Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(13,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 15, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.u (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 0 | −2.95041 | − | 0.467300i | 0 | 1.40317 | + | 1.74101i | 0 | −0.372695 | − | 2.35311i | 0 | 5.63340 | + | 1.83040i | 0 | ||||||||||
13.2 | 0 | −0.834729 | − | 0.132208i | 0 | −2.08639 | − | 0.804354i | 0 | −0.228981 | − | 1.44573i | 0 | −2.17388 | − | 0.706335i | 0 | ||||||||||
13.3 | 0 | −0.464116 | − | 0.0735087i | 0 | −0.794013 | + | 2.09035i | 0 | 0.413999 | + | 2.61389i | 0 | −2.64317 | − | 0.858818i | 0 | ||||||||||
13.4 | 0 | 0.194131 | + | 0.0307474i | 0 | 1.80035 | − | 1.32618i | 0 | −0.509098 | − | 3.21432i | 0 | −2.81643 | − | 0.915113i | 0 | ||||||||||
13.5 | 0 | 2.50020 | + | 0.395993i | 0 | −0.797801 | − | 2.08890i | 0 | 0.371734 | + | 2.34703i | 0 | 3.24104 | + | 1.05308i | 0 | ||||||||||
13.6 | 0 | 2.95172 | + | 0.467507i | 0 | 0.0236267 | + | 2.23594i | 0 | −0.776647 | − | 4.90356i | 0 | 5.64095 | + | 1.83285i | 0 | ||||||||||
17.1 | 0 | −2.95041 | + | 0.467300i | 0 | 1.40317 | − | 1.74101i | 0 | −0.372695 | + | 2.35311i | 0 | 5.63340 | − | 1.83040i | 0 | ||||||||||
17.2 | 0 | −0.834729 | + | 0.132208i | 0 | −2.08639 | + | 0.804354i | 0 | −0.228981 | + | 1.44573i | 0 | −2.17388 | + | 0.706335i | 0 | ||||||||||
17.3 | 0 | −0.464116 | + | 0.0735087i | 0 | −0.794013 | − | 2.09035i | 0 | 0.413999 | − | 2.61389i | 0 | −2.64317 | + | 0.858818i | 0 | ||||||||||
17.4 | 0 | 0.194131 | − | 0.0307474i | 0 | 1.80035 | + | 1.32618i | 0 | −0.509098 | + | 3.21432i | 0 | −2.81643 | + | 0.915113i | 0 | ||||||||||
17.5 | 0 | 2.50020 | − | 0.395993i | 0 | −0.797801 | + | 2.08890i | 0 | 0.371734 | − | 2.34703i | 0 | 3.24104 | − | 1.05308i | 0 | ||||||||||
17.6 | 0 | 2.95172 | − | 0.467507i | 0 | 0.0236267 | − | 2.23594i | 0 | −0.776647 | + | 4.90356i | 0 | 5.64095 | − | 1.83285i | 0 | ||||||||||
57.1 | 0 | −0.467300 | + | 2.95041i | 0 | −0.111852 | + | 2.23327i | 0 | 2.35311 | − | 0.372695i | 0 | −5.63340 | − | 1.83040i | 0 | ||||||||||
57.2 | 0 | −0.132208 | + | 0.834729i | 0 | 1.21514 | − | 1.87708i | 0 | 1.44573 | − | 0.228981i | 0 | 2.17388 | + | 0.706335i | 0 | ||||||||||
57.3 | 0 | −0.0735087 | + | 0.464116i | 0 | 1.87104 | + | 1.22442i | 0 | −2.61389 | + | 0.413999i | 0 | 2.64317 | + | 0.858818i | 0 | ||||||||||
57.4 | 0 | 0.0307474 | − | 0.194131i | 0 | −2.23602 | − | 0.0146855i | 0 | 3.21432 | − | 0.509098i | 0 | 2.81643 | + | 0.915113i | 0 | ||||||||||
57.5 | 0 | 0.395993 | − | 2.50020i | 0 | −0.582392 | − | 2.15889i | 0 | −2.34703 | + | 0.371734i | 0 | −3.24104 | − | 1.05308i | 0 | ||||||||||
57.6 | 0 | 0.467507 | − | 2.95172i | 0 | 1.29514 | + | 1.82280i | 0 | 4.90356 | − | 0.776647i | 0 | −5.64095 | − | 1.83285i | 0 | ||||||||||
73.1 | 0 | −2.69137 | + | 1.37132i | 0 | −0.0704176 | − | 2.23496i | 0 | −0.328865 | + | 0.645435i | 0 | 3.59960 | − | 4.95443i | 0 | ||||||||||
73.2 | 0 | −1.23629 | + | 0.629920i | 0 | −2.10058 | + | 0.766533i | 0 | 0.729926 | − | 1.43256i | 0 | −0.631750 | + | 0.869529i | 0 | ||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.d | odd | 10 | 1 | inner |
55.l | even | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.u.a | ✓ | 48 |
4.b | odd | 2 | 1 | 880.2.cm.b | 48 | ||
5.c | odd | 4 | 1 | inner | 220.2.u.a | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 220.2.u.a | ✓ | 48 |
20.e | even | 4 | 1 | 880.2.cm.b | 48 | ||
44.g | even | 10 | 1 | 880.2.cm.b | 48 | ||
55.l | even | 20 | 1 | inner | 220.2.u.a | ✓ | 48 |
220.w | odd | 20 | 1 | 880.2.cm.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.u.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
220.2.u.a | ✓ | 48 | 5.c | odd | 4 | 1 | inner |
220.2.u.a | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
220.2.u.a | ✓ | 48 | 55.l | even | 20 | 1 | inner |
880.2.cm.b | 48 | 4.b | odd | 2 | 1 | ||
880.2.cm.b | 48 | 20.e | even | 4 | 1 | ||
880.2.cm.b | 48 | 44.g | even | 10 | 1 | ||
880.2.cm.b | 48 | 220.w | odd | 20 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).