.557475 + 1.29970i 0.996151 + 0.507564i −1.37844 1.44910i 0.0455245 2.23560i −1.21501 + 1.01174i 3.44949 1.75760i 2.65185 0.983725i −1.02866 1.41583i 2.88024 + 1.30546i
3.13 −0.544739 1.30509i −0.771035 0.392862i −1.40652 + 1.42187i 2.10061 0.766443i −0.0927074 + 1.22028i 1.98436 1.01108i 2.62185 + 1.06109i −1.32320 1.82123i −2.14456 2.32397i
3.14 −0.268903 1.38841i 0.131087 + 0.0667921i −1.85538 + 0.746697i −2.22160 0.253930i 0.0574854 0.199963i −2.72311 + 1.38749i 1.53564 + 2.37525i −1.75063 2.40954i 0.244837 + 3.15279i
3.15 −0.262448 + 1.38965i −1.70123 0.866818i −1.86224 0.729420i −1.70162 + 1.45068i 1.65105 2.13661i 3.08760 1.57321i 1.50238 2.39643i 0.379441 + 0.522256i −1.56935 2.74538i
3.16 −0.179822 + 1.40273i 1.70123 + 0.866818i −1.93533 0.504485i −1.70162 + 1.45068i −1.52183 + 2.23050i −3.08760 + 1.57321i 1.05567 2.62403i 0.379441 + 0.522256i −1.72894 2.64779i
3.17 0.128561 + 1.40836i −0.996151 0.507564i −1.96694 + 0.362119i 0.0455245 2.23560i 0.586766 1.46819i −3.44949 + 1.75760i −0.762865 2.72361i −1.02866 1.41583i 3.15438 0.223296i
3.18 0.165017 1.40455i 2.76215 + 1.40739i −1.94554 0.463549i 0.373763 2.20461i 2.43255 3.64734i 1.22421 0.623768i −0.972126 + 2.65612i 3.88538 + 5.34777i −3.03481 0.888767i
3.19 0.277091 1.38680i −2.76215 1.40739i −1.84644 0.768540i 0.373763 2.20461i −2.71713 + 3.44058i −1.22421 + 0.623768i −1.57744 + 2.34769i 3.88538 + 5.34777i −2.95379 1.12921i
3.20 0.339575 + 1.37284i 1.63676 + 0.833969i −1.76938 + 0.932363i 1.66521 + 1.49234i −0.589104 + 2.53020i 2.18680 1.11423i −1.88082 2.11247i 0.220109 + 0.302954i −1.48327 + 2.79283i
See next 80 embeddings (of 256 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
11.c even 5 1 inner
20.e even 4 1 inner
44.h odd 10 1 inner
55.k odd 20 1 inner
220.v even 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.v.a 256
4.b odd 2 1 inner 220.2.v.a 256
5.c odd 4 1 inner 220.2.v.a 256
11.c even 5 1 inner 220.2.v.a 256
20.e even 4 1 inner 220.2.v.a 256
44.h odd 10 1 inner 220.2.v.a 256
55.k odd 20 1 inner 220.2.v.a 256
220.v even 20 1 inner 220.2.v.a 256
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.v.a 256 1.a even 1 1 trivial
220.2.v.a 256 4.b odd 2 1 inner
220.2.v.a 256 5.c odd 4 1 inner
220.2.v.a 256 11.c even 5 1 inner
220.2.v.a 256 20.e even 4 1 inner
220.2.v.a 256 44.h odd 10 1 inner
220.2.v.a 256 55.k odd 20 1 inner
220.2.v.a 256 220.v even 20 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).