Properties

Label 220.2.t.a.9.4
Level $220$
Weight $2$
Character 220.9
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(9,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.t (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 9.4
Character \(\chi\) \(=\) 220.9
Dual form 220.2.t.a.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.447653 + 0.616141i) q^{3} +(1.93649 + 1.11803i) q^{5} +(-2.82695 + 3.89096i) q^{7} +(0.747814 - 2.30153i) q^{9} +(2.43653 + 2.25018i) q^{11} +(-2.78175 - 0.903845i) q^{13} +(0.178012 + 1.69364i) q^{15} +(1.74715 - 0.567683i) q^{17} +(3.50701 - 2.54799i) q^{19} -3.66287 q^{21} +0.109291i q^{23} +(2.50001 + 4.33012i) q^{25} +(3.92578 - 1.27556i) q^{27} +(-4.23641 - 3.07793i) q^{29} +(-0.360697 + 1.11011i) q^{31} +(-0.295707 + 2.50855i) q^{33} +(-9.82457 + 4.37420i) q^{35} +(5.24594 - 7.22042i) q^{37} +(-0.688361 - 2.11856i) q^{39} +(-3.43687 + 2.49703i) q^{41} -6.85873i q^{43} +(4.02132 - 3.62083i) q^{45} +(-5.68182 - 7.82036i) q^{47} +(-4.98480 - 15.3416i) q^{49} +(1.13189 + 0.822365i) q^{51} +(-1.03268 - 0.335537i) q^{53} +(2.20256 + 7.08158i) q^{55} +(3.13985 + 1.02020i) q^{57} +(-5.60263 - 4.07055i) q^{59} +(1.90966 + 5.87734i) q^{61} +(6.84114 + 9.41602i) q^{63} +(-4.37631 - 4.86037i) q^{65} +15.0780i q^{67} +(-0.0673388 + 0.0489245i) q^{69} +(-1.20178 - 3.69871i) q^{71} +(8.51324 - 11.7175i) q^{73} +(-1.54883 + 3.47875i) q^{75} +(-15.6433 + 3.11931i) q^{77} +(-1.67784 + 5.16385i) q^{79} +(-3.33009 - 2.41945i) q^{81} +(-8.31420 + 2.70145i) q^{83} +(4.01803 + 0.854052i) q^{85} -3.98807i q^{87} +12.6602 q^{89} +(11.3807 - 8.26854i) q^{91} +(-0.845453 + 0.274704i) q^{93} +(9.64003 - 1.01322i) q^{95} +(-2.20222 - 0.715544i) q^{97} +(7.00094 - 3.92505i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{5} + 14 q^{9} - 2 q^{11} - q^{15} + 8 q^{19} - 28 q^{21} + 27 q^{25} - 16 q^{29} - 26 q^{31} + 17 q^{35} + 12 q^{39} + 10 q^{41} - 40 q^{45} - 46 q^{49} - 12 q^{51} - 33 q^{55} - 48 q^{59} - 10 q^{61}+ \cdots + 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.447653 + 0.616141i 0.258452 + 0.355729i 0.918449 0.395539i \(-0.129442\pi\)
−0.659997 + 0.751269i \(0.729442\pi\)
\(4\) 0 0
\(5\) 1.93649 + 1.11803i 0.866026 + 0.499999i
\(6\) 0 0
\(7\) −2.82695 + 3.89096i −1.06848 + 1.47064i −0.196884 + 0.980427i \(0.563082\pi\)
−0.871601 + 0.490216i \(0.836918\pi\)
\(8\) 0 0
\(9\) 0.747814 2.30153i 0.249271 0.767178i
\(10\) 0 0
\(11\) 2.43653 + 2.25018i 0.734643 + 0.678454i
\(12\) 0 0
\(13\) −2.78175 0.903845i −0.771518 0.250681i −0.103303 0.994650i \(-0.532941\pi\)
−0.668215 + 0.743969i \(0.732941\pi\)
\(14\) 0 0
\(15\) 0.178012 + 1.69364i 0.0459624 + 0.437297i
\(16\) 0 0
\(17\) 1.74715 0.567683i 0.423746 0.137683i −0.0893784 0.995998i \(-0.528488\pi\)
0.513124 + 0.858314i \(0.328488\pi\)
\(18\) 0 0
\(19\) 3.50701 2.54799i 0.804563 0.584549i −0.107686 0.994185i \(-0.534344\pi\)
0.912249 + 0.409636i \(0.134344\pi\)
\(20\) 0 0
\(21\) −3.66287 −0.799303
\(22\) 0 0
\(23\) 0.109291i 0.0227888i 0.999935 + 0.0113944i \(0.00362703\pi\)
−0.999935 + 0.0113944i \(0.996373\pi\)
\(24\) 0 0
\(25\) 2.50001 + 4.33012i 0.500003 + 0.866024i
\(26\) 0 0
\(27\) 3.92578 1.27556i 0.755518 0.245483i
\(28\) 0 0
\(29\) −4.23641 3.07793i −0.786681 0.571557i 0.120295 0.992738i \(-0.461616\pi\)
−0.906977 + 0.421181i \(0.861616\pi\)
\(30\) 0 0
\(31\) −0.360697 + 1.11011i −0.0647831 + 0.199382i −0.978209 0.207624i \(-0.933427\pi\)
0.913426 + 0.407006i \(0.133427\pi\)
\(32\) 0 0
\(33\) −0.295707 + 2.50855i −0.0514759 + 0.436682i
\(34\) 0 0
\(35\) −9.82457 + 4.37420i −1.66066 + 0.739374i
\(36\) 0 0
\(37\) 5.24594 7.22042i 0.862427 1.18703i −0.118558 0.992947i \(-0.537827\pi\)
0.980985 0.194082i \(-0.0621728\pi\)
\(38\) 0 0
\(39\) −0.688361 2.11856i −0.110226 0.339241i
\(40\) 0 0
\(41\) −3.43687 + 2.49703i −0.536749 + 0.389971i −0.822876 0.568220i \(-0.807632\pi\)
0.286127 + 0.958192i \(0.407632\pi\)
\(42\) 0 0
\(43\) 6.85873i 1.04595i −0.852349 0.522973i \(-0.824823\pi\)
0.852349 0.522973i \(-0.175177\pi\)
\(44\) 0 0
\(45\) 4.02132 3.62083i 0.599464 0.539761i
\(46\) 0 0
\(47\) −5.68182 7.82036i −0.828779 1.14072i −0.988149 0.153498i \(-0.950946\pi\)
0.159370 0.987219i \(-0.449054\pi\)
\(48\) 0 0
\(49\) −4.98480 15.3416i −0.712115 2.19166i
\(50\) 0 0
\(51\) 1.13189 + 0.822365i 0.158496 + 0.115154i
\(52\) 0 0
\(53\) −1.03268 0.335537i −0.141849 0.0460896i 0.237232 0.971453i \(-0.423760\pi\)
−0.379081 + 0.925363i \(0.623760\pi\)
\(54\) 0 0
\(55\) 2.20256 + 7.08158i 0.296993 + 0.954880i
\(56\) 0 0
\(57\) 3.13985 + 1.02020i 0.415883 + 0.135128i
\(58\) 0 0
\(59\) −5.60263 4.07055i −0.729400 0.529940i 0.159974 0.987121i \(-0.448859\pi\)
−0.889374 + 0.457181i \(0.848859\pi\)
\(60\) 0 0
\(61\) 1.90966 + 5.87734i 0.244507 + 0.752516i 0.995717 + 0.0924528i \(0.0294707\pi\)
−0.751210 + 0.660064i \(0.770529\pi\)
\(62\) 0 0
\(63\) 6.84114 + 9.41602i 0.861903 + 1.18631i
\(64\) 0 0
\(65\) −4.37631 4.86037i −0.542814 0.602855i
\(66\) 0 0
\(67\) 15.0780i 1.84207i 0.389478 + 0.921036i \(0.372656\pi\)
−0.389478 + 0.921036i \(0.627344\pi\)
\(68\) 0 0
\(69\) −0.0673388 + 0.0489245i −0.00810664 + 0.00588982i
\(70\) 0 0
\(71\) −1.20178 3.69871i −0.142626 0.438956i 0.854072 0.520154i \(-0.174125\pi\)
−0.996698 + 0.0811977i \(0.974125\pi\)
\(72\) 0 0
\(73\) 8.51324 11.7175i 0.996399 1.37143i 0.0688900 0.997624i \(-0.478054\pi\)
0.927509 0.373801i \(-0.121946\pi\)
\(74\) 0 0
\(75\) −1.54883 + 3.47875i −0.178843 + 0.401692i
\(76\) 0 0
\(77\) −15.6433 + 3.11931i −1.78272 + 0.355479i
\(78\) 0 0
\(79\) −1.67784 + 5.16385i −0.188772 + 0.580979i −0.999993 0.00376007i \(-0.998803\pi\)
0.811221 + 0.584739i \(0.198803\pi\)
\(80\) 0 0
\(81\) −3.33009 2.41945i −0.370010 0.268828i
\(82\) 0 0
\(83\) −8.31420 + 2.70145i −0.912602 + 0.296522i −0.727428 0.686184i \(-0.759285\pi\)
−0.185173 + 0.982706i \(0.559285\pi\)
\(84\) 0 0
\(85\) 4.01803 + 0.854052i 0.435816 + 0.0926349i
\(86\) 0 0
\(87\) 3.98807i 0.427566i
\(88\) 0 0
\(89\) 12.6602 1.34198 0.670988 0.741468i \(-0.265870\pi\)
0.670988 + 0.741468i \(0.265870\pi\)
\(90\) 0 0
\(91\) 11.3807 8.26854i 1.19302 0.866778i
\(92\) 0 0
\(93\) −0.845453 + 0.274704i −0.0876694 + 0.0284855i
\(94\) 0 0
\(95\) 9.64003 1.01322i 0.989047 0.103954i
\(96\) 0 0
\(97\) −2.20222 0.715544i −0.223601 0.0726525i 0.195074 0.980789i \(-0.437505\pi\)
−0.418675 + 0.908136i \(0.637505\pi\)
\(98\) 0 0
\(99\) 7.00094 3.92505i 0.703621 0.394483i
\(100\) 0 0
\(101\) −4.43335 + 13.6444i −0.441135 + 1.35767i 0.445533 + 0.895266i \(0.353014\pi\)
−0.886667 + 0.462408i \(0.846986\pi\)
\(102\) 0 0
\(103\) −0.437619 + 0.602330i −0.0431198 + 0.0593494i −0.830033 0.557715i \(-0.811678\pi\)
0.786913 + 0.617064i \(0.211678\pi\)
\(104\) 0 0
\(105\) −7.09312 4.09520i −0.692218 0.399651i
\(106\) 0 0
\(107\) 3.69610 + 5.08724i 0.357315 + 0.491802i 0.949398 0.314075i \(-0.101694\pi\)
−0.592083 + 0.805877i \(0.701694\pi\)
\(108\) 0 0
\(109\) 2.75501 0.263882 0.131941 0.991258i \(-0.457879\pi\)
0.131941 + 0.991258i \(0.457879\pi\)
\(110\) 0 0
\(111\) 6.79716 0.645158
\(112\) 0 0
\(113\) 8.19794 + 11.2835i 0.771197 + 1.06146i 0.996199 + 0.0871038i \(0.0277612\pi\)
−0.225002 + 0.974358i \(0.572239\pi\)
\(114\) 0 0
\(115\) −0.122191 + 0.211642i −0.0113944 + 0.0197357i
\(116\) 0 0
\(117\) −4.16046 + 5.72638i −0.384635 + 0.529404i
\(118\) 0 0
\(119\) −2.73026 + 8.40288i −0.250283 + 0.770291i
\(120\) 0 0
\(121\) 0.873392 + 10.9653i 0.0793993 + 0.996843i
\(122\) 0 0
\(123\) −3.07705 0.999795i −0.277448 0.0901485i
\(124\) 0 0
\(125\) 5.00640e−5 11.1803i 4.47786e−6 1.00000i
\(126\) 0 0
\(127\) 6.29139 2.04419i 0.558270 0.181393i −0.0162725 0.999868i \(-0.505180\pi\)
0.574543 + 0.818475i \(0.305180\pi\)
\(128\) 0 0
\(129\) 4.22595 3.07033i 0.372074 0.270327i
\(130\) 0 0
\(131\) −14.5964 −1.27529 −0.637645 0.770330i \(-0.720091\pi\)
−0.637645 + 0.770330i \(0.720091\pi\)
\(132\) 0 0
\(133\) 20.8486i 1.80781i
\(134\) 0 0
\(135\) 9.02838 + 1.91903i 0.777039 + 0.165163i
\(136\) 0 0
\(137\) 11.4325 3.71466i 0.976748 0.317365i 0.223211 0.974770i \(-0.428346\pi\)
0.753537 + 0.657405i \(0.228346\pi\)
\(138\) 0 0
\(139\) −5.38545 3.91276i −0.456788 0.331876i 0.335482 0.942047i \(-0.391101\pi\)
−0.792270 + 0.610171i \(0.791101\pi\)
\(140\) 0 0
\(141\) 2.27496 7.00161i 0.191586 0.589642i
\(142\) 0 0
\(143\) −4.74401 8.46168i −0.396714 0.707601i
\(144\) 0 0
\(145\) −4.76255 10.6968i −0.395509 0.888323i
\(146\) 0 0
\(147\) 7.22116 9.93907i 0.595591 0.819761i
\(148\) 0 0
\(149\) 4.64359 + 14.2915i 0.380418 + 1.17081i 0.939750 + 0.341862i \(0.111057\pi\)
−0.559333 + 0.828943i \(0.688943\pi\)
\(150\) 0 0
\(151\) 16.4236 11.9324i 1.33653 0.971047i 0.336968 0.941516i \(-0.390599\pi\)
0.999564 0.0295311i \(-0.00940141\pi\)
\(152\) 0 0
\(153\) 4.44564i 0.359409i
\(154\) 0 0
\(155\) −1.93963 + 1.74645i −0.155795 + 0.140279i
\(156\) 0 0
\(157\) 0.784796 + 1.08018i 0.0626336 + 0.0862077i 0.839185 0.543847i \(-0.183033\pi\)
−0.776551 + 0.630054i \(0.783033\pi\)
\(158\) 0 0
\(159\) −0.255542 0.786479i −0.0202658 0.0623718i
\(160\) 0 0
\(161\) −0.425247 0.308960i −0.0335142 0.0243495i
\(162\) 0 0
\(163\) −11.8169 3.83955i −0.925572 0.300737i −0.192821 0.981234i \(-0.561764\pi\)
−0.732751 + 0.680497i \(0.761764\pi\)
\(164\) 0 0
\(165\) −3.37727 + 4.52718i −0.262920 + 0.352440i
\(166\) 0 0
\(167\) −7.69770 2.50113i −0.595666 0.193544i −0.00435939 0.999990i \(-0.501388\pi\)
−0.591306 + 0.806447i \(0.701388\pi\)
\(168\) 0 0
\(169\) −3.59604 2.61267i −0.276618 0.200975i
\(170\) 0 0
\(171\) −3.24170 9.97693i −0.247899 0.762955i
\(172\) 0 0
\(173\) −12.3822 17.0426i −0.941399 1.29572i −0.955244 0.295820i \(-0.904407\pi\)
0.0138445 0.999904i \(-0.495593\pi\)
\(174\) 0 0
\(175\) −23.9157 2.51357i −1.80786 0.190008i
\(176\) 0 0
\(177\) 5.27420i 0.396433i
\(178\) 0 0
\(179\) −17.9839 + 13.0661i −1.34418 + 0.976603i −0.344900 + 0.938639i \(0.612087\pi\)
−0.999279 + 0.0379638i \(0.987913\pi\)
\(180\) 0 0
\(181\) 1.51674 + 4.66803i 0.112738 + 0.346972i 0.991469 0.130346i \(-0.0416089\pi\)
−0.878730 + 0.477318i \(0.841609\pi\)
\(182\) 0 0
\(183\) −2.76641 + 3.80763i −0.204499 + 0.281468i
\(184\) 0 0
\(185\) 18.2314 8.11716i 1.34040 0.596786i
\(186\) 0 0
\(187\) 5.53437 + 2.54822i 0.404713 + 0.186344i
\(188\) 0 0
\(189\) −6.13481 + 18.8810i −0.446242 + 1.37339i
\(190\) 0 0
\(191\) −8.63441 6.27326i −0.624764 0.453917i 0.229819 0.973234i \(-0.426187\pi\)
−0.854582 + 0.519316i \(0.826187\pi\)
\(192\) 0 0
\(193\) 5.20904 1.69252i 0.374955 0.121830i −0.115476 0.993310i \(-0.536839\pi\)
0.490431 + 0.871480i \(0.336839\pi\)
\(194\) 0 0
\(195\) 1.03561 4.87218i 0.0741613 0.348904i
\(196\) 0 0
\(197\) 2.94305i 0.209684i 0.994489 + 0.104842i \(0.0334337\pi\)
−0.994489 + 0.104842i \(0.966566\pi\)
\(198\) 0 0
\(199\) −2.97074 −0.210590 −0.105295 0.994441i \(-0.533579\pi\)
−0.105295 + 0.994441i \(0.533579\pi\)
\(200\) 0 0
\(201\) −9.29018 + 6.74971i −0.655279 + 0.476088i
\(202\) 0 0
\(203\) 23.9522 7.78254i 1.68111 0.546227i
\(204\) 0 0
\(205\) −9.44725 + 0.992960i −0.659824 + 0.0693513i
\(206\) 0 0
\(207\) 0.251537 + 0.0817294i 0.0174831 + 0.00568059i
\(208\) 0 0
\(209\) 14.2784 + 1.68313i 0.987656 + 0.116425i
\(210\) 0 0
\(211\) 4.14795 12.7661i 0.285556 0.878852i −0.700675 0.713481i \(-0.747118\pi\)
0.986231 0.165372i \(-0.0528823\pi\)
\(212\) 0 0
\(213\) 1.74095 2.39621i 0.119288 0.164185i
\(214\) 0 0
\(215\) 7.66827 13.2819i 0.522972 0.905817i
\(216\) 0 0
\(217\) −3.29973 4.54168i −0.224000 0.308309i
\(218\) 0 0
\(219\) 11.0306 0.745378
\(220\) 0 0
\(221\) −5.37322 −0.361442
\(222\) 0 0
\(223\) −0.593077 0.816301i −0.0397154 0.0546635i 0.788697 0.614781i \(-0.210756\pi\)
−0.828413 + 0.560118i \(0.810756\pi\)
\(224\) 0 0
\(225\) 11.8355 2.51574i 0.789031 0.167716i
\(226\) 0 0
\(227\) 3.29250 4.53173i 0.218531 0.300782i −0.685650 0.727931i \(-0.740482\pi\)
0.904181 + 0.427149i \(0.140482\pi\)
\(228\) 0 0
\(229\) −6.22567 + 19.1606i −0.411404 + 1.26617i 0.504024 + 0.863689i \(0.331852\pi\)
−0.915428 + 0.402481i \(0.868148\pi\)
\(230\) 0 0
\(231\) −8.92470 8.24211i −0.587202 0.542291i
\(232\) 0 0
\(233\) −9.59168 3.11652i −0.628372 0.204170i −0.0225180 0.999746i \(-0.507168\pi\)
−0.605854 + 0.795576i \(0.707168\pi\)
\(234\) 0 0
\(235\) −2.25941 21.4965i −0.147388 1.40228i
\(236\) 0 0
\(237\) −3.93275 + 1.27783i −0.255460 + 0.0830039i
\(238\) 0 0
\(239\) −1.33100 + 0.967028i −0.0860952 + 0.0625518i −0.630000 0.776595i \(-0.716945\pi\)
0.543905 + 0.839147i \(0.316945\pi\)
\(240\) 0 0
\(241\) 2.47074 0.159154 0.0795770 0.996829i \(-0.474643\pi\)
0.0795770 + 0.996829i \(0.474643\pi\)
\(242\) 0 0
\(243\) 15.5183i 0.995501i
\(244\) 0 0
\(245\) 7.49940 35.2822i 0.479119 2.25409i
\(246\) 0 0
\(247\) −12.0586 + 3.91808i −0.767270 + 0.249301i
\(248\) 0 0
\(249\) −5.38635 3.91341i −0.341346 0.248002i
\(250\) 0 0
\(251\) −0.462829 + 1.42444i −0.0292135 + 0.0899099i −0.964600 0.263717i \(-0.915052\pi\)
0.935387 + 0.353627i \(0.115052\pi\)
\(252\) 0 0
\(253\) −0.245925 + 0.266292i −0.0154611 + 0.0167416i
\(254\) 0 0
\(255\) 1.27246 + 2.85799i 0.0796848 + 0.178974i
\(256\) 0 0
\(257\) −18.1780 + 25.0199i −1.13392 + 1.56070i −0.353505 + 0.935433i \(0.615010\pi\)
−0.780410 + 0.625268i \(0.784990\pi\)
\(258\) 0 0
\(259\) 13.2643 + 40.8234i 0.824206 + 2.53665i
\(260\) 0 0
\(261\) −10.2520 + 7.44852i −0.634583 + 0.461052i
\(262\) 0 0
\(263\) 9.45633i 0.583103i 0.956555 + 0.291551i \(0.0941714\pi\)
−0.956555 + 0.291551i \(0.905829\pi\)
\(264\) 0 0
\(265\) −1.62463 1.80433i −0.0998003 0.110839i
\(266\) 0 0
\(267\) 5.66737 + 7.80046i 0.346837 + 0.477380i
\(268\) 0 0
\(269\) −5.43094 16.7147i −0.331131 1.01911i −0.968597 0.248637i \(-0.920017\pi\)
0.637466 0.770478i \(-0.279983\pi\)
\(270\) 0 0
\(271\) 5.95324 + 4.32528i 0.361633 + 0.262742i 0.753733 0.657181i \(-0.228251\pi\)
−0.392100 + 0.919923i \(0.628251\pi\)
\(272\) 0 0
\(273\) 10.1892 + 3.31066i 0.616677 + 0.200370i
\(274\) 0 0
\(275\) −3.65218 + 16.1760i −0.220235 + 0.975447i
\(276\) 0 0
\(277\) −11.0843 3.60149i −0.665988 0.216393i −0.0435375 0.999052i \(-0.513863\pi\)
−0.622451 + 0.782659i \(0.713863\pi\)
\(278\) 0 0
\(279\) 2.28523 + 1.66031i 0.136813 + 0.0994004i
\(280\) 0 0
\(281\) −8.84788 27.2310i −0.527820 1.62446i −0.758671 0.651475i \(-0.774151\pi\)
0.230850 0.972989i \(-0.425849\pi\)
\(282\) 0 0
\(283\) 14.0912 + 19.3949i 0.837637 + 1.15291i 0.986453 + 0.164043i \(0.0524537\pi\)
−0.148816 + 0.988865i \(0.547546\pi\)
\(284\) 0 0
\(285\) 4.93968 + 5.48605i 0.292601 + 0.324966i
\(286\) 0 0
\(287\) 20.4317i 1.20605i
\(288\) 0 0
\(289\) −11.0230 + 8.00870i −0.648413 + 0.471100i
\(290\) 0 0
\(291\) −0.544953 1.67719i −0.0319457 0.0983188i
\(292\) 0 0
\(293\) −5.13518 + 7.06797i −0.300000 + 0.412915i −0.932230 0.361866i \(-0.882140\pi\)
0.632230 + 0.774781i \(0.282140\pi\)
\(294\) 0 0
\(295\) −6.29845 14.1465i −0.366710 0.823641i
\(296\) 0 0
\(297\) 12.4356 + 5.72576i 0.721584 + 0.332242i
\(298\) 0 0
\(299\) 0.0987822 0.304020i 0.00571272 0.0175820i
\(300\) 0 0
\(301\) 26.6870 + 19.3893i 1.53821 + 1.11758i
\(302\) 0 0
\(303\) −10.3915 + 3.37641i −0.596977 + 0.193969i
\(304\) 0 0
\(305\) −2.87300 + 13.5165i −0.164507 + 0.773952i
\(306\) 0 0
\(307\) 6.87006i 0.392095i −0.980594 0.196047i \(-0.937189\pi\)
0.980594 0.196047i \(-0.0628106\pi\)
\(308\) 0 0
\(309\) −0.567022 −0.0322567
\(310\) 0 0
\(311\) 11.7118 8.50914i 0.664117 0.482509i −0.203934 0.978985i \(-0.565373\pi\)
0.868051 + 0.496476i \(0.165373\pi\)
\(312\) 0 0
\(313\) −25.6856 + 8.34576i −1.45184 + 0.471730i −0.925566 0.378587i \(-0.876410\pi\)
−0.526270 + 0.850317i \(0.676410\pi\)
\(314\) 0 0
\(315\) 2.72042 + 25.8827i 0.153278 + 1.45832i
\(316\) 0 0
\(317\) 27.9475 + 9.08070i 1.56969 + 0.510023i 0.959374 0.282136i \(-0.0910431\pi\)
0.610315 + 0.792159i \(0.291043\pi\)
\(318\) 0 0
\(319\) −3.39626 17.0322i −0.190154 0.953618i
\(320\) 0 0
\(321\) −1.47989 + 4.55463i −0.0825994 + 0.254215i
\(322\) 0 0
\(323\) 4.68081 6.44259i 0.260447 0.358475i
\(324\) 0 0
\(325\) −3.04065 14.3049i −0.168665 0.793494i
\(326\) 0 0
\(327\) 1.23329 + 1.69747i 0.0682009 + 0.0938706i
\(328\) 0 0
\(329\) 46.4909 2.56313
\(330\) 0 0
\(331\) 19.6296 1.07894 0.539470 0.842005i \(-0.318625\pi\)
0.539470 + 0.842005i \(0.318625\pi\)
\(332\) 0 0
\(333\) −12.6951 17.4732i −0.695685 0.957528i
\(334\) 0 0
\(335\) −16.8577 + 29.1985i −0.921033 + 1.59528i
\(336\) 0 0
\(337\) 16.9635 23.3482i 0.924060 1.27186i −0.0380714 0.999275i \(-0.512121\pi\)
0.962132 0.272585i \(-0.0878786\pi\)
\(338\) 0 0
\(339\) −3.28240 + 10.1022i −0.178275 + 0.548675i
\(340\) 0 0
\(341\) −3.37680 + 1.89319i −0.182864 + 0.102522i
\(342\) 0 0
\(343\) 41.7668 + 13.5708i 2.25519 + 0.732757i
\(344\) 0 0
\(345\) −0.185100 + 0.0194551i −0.00996546 + 0.00104743i
\(346\) 0 0
\(347\) −9.51578 + 3.09187i −0.510834 + 0.165980i −0.553082 0.833127i \(-0.686548\pi\)
0.0422475 + 0.999107i \(0.486548\pi\)
\(348\) 0 0
\(349\) −13.2827 + 9.65042i −0.711005 + 0.516575i −0.883498 0.468435i \(-0.844818\pi\)
0.172493 + 0.985011i \(0.444818\pi\)
\(350\) 0 0
\(351\) −12.0735 −0.644433
\(352\) 0 0
\(353\) 21.2166i 1.12924i 0.825350 + 0.564622i \(0.190978\pi\)
−0.825350 + 0.564622i \(0.809022\pi\)
\(354\) 0 0
\(355\) 1.80803 8.50616i 0.0959601 0.451460i
\(356\) 0 0
\(357\) −6.39957 + 2.07935i −0.338701 + 0.110051i
\(358\) 0 0
\(359\) 12.2286 + 8.88461i 0.645402 + 0.468912i 0.861702 0.507415i \(-0.169399\pi\)
−0.216300 + 0.976327i \(0.569399\pi\)
\(360\) 0 0
\(361\) −0.0644696 + 0.198417i −0.00339314 + 0.0104430i
\(362\) 0 0
\(363\) −6.36518 + 5.44677i −0.334085 + 0.285881i
\(364\) 0 0
\(365\) 29.5863 13.1727i 1.54862 0.689492i
\(366\) 0 0
\(367\) −8.65332 + 11.9103i −0.451700 + 0.621711i −0.972762 0.231807i \(-0.925536\pi\)
0.521062 + 0.853519i \(0.325536\pi\)
\(368\) 0 0
\(369\) 3.17687 + 9.77740i 0.165381 + 0.508991i
\(370\) 0 0
\(371\) 4.22488 3.06956i 0.219345 0.159363i
\(372\) 0 0
\(373\) 4.29655i 0.222467i 0.993794 + 0.111233i \(0.0354801\pi\)
−0.993794 + 0.111233i \(0.964520\pi\)
\(374\) 0 0
\(375\) −6.88865 + 5.00494i −0.355728 + 0.258454i
\(376\) 0 0
\(377\) 9.00265 + 12.3911i 0.463660 + 0.638173i
\(378\) 0 0
\(379\) −2.56446 7.89260i −0.131728 0.405416i 0.863339 0.504624i \(-0.168369\pi\)
−0.995067 + 0.0992085i \(0.968369\pi\)
\(380\) 0 0
\(381\) 4.07587 + 2.96129i 0.208813 + 0.151712i
\(382\) 0 0
\(383\) −10.5498 3.42785i −0.539072 0.175155i 0.0268113 0.999641i \(-0.491465\pi\)
−0.565883 + 0.824485i \(0.691465\pi\)
\(384\) 0 0
\(385\) −33.7806 11.4492i −1.72162 0.583503i
\(386\) 0 0
\(387\) −15.7856 5.12905i −0.802427 0.260724i
\(388\) 0 0
\(389\) −3.41745 2.48292i −0.173271 0.125889i 0.497769 0.867309i \(-0.334153\pi\)
−0.671041 + 0.741420i \(0.734153\pi\)
\(390\) 0 0
\(391\) 0.0620427 + 0.190948i 0.00313763 + 0.00965665i
\(392\) 0 0
\(393\) −6.53410 8.99342i −0.329602 0.453658i
\(394\) 0 0
\(395\) −9.02247 + 8.12390i −0.453970 + 0.408758i
\(396\) 0 0
\(397\) 11.5205i 0.578195i −0.957300 0.289098i \(-0.906645\pi\)
0.957300 0.289098i \(-0.0933552\pi\)
\(398\) 0 0
\(399\) −12.8457 + 9.33296i −0.643090 + 0.467232i
\(400\) 0 0
\(401\) 1.25283 + 3.85583i 0.0625636 + 0.192551i 0.977453 0.211154i \(-0.0677222\pi\)
−0.914889 + 0.403705i \(0.867722\pi\)
\(402\) 0 0
\(403\) 2.00674 2.76204i 0.0999627 0.137587i
\(404\) 0 0
\(405\) −3.74368 8.40840i −0.186025 0.417817i
\(406\) 0 0
\(407\) 29.0291 5.78849i 1.43892 0.286925i
\(408\) 0 0
\(409\) 6.71259 20.6592i 0.331916 1.02153i −0.636305 0.771438i \(-0.719538\pi\)
0.968221 0.250096i \(-0.0804620\pi\)
\(410\) 0 0
\(411\) 7.40656 + 5.38118i 0.365339 + 0.265434i
\(412\) 0 0
\(413\) 31.6766 10.2924i 1.55871 0.506454i
\(414\) 0 0
\(415\) −19.1207 4.06420i −0.938598 0.199504i
\(416\) 0 0
\(417\) 5.06976i 0.248267i
\(418\) 0 0
\(419\) −24.0859 −1.17667 −0.588337 0.808616i \(-0.700217\pi\)
−0.588337 + 0.808616i \(0.700217\pi\)
\(420\) 0 0
\(421\) 4.42530 3.21517i 0.215676 0.156698i −0.474702 0.880147i \(-0.657444\pi\)
0.690378 + 0.723449i \(0.257444\pi\)
\(422\) 0 0
\(423\) −22.2478 + 7.22874i −1.08172 + 0.351473i
\(424\) 0 0
\(425\) 6.82603 + 6.14615i 0.331111 + 0.298132i
\(426\) 0 0
\(427\) −28.2670 9.18450i −1.36794 0.444469i
\(428\) 0 0
\(429\) 3.08992 6.71087i 0.149183 0.324004i
\(430\) 0 0
\(431\) 3.79917 11.6926i 0.182999 0.563214i −0.816909 0.576767i \(-0.804314\pi\)
0.999908 + 0.0135526i \(0.00431405\pi\)
\(432\) 0 0
\(433\) 0.257579 0.354527i 0.0123785 0.0170375i −0.802783 0.596271i \(-0.796648\pi\)
0.815161 + 0.579234i \(0.196648\pi\)
\(434\) 0 0
\(435\) 4.45879 7.72287i 0.213782 0.370283i
\(436\) 0 0
\(437\) 0.278473 + 0.383285i 0.0133212 + 0.0183350i
\(438\) 0 0
\(439\) 28.9786 1.38307 0.691537 0.722341i \(-0.256934\pi\)
0.691537 + 0.722341i \(0.256934\pi\)
\(440\) 0 0
\(441\) −39.0370 −1.85891
\(442\) 0 0
\(443\) 3.05825 + 4.20932i 0.145302 + 0.199991i 0.875464 0.483283i \(-0.160556\pi\)
−0.730162 + 0.683274i \(0.760556\pi\)
\(444\) 0 0
\(445\) 24.5164 + 14.1545i 1.16219 + 0.670987i
\(446\) 0 0
\(447\) −6.72687 + 9.25874i −0.318170 + 0.437923i
\(448\) 0 0
\(449\) 7.62962 23.4815i 0.360064 1.10816i −0.592951 0.805239i \(-0.702037\pi\)
0.953015 0.302924i \(-0.0979628\pi\)
\(450\) 0 0
\(451\) −13.9928 1.64947i −0.658897 0.0776705i
\(452\) 0 0
\(453\) 14.7041 + 4.77766i 0.690860 + 0.224474i
\(454\) 0 0
\(455\) 31.2831 3.28803i 1.46657 0.154145i
\(456\) 0 0
\(457\) −21.4460 + 6.96822i −1.00320 + 0.325960i −0.764144 0.645046i \(-0.776838\pi\)
−0.239057 + 0.971006i \(0.576838\pi\)
\(458\) 0 0
\(459\) 6.13481 4.45720i 0.286348 0.208044i
\(460\) 0 0
\(461\) −2.01614 −0.0939009 −0.0469504 0.998897i \(-0.514950\pi\)
−0.0469504 + 0.998897i \(0.514950\pi\)
\(462\) 0 0
\(463\) 25.7780i 1.19800i −0.800747 0.599002i \(-0.795564\pi\)
0.800747 0.599002i \(-0.204436\pi\)
\(464\) 0 0
\(465\) −1.94434 0.413280i −0.0901667 0.0191654i
\(466\) 0 0
\(467\) −15.2156 + 4.94384i −0.704092 + 0.228773i −0.639113 0.769113i \(-0.720698\pi\)
−0.0649797 + 0.997887i \(0.520698\pi\)
\(468\) 0 0
\(469\) −58.6679 42.6247i −2.70903 1.96823i
\(470\) 0 0
\(471\) −0.314227 + 0.967091i −0.0144788 + 0.0445612i
\(472\) 0 0
\(473\) 15.4334 16.7115i 0.709627 0.768397i
\(474\) 0 0
\(475\) 19.8007 + 8.81576i 0.908517 + 0.404495i
\(476\) 0 0
\(477\) −1.54450 + 2.12582i −0.0707178 + 0.0973347i
\(478\) 0 0
\(479\) −2.00010 6.15568i −0.0913869 0.281260i 0.894908 0.446250i \(-0.147241\pi\)
−0.986295 + 0.164990i \(0.947241\pi\)
\(480\) 0 0
\(481\) −21.1190 + 15.3439i −0.962944 + 0.699620i
\(482\) 0 0
\(483\) 0.400319i 0.0182152i
\(484\) 0 0
\(485\) −3.46458 3.84780i −0.157319 0.174719i
\(486\) 0 0
\(487\) 17.6556 + 24.3008i 0.800050 + 1.10117i 0.992783 + 0.119923i \(0.0382646\pi\)
−0.192734 + 0.981251i \(0.561735\pi\)
\(488\) 0 0
\(489\) −2.92417 8.99967i −0.132236 0.406979i
\(490\) 0 0
\(491\) −6.75443 4.90738i −0.304823 0.221467i 0.424849 0.905264i \(-0.360327\pi\)
−0.729672 + 0.683797i \(0.760327\pi\)
\(492\) 0 0
\(493\) −9.14892 2.97266i −0.412047 0.133882i
\(494\) 0 0
\(495\) 17.9456 + 0.226430i 0.806595 + 0.0101773i
\(496\) 0 0
\(497\) 17.7889 + 5.77996i 0.797941 + 0.259267i
\(498\) 0 0
\(499\) −22.9808 16.6965i −1.02876 0.747439i −0.0607010 0.998156i \(-0.519334\pi\)
−0.968060 + 0.250717i \(0.919334\pi\)
\(500\) 0 0
\(501\) −1.90485 5.86251i −0.0851022 0.261918i
\(502\) 0 0
\(503\) −9.16716 12.6175i −0.408743 0.562587i 0.554168 0.832405i \(-0.313036\pi\)
−0.962911 + 0.269818i \(0.913036\pi\)
\(504\) 0 0
\(505\) −23.8401 + 21.4658i −1.06087 + 0.955214i
\(506\) 0 0
\(507\) 3.38524i 0.150344i
\(508\) 0 0
\(509\) −27.9625 + 20.3160i −1.23942 + 0.900490i −0.997559 0.0698215i \(-0.977757\pi\)
−0.241859 + 0.970311i \(0.577757\pi\)
\(510\) 0 0
\(511\) 21.5257 + 66.2493i 0.952240 + 2.93069i
\(512\) 0 0
\(513\) 10.5176 14.4763i 0.464365 0.639143i
\(514\) 0 0
\(515\) −1.52087 + 0.677137i −0.0670175 + 0.0298382i
\(516\) 0 0
\(517\) 3.75325 31.8397i 0.165068 1.40031i
\(518\) 0 0
\(519\) 4.95773 15.2583i 0.217620 0.669766i
\(520\) 0 0
\(521\) 5.06120 + 3.67718i 0.221735 + 0.161100i 0.693107 0.720834i \(-0.256241\pi\)
−0.471372 + 0.881934i \(0.656241\pi\)
\(522\) 0 0
\(523\) −33.3151 + 10.8247i −1.45677 + 0.473332i −0.927080 0.374862i \(-0.877690\pi\)
−0.529685 + 0.848194i \(0.677690\pi\)
\(524\) 0 0
\(525\) −9.15722 15.8607i −0.399654 0.692216i
\(526\) 0 0
\(527\) 2.14429i 0.0934068i
\(528\) 0 0
\(529\) 22.9881 0.999481
\(530\) 0 0
\(531\) −13.5582 + 9.85063i −0.588377 + 0.427481i
\(532\) 0 0
\(533\) 11.8174 3.83972i 0.511870 0.166317i
\(534\) 0 0
\(535\) 1.46977 + 13.9838i 0.0635438 + 0.604570i
\(536\) 0 0
\(537\) −16.1011 5.23156i −0.694813 0.225758i
\(538\) 0 0
\(539\) 22.3758 48.5971i 0.963794 2.09323i
\(540\) 0 0
\(541\) 9.09994 28.0067i 0.391237 1.20410i −0.540617 0.841269i \(-0.681809\pi\)
0.931854 0.362834i \(-0.118191\pi\)
\(542\) 0 0
\(543\) −2.19720 + 3.02418i −0.0942908 + 0.129780i
\(544\) 0 0
\(545\) 5.33506 + 3.08019i 0.228529 + 0.131941i
\(546\) 0 0
\(547\) −2.48910 3.42595i −0.106426 0.146483i 0.752482 0.658613i \(-0.228857\pi\)
−0.858908 + 0.512130i \(0.828857\pi\)
\(548\) 0 0
\(549\) 14.9550 0.638263
\(550\) 0 0
\(551\) −22.6997 −0.967038
\(552\) 0 0
\(553\) −15.3492 21.1263i −0.652713 0.898383i
\(554\) 0 0
\(555\) 13.1626 + 7.59943i 0.558723 + 0.322578i
\(556\) 0 0
\(557\) 3.08098 4.24061i 0.130545 0.179680i −0.738740 0.673990i \(-0.764579\pi\)
0.869286 + 0.494310i \(0.164579\pi\)
\(558\) 0 0
\(559\) −6.19923 + 19.0793i −0.262199 + 0.806967i
\(560\) 0 0
\(561\) 0.907416 + 4.55067i 0.0383111 + 0.192130i
\(562\) 0 0
\(563\) −12.2182 3.96993i −0.514935 0.167312i 0.0400105 0.999199i \(-0.487261\pi\)
−0.554945 + 0.831887i \(0.687261\pi\)
\(564\) 0 0
\(565\) 3.25996 + 31.0160i 0.137147 + 1.30485i
\(566\) 0 0
\(567\) 18.8280 6.11758i 0.790700 0.256914i
\(568\) 0 0
\(569\) 1.14709 0.833412i 0.0480886 0.0349384i −0.563481 0.826129i \(-0.690538\pi\)
0.611570 + 0.791190i \(0.290538\pi\)
\(570\) 0 0
\(571\) 31.9080 1.33531 0.667653 0.744472i \(-0.267299\pi\)
0.667653 + 0.744472i \(0.267299\pi\)
\(572\) 0 0
\(573\) 8.12826i 0.339563i
\(574\) 0 0
\(575\) −0.473244 + 0.273229i −0.0197356 + 0.0113944i
\(576\) 0 0
\(577\) 9.75941 3.17103i 0.406290 0.132011i −0.0987405 0.995113i \(-0.531481\pi\)
0.505030 + 0.863102i \(0.331481\pi\)
\(578\) 0 0
\(579\) 3.37468 + 2.45185i 0.140247 + 0.101895i
\(580\) 0 0
\(581\) 12.9926 39.9870i 0.539023 1.65894i
\(582\) 0 0
\(583\) −1.76113 3.14125i −0.0729387 0.130097i
\(584\) 0 0
\(585\) −14.4590 + 6.43758i −0.597805 + 0.266161i
\(586\) 0 0
\(587\) 1.59687 2.19791i 0.0659100 0.0907173i −0.774789 0.632219i \(-0.782144\pi\)
0.840699 + 0.541502i \(0.182144\pi\)
\(588\) 0 0
\(589\) 1.56359 + 4.81223i 0.0644265 + 0.198284i
\(590\) 0 0
\(591\) −1.81334 + 1.31747i −0.0745907 + 0.0541933i
\(592\) 0 0
\(593\) 41.5417i 1.70591i 0.521983 + 0.852956i \(0.325192\pi\)
−0.521983 + 0.852956i \(0.674808\pi\)
\(594\) 0 0
\(595\) −14.6818 + 13.2196i −0.601896 + 0.541951i
\(596\) 0 0
\(597\) −1.32986 1.83040i −0.0544276 0.0749131i
\(598\) 0 0
\(599\) −10.2599 31.5767i −0.419208 1.29019i −0.908432 0.418032i \(-0.862720\pi\)
0.489224 0.872158i \(-0.337280\pi\)
\(600\) 0 0
\(601\) 25.0930 + 18.2312i 1.02357 + 0.743664i 0.967011 0.254735i \(-0.0819883\pi\)
0.0565554 + 0.998399i \(0.481988\pi\)
\(602\) 0 0
\(603\) 34.7026 + 11.2755i 1.41320 + 0.459176i
\(604\) 0 0
\(605\) −10.5682 + 22.2107i −0.429658 + 0.902992i
\(606\) 0 0
\(607\) 31.2702 + 10.1603i 1.26922 + 0.412395i 0.864771 0.502166i \(-0.167463\pi\)
0.404449 + 0.914561i \(0.367463\pi\)
\(608\) 0 0
\(609\) 15.5174 + 11.2741i 0.628797 + 0.456848i
\(610\) 0 0
\(611\) 8.73701 + 26.8898i 0.353462 + 1.08784i
\(612\) 0 0
\(613\) 4.31112 + 5.93375i 0.174125 + 0.239662i 0.887155 0.461471i \(-0.152678\pi\)
−0.713031 + 0.701133i \(0.752678\pi\)
\(614\) 0 0
\(615\) −4.84089 5.37634i −0.195204 0.216795i
\(616\) 0 0
\(617\) 12.5755i 0.506269i −0.967431 0.253135i \(-0.918538\pi\)
0.967431 0.253135i \(-0.0814615\pi\)
\(618\) 0 0
\(619\) −9.56190 + 6.94713i −0.384325 + 0.279229i −0.763126 0.646250i \(-0.776337\pi\)
0.378801 + 0.925478i \(0.376337\pi\)
\(620\) 0 0
\(621\) 0.139408 + 0.429053i 0.00559425 + 0.0172173i
\(622\) 0 0
\(623\) −35.7896 + 49.2602i −1.43388 + 1.97357i
\(624\) 0 0
\(625\) −12.4999 + 21.6507i −0.499995 + 0.866028i
\(626\) 0 0
\(627\) 5.35471 + 9.55096i 0.213847 + 0.381429i
\(628\) 0 0
\(629\) 5.06653 15.5932i 0.202016 0.621740i
\(630\) 0 0
\(631\) −19.5463 14.2012i −0.778127 0.565343i 0.126289 0.991993i \(-0.459693\pi\)
−0.904416 + 0.426651i \(0.859693\pi\)
\(632\) 0 0
\(633\) 9.72254 3.15904i 0.386436 0.125561i
\(634\) 0 0
\(635\) 14.4687 + 3.07539i 0.574173 + 0.122043i
\(636\) 0 0
\(637\) 47.1821i 1.86942i
\(638\) 0 0
\(639\) −9.41142 −0.372310
\(640\) 0 0
\(641\) 7.93668 5.76633i 0.313480 0.227757i −0.419908 0.907567i \(-0.637938\pi\)
0.733388 + 0.679810i \(0.237938\pi\)
\(642\) 0 0
\(643\) −12.9114 + 4.19515i −0.509174 + 0.165441i −0.552327 0.833628i \(-0.686260\pi\)
0.0431525 + 0.999068i \(0.486260\pi\)
\(644\) 0 0
\(645\) 11.6162 1.22093i 0.457389 0.0480742i
\(646\) 0 0
\(647\) 17.5900 + 5.71535i 0.691535 + 0.224693i 0.633639 0.773629i \(-0.281561\pi\)
0.0578966 + 0.998323i \(0.481561\pi\)
\(648\) 0 0
\(649\) −4.49153 22.5249i −0.176308 0.884181i
\(650\) 0 0
\(651\) 1.32119 4.06619i 0.0517814 0.159367i
\(652\) 0 0
\(653\) −10.0391 + 13.8176i −0.392860 + 0.540726i −0.958934 0.283629i \(-0.908462\pi\)
0.566074 + 0.824354i \(0.308462\pi\)
\(654\) 0 0
\(655\) −28.2658 16.3192i −1.10443 0.637643i
\(656\) 0 0
\(657\) −20.6018 28.3560i −0.803754 1.10627i
\(658\) 0 0
\(659\) 44.5096 1.73385 0.866924 0.498441i \(-0.166094\pi\)
0.866924 + 0.498441i \(0.166094\pi\)
\(660\) 0 0
\(661\) 27.5948 1.07331 0.536656 0.843801i \(-0.319687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(662\) 0 0
\(663\) −2.40534 3.31066i −0.0934156 0.128576i
\(664\) 0 0
\(665\) −23.3094 + 40.3733i −0.903901 + 1.56561i
\(666\) 0 0
\(667\) 0.336391 0.463002i 0.0130251 0.0179275i
\(668\) 0 0
\(669\) 0.237464 0.730839i 0.00918089 0.0282559i
\(670\) 0 0
\(671\) −8.57211 + 18.6174i −0.330923 + 0.718718i
\(672\) 0 0
\(673\) 1.57477 + 0.511675i 0.0607031 + 0.0197236i 0.339211 0.940710i \(-0.389840\pi\)
−0.278508 + 0.960434i \(0.589840\pi\)
\(674\) 0 0
\(675\) 15.3379 + 13.8102i 0.590354 + 0.531554i
\(676\) 0 0
\(677\) 9.21996 2.99575i 0.354352 0.115136i −0.126431 0.991975i \(-0.540352\pi\)
0.480783 + 0.876839i \(0.340352\pi\)
\(678\) 0 0
\(679\) 9.00970 6.54593i 0.345761 0.251210i
\(680\) 0 0
\(681\) 4.26608 0.163477
\(682\) 0 0
\(683\) 21.7907i 0.833796i −0.908953 0.416898i \(-0.863117\pi\)
0.908953 0.416898i \(-0.136883\pi\)
\(684\) 0 0
\(685\) 26.2921 + 5.58853i 1.00457 + 0.213527i
\(686\) 0 0
\(687\) −14.5926 + 4.74142i −0.556742 + 0.180897i
\(688\) 0 0
\(689\) 2.56937 + 1.86676i 0.0978853 + 0.0711178i
\(690\) 0 0
\(691\) −11.8700 + 36.5320i −0.451554 + 1.38974i 0.423579 + 0.905859i \(0.360774\pi\)
−0.875133 + 0.483882i \(0.839226\pi\)
\(692\) 0 0
\(693\) −4.51906 + 38.3362i −0.171665 + 1.45627i
\(694\) 0 0
\(695\) −6.05430 13.5981i −0.229653 0.515807i
\(696\) 0 0
\(697\) −4.58720 + 6.31374i −0.173753 + 0.239150i
\(698\) 0 0
\(699\) −2.37352 7.30495i −0.0897748 0.276299i
\(700\) 0 0
\(701\) −7.14600 + 5.19187i −0.269901 + 0.196094i −0.714500 0.699635i \(-0.753346\pi\)
0.444600 + 0.895729i \(0.353346\pi\)
\(702\) 0 0
\(703\) 38.6887i 1.45917i
\(704\) 0 0
\(705\) 12.2335 11.0151i 0.460739 0.414853i
\(706\) 0 0
\(707\) −40.5571 55.8221i −1.52531 2.09941i
\(708\) 0 0
\(709\) −1.42580 4.38818i −0.0535472 0.164801i 0.920707 0.390256i \(-0.127613\pi\)
−0.974254 + 0.225454i \(0.927613\pi\)
\(710\) 0 0
\(711\) 10.6301 + 7.72321i 0.398659 + 0.289643i
\(712\) 0 0
\(713\) −0.121325 0.0394210i −0.00454367 0.00147633i
\(714\) 0 0
\(715\) 0.273675 21.6899i 0.0102348 0.811157i
\(716\) 0 0
\(717\) −1.19165 0.387191i −0.0445030 0.0144599i
\(718\) 0 0
\(719\) −0.974716 0.708173i −0.0363508 0.0264104i 0.569462 0.822018i \(-0.307152\pi\)
−0.605812 + 0.795608i \(0.707152\pi\)
\(720\) 0 0
\(721\) −1.10652 3.40551i −0.0412089 0.126828i
\(722\) 0 0
\(723\) 1.10603 + 1.52232i 0.0411338 + 0.0566158i
\(724\) 0 0
\(725\) 2.73673 26.0390i 0.101640 0.967065i
\(726\) 0 0
\(727\) 9.92301i 0.368024i 0.982924 + 0.184012i \(0.0589085\pi\)
−0.982924 + 0.184012i \(0.941091\pi\)
\(728\) 0 0
\(729\) −0.428794 + 0.311537i −0.0158813 + 0.0115384i
\(730\) 0 0
\(731\) −3.89358 11.9832i −0.144009 0.443215i
\(732\) 0 0
\(733\) 17.1392 23.5900i 0.633049 0.871318i −0.365172 0.930940i \(-0.618990\pi\)
0.998221 + 0.0596224i \(0.0189897\pi\)
\(734\) 0 0
\(735\) 25.0959 11.1735i 0.925677 0.412140i
\(736\) 0 0
\(737\) −33.9282 + 36.7381i −1.24976 + 1.35326i
\(738\) 0 0
\(739\) −0.418431 + 1.28780i −0.0153922 + 0.0473724i −0.958458 0.285235i \(-0.907928\pi\)
0.943065 + 0.332607i \(0.107928\pi\)
\(740\) 0 0
\(741\) −7.81216 5.67586i −0.286987 0.208508i
\(742\) 0 0
\(743\) 33.9985 11.0468i 1.24728 0.405267i 0.390337 0.920672i \(-0.372359\pi\)
0.856947 + 0.515405i \(0.172359\pi\)
\(744\) 0 0
\(745\) −6.98606 + 32.8671i −0.255949 + 1.20416i
\(746\) 0 0
\(747\) 21.1556i 0.774043i
\(748\) 0 0
\(749\) −30.2429 −1.10505
\(750\) 0 0
\(751\) 36.2063 26.3054i 1.32119 0.959899i 0.321271 0.946987i \(-0.395890\pi\)
0.999917 0.0129112i \(-0.00410989\pi\)
\(752\) 0 0
\(753\) −1.08484 + 0.352487i −0.0395339 + 0.0128453i
\(754\) 0 0
\(755\) 45.1450 4.74500i 1.64299 0.172688i
\(756\) 0 0
\(757\) 29.6866 + 9.64576i 1.07898 + 0.350581i 0.793978 0.607947i \(-0.208007\pi\)
0.284999 + 0.958528i \(0.408007\pi\)
\(758\) 0 0
\(759\) −0.274162 0.0323181i −0.00995145 0.00117307i
\(760\) 0 0
\(761\) −10.4937 + 32.2961i −0.380395 + 1.17073i 0.559372 + 0.828917i \(0.311042\pi\)
−0.939766 + 0.341817i \(0.888958\pi\)
\(762\) 0 0
\(763\) −7.78826 + 10.7196i −0.281954 + 0.388076i
\(764\) 0 0
\(765\) 4.97037 8.60896i 0.179704 0.311258i
\(766\) 0 0
\(767\) 11.9059 + 16.3871i 0.429899 + 0.591705i
\(768\) 0 0
\(769\) 13.4436 0.484787 0.242393 0.970178i \(-0.422068\pi\)
0.242393 + 0.970178i \(0.422068\pi\)
\(770\) 0 0
\(771\) −23.5533 −0.848250
\(772\) 0 0
\(773\) 16.4009 + 22.5740i 0.589901 + 0.811929i 0.994737 0.102461i \(-0.0326715\pi\)
−0.404836 + 0.914389i \(0.632672\pi\)
\(774\) 0 0
\(775\) −5.70866 + 1.21343i −0.205061 + 0.0435878i
\(776\) 0 0
\(777\) −19.2152 + 26.4474i −0.689341 + 0.948797i
\(778\) 0 0
\(779\) −5.69072 + 17.5142i −0.203891 + 0.627513i
\(780\) 0 0
\(781\) 5.39457 11.7163i 0.193033 0.419241i
\(782\) 0 0
\(783\) −20.5573 6.67948i −0.734659 0.238705i
\(784\) 0 0
\(785\) 0.312079 + 2.96919i 0.0111386 + 0.105975i
\(786\) 0 0
\(787\) 22.7773 7.40080i 0.811924 0.263810i 0.126512 0.991965i \(-0.459622\pi\)
0.685412 + 0.728155i \(0.259622\pi\)
\(788\) 0 0
\(789\) −5.82644 + 4.23315i −0.207427 + 0.150704i
\(790\) 0 0
\(791\) −67.0787 −2.38504
\(792\) 0 0
\(793\) 18.0753i 0.641873i
\(794\) 0 0
\(795\) 0.384452 1.80872i 0.0136351 0.0641485i
\(796\) 0 0
\(797\) −20.6195 + 6.69969i −0.730381 + 0.237315i −0.650518 0.759491i \(-0.725448\pi\)
−0.0798631 + 0.996806i \(0.525448\pi\)
\(798\) 0 0
\(799\) −14.3665 10.4379i −0.508249 0.369265i
\(800\) 0 0
\(801\) 9.46746 29.1378i 0.334516 1.02954i
\(802\) 0 0
\(803\) 47.1092 9.39369i 1.66245 0.331496i
\(804\) 0 0
\(805\) −0.478061 1.07374i −0.0168494 0.0378443i
\(806\) 0 0
\(807\) 7.86746 10.8286i 0.276948 0.381186i
\(808\) 0 0
\(809\) 14.5275 + 44.7109i 0.510759 + 1.57195i 0.790869 + 0.611985i \(0.209629\pi\)
−0.280111 + 0.959968i \(0.590371\pi\)
\(810\) 0 0
\(811\) −11.5006 + 8.35565i −0.403839 + 0.293407i −0.771103 0.636710i \(-0.780295\pi\)
0.367264 + 0.930117i \(0.380295\pi\)
\(812\) 0 0
\(813\) 5.60426i 0.196550i
\(814\) 0 0
\(815\) −18.5906 20.6469i −0.651202 0.723230i
\(816\) 0 0
\(817\) −17.4760 24.0536i −0.611407 0.841530i
\(818\) 0 0
\(819\) −10.5197 32.3763i −0.367588 1.13132i
\(820\) 0 0
\(821\) 23.3555 + 16.9688i 0.815114 + 0.592215i 0.915309 0.402753i \(-0.131947\pi\)
−0.100195 + 0.994968i \(0.531947\pi\)
\(822\) 0 0
\(823\) 21.9288 + 7.12510i 0.764390 + 0.248365i 0.665162 0.746699i \(-0.268363\pi\)
0.0992284 + 0.995065i \(0.468363\pi\)
\(824\) 0 0
\(825\) −11.6016 + 4.99096i −0.403915 + 0.173763i
\(826\) 0 0
\(827\) 13.4562 + 4.37218i 0.467918 + 0.152036i 0.533480 0.845813i \(-0.320884\pi\)
−0.0655620 + 0.997848i \(0.520884\pi\)
\(828\) 0 0
\(829\) −12.5848 9.14336i −0.437087 0.317562i 0.347390 0.937721i \(-0.387068\pi\)
−0.784476 + 0.620159i \(0.787068\pi\)
\(830\) 0 0
\(831\) −2.74287 8.44168i −0.0951491 0.292839i
\(832\) 0 0
\(833\) −17.4184 23.9743i −0.603511 0.830662i
\(834\) 0 0
\(835\) −12.1102 13.4497i −0.419091 0.465446i
\(836\) 0 0
\(837\) 4.81815i 0.166540i
\(838\) 0 0
\(839\) −10.5380 + 7.65634i −0.363814 + 0.264326i −0.754641 0.656138i \(-0.772189\pi\)
0.390827 + 0.920464i \(0.372189\pi\)
\(840\) 0 0
\(841\) −0.487997 1.50190i −0.0168275 0.0517896i
\(842\) 0 0
\(843\) 12.8173 17.6416i 0.441453 0.607608i
\(844\) 0 0
\(845\) −4.04265 9.07991i −0.139071 0.312358i
\(846\) 0 0
\(847\) −45.1344 27.5999i −1.55084 0.948343i
\(848\) 0 0
\(849\) −5.64203 + 17.3644i −0.193634 + 0.595944i
\(850\) 0 0
\(851\) 0.789128 + 0.573335i 0.0270509 + 0.0196537i
\(852\) 0 0
\(853\) −19.8443 + 6.44781i −0.679456 + 0.220769i −0.628357 0.777925i \(-0.716272\pi\)
−0.0510990 + 0.998694i \(0.516272\pi\)
\(854\) 0 0
\(855\) 4.87698 22.9446i 0.166789 0.784688i
\(856\) 0 0
\(857\) 43.8589i 1.49819i −0.662463 0.749095i \(-0.730489\pi\)
0.662463 0.749095i \(-0.269511\pi\)
\(858\) 0 0
\(859\) 25.0949 0.856228 0.428114 0.903725i \(-0.359178\pi\)
0.428114 + 0.903725i \(0.359178\pi\)
\(860\) 0 0
\(861\) 12.5888 9.14631i 0.429026 0.311705i
\(862\) 0 0
\(863\) 21.8390 7.09591i 0.743407 0.241548i 0.0872654 0.996185i \(-0.472187\pi\)
0.656142 + 0.754637i \(0.272187\pi\)
\(864\) 0 0
\(865\) −4.92384 46.8465i −0.167416 1.59283i
\(866\) 0 0
\(867\) −9.86898 3.20663i −0.335168 0.108903i
\(868\) 0 0
\(869\) −15.7077 + 8.80647i −0.532847 + 0.298739i
\(870\) 0 0
\(871\) 13.6282 41.9432i 0.461773 1.42119i
\(872\) 0 0
\(873\) −3.29370 + 4.53339i −0.111475 + 0.153432i
\(874\) 0 0
\(875\) −43.5024 31.6060i −1.47065 1.06848i
\(876\) 0 0
\(877\) −3.29334 4.53289i −0.111208 0.153065i 0.749785 0.661682i \(-0.230157\pi\)
−0.860993 + 0.508617i \(0.830157\pi\)
\(878\) 0 0
\(879\) −6.65364 −0.224422
\(880\) 0 0
\(881\) −7.93724 −0.267412 −0.133706 0.991021i \(-0.542688\pi\)
−0.133706 + 0.991021i \(0.542688\pi\)
\(882\) 0 0
\(883\) 6.72079 + 9.25037i 0.226172 + 0.311300i 0.906989 0.421154i \(-0.138375\pi\)
−0.680817 + 0.732454i \(0.738375\pi\)
\(884\) 0 0
\(885\) 5.89672 10.2135i 0.198216 0.343321i
\(886\) 0 0
\(887\) −7.83793 + 10.7880i −0.263172 + 0.362225i −0.920070 0.391754i \(-0.871868\pi\)
0.656898 + 0.753980i \(0.271868\pi\)
\(888\) 0 0
\(889\) −9.83153 + 30.2583i −0.329739 + 1.01483i
\(890\) 0 0
\(891\) −2.66968 13.3884i −0.0894376 0.448528i
\(892\) 0 0
\(893\) −39.8524 12.9488i −1.33361 0.433316i
\(894\) 0 0
\(895\) −49.4339 + 5.19579i −1.65239 + 0.173676i
\(896\) 0 0
\(897\) 0.231540 0.0752318i 0.00773088 0.00251192i
\(898\) 0 0
\(899\) 4.94491 3.59269i 0.164922 0.119823i
\(900\) 0 0
\(901\) −1.99472 −0.0664537
\(902\) 0 0
\(903\) 25.1226i 0.836029i
\(904\) 0 0
\(905\) −2.28186 + 10.7354i −0.0758515 + 0.356856i
\(906\) 0 0
\(907\) 37.0248 12.0301i 1.22939 0.399453i 0.378897 0.925439i \(-0.376304\pi\)
0.850493 + 0.525986i \(0.176304\pi\)
\(908\) 0 0
\(909\) 28.0879 + 20.4070i 0.931615 + 0.676858i
\(910\) 0 0
\(911\) −11.4970 + 35.3840i −0.380912 + 1.17233i 0.558491 + 0.829510i \(0.311380\pi\)
−0.939403 + 0.342815i \(0.888620\pi\)
\(912\) 0 0
\(913\) −26.3366 12.1263i −0.871613 0.401321i
\(914\) 0 0
\(915\) −9.61418 + 4.28052i −0.317835 + 0.141510i
\(916\) 0 0
\(917\) 41.2631 56.7938i 1.36263 1.87550i
\(918\) 0 0
\(919\) 6.35621 + 19.5624i 0.209672 + 0.645305i 0.999489 + 0.0319619i \(0.0101755\pi\)
−0.789817 + 0.613343i \(0.789824\pi\)
\(920\) 0 0
\(921\) 4.23292 3.07540i 0.139480 0.101338i
\(922\) 0 0
\(923\) 11.3751i 0.374416i
\(924\) 0 0
\(925\) 44.3802 + 4.66441i 1.45921 + 0.153365i
\(926\) 0 0
\(927\) 1.05903 + 1.45763i 0.0347830 + 0.0478747i
\(928\) 0 0
\(929\) 5.42422 + 16.6940i 0.177963 + 0.547713i 0.999756 0.0220722i \(-0.00702638\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(930\) 0 0
\(931\) −56.5721 41.1020i −1.85408 1.34707i
\(932\) 0 0
\(933\) 10.4857 + 3.40700i 0.343285 + 0.111540i
\(934\) 0 0
\(935\) 7.86829 + 11.1222i 0.257321 + 0.363735i
\(936\) 0 0
\(937\) 50.7254 + 16.4817i 1.65713 + 0.538434i 0.980267 0.197677i \(-0.0633398\pi\)
0.676861 + 0.736111i \(0.263340\pi\)
\(938\) 0 0
\(939\) −16.6404 12.0900i −0.543039 0.394541i
\(940\) 0 0
\(941\) −13.7754 42.3965i −0.449067 1.38209i −0.877962 0.478731i \(-0.841097\pi\)
0.428895 0.903354i \(-0.358903\pi\)
\(942\) 0 0
\(943\) −0.272904 0.375620i −0.00888697 0.0122319i
\(944\) 0 0
\(945\) −32.9896 + 29.7040i −1.07315 + 0.966272i
\(946\) 0 0
\(947\) 35.1770i 1.14310i 0.820567 + 0.571550i \(0.193658\pi\)
−0.820567 + 0.571550i \(0.806342\pi\)
\(948\) 0 0
\(949\) −34.2724 + 24.9004i −1.11253 + 0.808301i
\(950\) 0 0
\(951\) 6.91579 + 21.2846i 0.224260 + 0.690201i
\(952\) 0 0
\(953\) −35.9080 + 49.4231i −1.16317 + 1.60097i −0.464404 + 0.885624i \(0.653731\pi\)
−0.698770 + 0.715347i \(0.746269\pi\)
\(954\) 0 0
\(955\) −9.70677 21.8017i −0.314104 0.705485i
\(956\) 0 0
\(957\) 8.97387 9.71707i 0.290084 0.314108i
\(958\) 0 0
\(959\) −17.8656 + 54.9847i −0.576910 + 1.77555i
\(960\) 0 0
\(961\) 23.9773 + 17.4205i 0.773461 + 0.561952i
\(962\) 0 0
\(963\) 14.4724 4.70238i 0.466368 0.151532i
\(964\) 0 0
\(965\) 11.9796 + 2.54632i 0.385636 + 0.0819689i
\(966\) 0 0
\(967\) 18.8968i 0.607680i −0.952723 0.303840i \(-0.901731\pi\)
0.952723 0.303840i \(-0.0982688\pi\)
\(968\) 0 0
\(969\) 6.06492 0.194833
\(970\) 0 0
\(971\) −25.5089 + 18.5333i −0.818620 + 0.594763i −0.916317 0.400454i \(-0.868853\pi\)
0.0976966 + 0.995216i \(0.468853\pi\)
\(972\) 0 0
\(973\) 30.4488 9.89340i 0.976142 0.317168i
\(974\) 0 0
\(975\) 7.45270 8.27711i 0.238677 0.265080i
\(976\) 0 0
\(977\) −44.0374 14.3086i −1.40888 0.457774i −0.496830 0.867848i \(-0.665503\pi\)
−0.912052 + 0.410074i \(0.865503\pi\)
\(978\) 0 0
\(979\) 30.8470 + 28.4877i 0.985873 + 0.910470i
\(980\) 0 0
\(981\) 2.06023 6.34075i 0.0657782 0.202445i
\(982\) 0 0
\(983\) 10.3360 14.2263i 0.329667 0.453747i −0.611721 0.791073i \(-0.709523\pi\)
0.941388 + 0.337326i \(0.109523\pi\)
\(984\) 0 0
\(985\) −3.29043 + 5.69921i −0.104842 + 0.181592i
\(986\) 0 0
\(987\) 20.8118 + 28.6449i 0.662446 + 0.911779i
\(988\) 0 0
\(989\) 0.749599 0.0238358
\(990\) 0 0
\(991\) 28.9590 0.919912 0.459956 0.887942i \(-0.347865\pi\)
0.459956 + 0.887942i \(0.347865\pi\)
\(992\) 0 0
\(993\) 8.78725 + 12.0946i 0.278855 + 0.383811i
\(994\) 0 0
\(995\) −5.75282 3.32138i −0.182377 0.105295i
\(996\) 0 0
\(997\) 5.20788 7.16803i 0.164935 0.227014i −0.718547 0.695478i \(-0.755193\pi\)
0.883482 + 0.468464i \(0.155193\pi\)
\(998\) 0 0
\(999\) 11.3843 35.0373i 0.360184 1.10853i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.t.a.9.4 yes 24
4.3 odd 2 880.2.cd.d.449.3 24
5.2 odd 4 1100.2.n.f.801.4 24
5.3 odd 4 1100.2.n.f.801.3 24
5.4 even 2 inner 220.2.t.a.9.3 24
11.4 even 5 2420.2.b.i.969.6 12
11.5 even 5 inner 220.2.t.a.49.3 yes 24
11.7 odd 10 2420.2.b.h.969.6 12
20.19 odd 2 880.2.cd.d.449.4 24
44.27 odd 10 880.2.cd.d.49.4 24
55.4 even 10 2420.2.b.i.969.7 12
55.27 odd 20 1100.2.n.f.401.4 24
55.29 odd 10 2420.2.b.h.969.7 12
55.38 odd 20 1100.2.n.f.401.3 24
55.49 even 10 inner 220.2.t.a.49.4 yes 24
220.159 odd 10 880.2.cd.d.49.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.t.a.9.3 24 5.4 even 2 inner
220.2.t.a.9.4 yes 24 1.1 even 1 trivial
220.2.t.a.49.3 yes 24 11.5 even 5 inner
220.2.t.a.49.4 yes 24 55.49 even 10 inner
880.2.cd.d.49.3 24 220.159 odd 10
880.2.cd.d.49.4 24 44.27 odd 10
880.2.cd.d.449.3 24 4.3 odd 2
880.2.cd.d.449.4 24 20.19 odd 2
1100.2.n.f.401.3 24 55.38 odd 20
1100.2.n.f.401.4 24 55.27 odd 20
1100.2.n.f.801.3 24 5.3 odd 4
1100.2.n.f.801.4 24 5.2 odd 4
2420.2.b.h.969.6 12 11.7 odd 10
2420.2.b.h.969.7 12 55.29 odd 10
2420.2.b.i.969.6 12 11.4 even 5
2420.2.b.i.969.7 12 55.4 even 10