Properties

Label 220.2.t.a.69.5
Level $220$
Weight $2$
Character 220.69
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(9,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.t (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.5
Character \(\chi\) \(=\) 220.69
Dual form 220.2.t.a.169.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89864 - 0.616907i) q^{3} +(0.978101 + 2.01080i) q^{5} +(0.430637 + 0.139922i) q^{7} +(0.797226 - 0.579219i) q^{9} +(1.01674 + 3.15693i) q^{11} +(-3.87097 - 5.32793i) q^{13} +(3.09754 + 3.21440i) q^{15} +(0.696785 - 0.959042i) q^{17} +(-0.575851 - 1.77229i) q^{19} +0.903946 q^{21} -5.37034i q^{23} +(-3.08664 + 3.93353i) q^{25} +(-2.36396 + 3.25371i) q^{27} +(2.35601 - 7.25106i) q^{29} +(-2.83026 + 2.05631i) q^{31} +(3.87797 + 5.36666i) q^{33} +(0.139850 + 1.00278i) q^{35} +(5.50419 + 1.78842i) q^{37} +(-10.6364 - 7.72781i) q^{39} +(0.103203 + 0.317626i) q^{41} +10.9423i q^{43} +(1.94446 + 1.03653i) q^{45} +(-6.09886 + 1.98164i) q^{47} +(-5.49725 - 3.99399i) q^{49} +(0.731307 - 2.25073i) q^{51} +(-1.34833 - 1.85581i) q^{53} +(-5.35349 + 5.13227i) q^{55} +(-2.18667 - 3.00970i) q^{57} +(-0.449071 + 1.38210i) q^{59} +(-7.22608 - 5.25006i) q^{61} +(0.424361 - 0.137883i) q^{63} +(6.92720 - 12.9950i) q^{65} -4.37584i q^{67} +(-3.31300 - 10.1964i) q^{69} +(8.91732 + 6.47881i) q^{71} +(-3.36324 - 1.09278i) q^{73} +(-3.43380 + 9.37255i) q^{75} +(-0.00387889 + 1.50176i) q^{77} +(-2.46562 + 1.79138i) q^{79} +(-3.39462 + 10.4476i) q^{81} +(-5.78120 + 7.95714i) q^{83} +(2.60997 + 0.463055i) q^{85} -15.2206i q^{87} +12.7892 q^{89} +(-0.921484 - 2.83604i) q^{91} +(-4.10511 + 5.65021i) q^{93} +(3.00047 - 2.89140i) q^{95} +(8.14443 + 11.2098i) q^{97} +(2.63913 + 1.92787i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{5} + 14 q^{9} - 2 q^{11} - q^{15} + 8 q^{19} - 28 q^{21} + 27 q^{25} - 16 q^{29} - 26 q^{31} + 17 q^{35} + 12 q^{39} + 10 q^{41} - 40 q^{45} - 46 q^{49} - 12 q^{51} - 33 q^{55} - 48 q^{59} - 10 q^{61}+ \cdots + 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.89864 0.616907i 1.09618 0.356171i 0.295550 0.955327i \(-0.404497\pi\)
0.800633 + 0.599156i \(0.204497\pi\)
\(4\) 0 0
\(5\) 0.978101 + 2.01080i 0.437420 + 0.899257i
\(6\) 0 0
\(7\) 0.430637 + 0.139922i 0.162765 + 0.0528857i 0.389266 0.921125i \(-0.372729\pi\)
−0.226501 + 0.974011i \(0.572729\pi\)
\(8\) 0 0
\(9\) 0.797226 0.579219i 0.265742 0.193073i
\(10\) 0 0
\(11\) 1.01674 + 3.15693i 0.306559 + 0.951852i
\(12\) 0 0
\(13\) −3.87097 5.32793i −1.07361 1.47770i −0.866364 0.499413i \(-0.833549\pi\)
−0.207248 0.978288i \(-0.566451\pi\)
\(14\) 0 0
\(15\) 3.09754 + 3.21440i 0.799782 + 0.829954i
\(16\) 0 0
\(17\) 0.696785 0.959042i 0.168995 0.232602i −0.716116 0.697981i \(-0.754082\pi\)
0.885111 + 0.465379i \(0.154082\pi\)
\(18\) 0 0
\(19\) −0.575851 1.77229i −0.132109 0.406590i 0.863020 0.505170i \(-0.168570\pi\)
−0.995129 + 0.0985795i \(0.968570\pi\)
\(20\) 0 0
\(21\) 0.903946 0.197257
\(22\) 0 0
\(23\) 5.37034i 1.11979i −0.828562 0.559897i \(-0.810841\pi\)
0.828562 0.559897i \(-0.189159\pi\)
\(24\) 0 0
\(25\) −3.08664 + 3.93353i −0.617327 + 0.786706i
\(26\) 0 0
\(27\) −2.36396 + 3.25371i −0.454943 + 0.626176i
\(28\) 0 0
\(29\) 2.35601 7.25106i 0.437501 1.34649i −0.453001 0.891510i \(-0.649647\pi\)
0.890502 0.454979i \(-0.150353\pi\)
\(30\) 0 0
\(31\) −2.83026 + 2.05631i −0.508330 + 0.369324i −0.812190 0.583393i \(-0.801725\pi\)
0.303859 + 0.952717i \(0.401725\pi\)
\(32\) 0 0
\(33\) 3.87797 + 5.36666i 0.675068 + 0.934216i
\(34\) 0 0
\(35\) 0.139850 + 1.00278i 0.0236390 + 0.169501i
\(36\) 0 0
\(37\) 5.50419 + 1.78842i 0.904883 + 0.294014i 0.724251 0.689536i \(-0.242186\pi\)
0.180632 + 0.983551i \(0.442186\pi\)
\(38\) 0 0
\(39\) −10.6364 7.72781i −1.70319 1.23744i
\(40\) 0 0
\(41\) 0.103203 + 0.317626i 0.0161176 + 0.0496048i 0.958792 0.284110i \(-0.0916979\pi\)
−0.942674 + 0.333714i \(0.891698\pi\)
\(42\) 0 0
\(43\) 10.9423i 1.66868i 0.551247 + 0.834342i \(0.314152\pi\)
−0.551247 + 0.834342i \(0.685848\pi\)
\(44\) 0 0
\(45\) 1.94446 + 1.03653i 0.289863 + 0.154517i
\(46\) 0 0
\(47\) −6.09886 + 1.98164i −0.889611 + 0.289052i −0.717942 0.696103i \(-0.754916\pi\)
−0.171669 + 0.985155i \(0.554916\pi\)
\(48\) 0 0
\(49\) −5.49725 3.99399i −0.785321 0.570569i
\(50\) 0 0
\(51\) 0.731307 2.25073i 0.102404 0.315166i
\(52\) 0 0
\(53\) −1.34833 1.85581i −0.185207 0.254915i 0.706310 0.707902i \(-0.250358\pi\)
−0.891517 + 0.452987i \(0.850358\pi\)
\(54\) 0 0
\(55\) −5.35349 + 5.13227i −0.721864 + 0.692035i
\(56\) 0 0
\(57\) −2.18667 3.00970i −0.289632 0.398644i
\(58\) 0 0
\(59\) −0.449071 + 1.38210i −0.0584641 + 0.179934i −0.976024 0.217664i \(-0.930156\pi\)
0.917560 + 0.397598i \(0.130156\pi\)
\(60\) 0 0
\(61\) −7.22608 5.25006i −0.925205 0.672201i 0.0196090 0.999808i \(-0.493758\pi\)
−0.944814 + 0.327607i \(0.893758\pi\)
\(62\) 0 0
\(63\) 0.424361 0.137883i 0.0534644 0.0173716i
\(64\) 0 0
\(65\) 6.92720 12.9950i 0.859214 1.61183i
\(66\) 0 0
\(67\) 4.37584i 0.534593i −0.963614 0.267297i \(-0.913870\pi\)
0.963614 0.267297i \(-0.0861304\pi\)
\(68\) 0 0
\(69\) −3.31300 10.1964i −0.398839 1.22750i
\(70\) 0 0
\(71\) 8.91732 + 6.47881i 1.05829 + 0.768894i 0.973772 0.227528i \(-0.0730643\pi\)
0.0845200 + 0.996422i \(0.473064\pi\)
\(72\) 0 0
\(73\) −3.36324 1.09278i −0.393638 0.127901i 0.105508 0.994418i \(-0.466353\pi\)
−0.499146 + 0.866518i \(0.666353\pi\)
\(74\) 0 0
\(75\) −3.43380 + 9.37255i −0.396501 + 1.08225i
\(76\) 0 0
\(77\) −0.00387889 + 1.50176i −0.000442040 + 0.171141i
\(78\) 0 0
\(79\) −2.46562 + 1.79138i −0.277404 + 0.201546i −0.717784 0.696265i \(-0.754844\pi\)
0.440380 + 0.897811i \(0.354844\pi\)
\(80\) 0 0
\(81\) −3.39462 + 10.4476i −0.377180 + 1.16084i
\(82\) 0 0
\(83\) −5.78120 + 7.95714i −0.634569 + 0.873409i −0.998311 0.0580905i \(-0.981499\pi\)
0.363743 + 0.931500i \(0.381499\pi\)
\(84\) 0 0
\(85\) 2.60997 + 0.463055i 0.283091 + 0.0502254i
\(86\) 0 0
\(87\) 15.2206i 1.63182i
\(88\) 0 0
\(89\) 12.7892 1.35566 0.677828 0.735220i \(-0.262921\pi\)
0.677828 + 0.735220i \(0.262921\pi\)
\(90\) 0 0
\(91\) −0.921484 2.83604i −0.0965978 0.297297i
\(92\) 0 0
\(93\) −4.10511 + 5.65021i −0.425681 + 0.585899i
\(94\) 0 0
\(95\) 3.00047 2.89140i 0.307842 0.296651i
\(96\) 0 0
\(97\) 8.14443 + 11.2098i 0.826941 + 1.13819i 0.988485 + 0.151321i \(0.0483528\pi\)
−0.161543 + 0.986866i \(0.551647\pi\)
\(98\) 0 0
\(99\) 2.63913 + 1.92787i 0.265243 + 0.193759i
\(100\) 0 0
\(101\) 4.50885 3.27587i 0.448647 0.325961i −0.340414 0.940276i \(-0.610567\pi\)
0.789061 + 0.614314i \(0.210567\pi\)
\(102\) 0 0
\(103\) 10.6047 + 3.44568i 1.04491 + 0.339513i 0.780671 0.624943i \(-0.214878\pi\)
0.264244 + 0.964456i \(0.414878\pi\)
\(104\) 0 0
\(105\) 0.884150 + 1.81765i 0.0862842 + 0.177385i
\(106\) 0 0
\(107\) 6.86236 2.22972i 0.663409 0.215555i 0.0420918 0.999114i \(-0.486598\pi\)
0.621317 + 0.783559i \(0.286598\pi\)
\(108\) 0 0
\(109\) 5.14652 0.492947 0.246473 0.969150i \(-0.420728\pi\)
0.246473 + 0.969150i \(0.420728\pi\)
\(110\) 0 0
\(111\) 11.5538 1.09664
\(112\) 0 0
\(113\) 9.56572 3.10809i 0.899868 0.292385i 0.177685 0.984087i \(-0.443139\pi\)
0.722182 + 0.691703i \(0.243139\pi\)
\(114\) 0 0
\(115\) 10.7987 5.25274i 1.00698 0.489820i
\(116\) 0 0
\(117\) −6.17207 2.00543i −0.570608 0.185402i
\(118\) 0 0
\(119\) 0.434253 0.315503i 0.0398079 0.0289221i
\(120\) 0 0
\(121\) −8.93247 + 6.41958i −0.812043 + 0.583598i
\(122\) 0 0
\(123\) 0.391891 + 0.539392i 0.0353356 + 0.0486353i
\(124\) 0 0
\(125\) −10.9286 2.35922i −0.977483 0.211015i
\(126\) 0 0
\(127\) −7.82306 + 10.7675i −0.694184 + 0.955463i 0.305810 + 0.952093i \(0.401073\pi\)
−0.999994 + 0.00337009i \(0.998927\pi\)
\(128\) 0 0
\(129\) 6.75038 + 20.7755i 0.594338 + 1.82918i
\(130\) 0 0
\(131\) 16.8980 1.47639 0.738194 0.674588i \(-0.235679\pi\)
0.738194 + 0.674588i \(0.235679\pi\)
\(132\) 0 0
\(133\) 0.843786i 0.0731655i
\(134\) 0 0
\(135\) −8.85474 1.57099i −0.762095 0.135209i
\(136\) 0 0
\(137\) 11.0840 15.2558i 0.946971 1.30339i −0.00588916 0.999983i \(-0.501875\pi\)
0.952860 0.303411i \(-0.0981254\pi\)
\(138\) 0 0
\(139\) 1.86346 5.73515i 0.158057 0.486449i −0.840401 0.541965i \(-0.817680\pi\)
0.998458 + 0.0555163i \(0.0176805\pi\)
\(140\) 0 0
\(141\) −10.3571 + 7.52487i −0.872224 + 0.633708i
\(142\) 0 0
\(143\) 12.8841 17.6375i 1.07743 1.47492i
\(144\) 0 0
\(145\) 16.8849 2.35480i 1.40221 0.195556i
\(146\) 0 0
\(147\) −12.9012 4.19187i −1.06408 0.345739i
\(148\) 0 0
\(149\) −9.26073 6.72832i −0.758669 0.551205i 0.139833 0.990175i \(-0.455343\pi\)
−0.898502 + 0.438970i \(0.855343\pi\)
\(150\) 0 0
\(151\) −2.91684 8.97712i −0.237369 0.730547i −0.996798 0.0799572i \(-0.974522\pi\)
0.759429 0.650590i \(-0.225478\pi\)
\(152\) 0 0
\(153\) 1.16816i 0.0944405i
\(154\) 0 0
\(155\) −6.90311 3.67982i −0.554471 0.295570i
\(156\) 0 0
\(157\) −4.91461 + 1.59685i −0.392229 + 0.127443i −0.498490 0.866895i \(-0.666112\pi\)
0.106261 + 0.994338i \(0.466112\pi\)
\(158\) 0 0
\(159\) −3.70486 2.69174i −0.293814 0.213469i
\(160\) 0 0
\(161\) 0.751431 2.31267i 0.0592211 0.182264i
\(162\) 0 0
\(163\) −9.80223 13.4916i −0.767770 1.05674i −0.996528 0.0832613i \(-0.973466\pi\)
0.228758 0.973483i \(-0.426534\pi\)
\(164\) 0 0
\(165\) −6.99824 + 13.0470i −0.544812 + 1.01570i
\(166\) 0 0
\(167\) 12.3304 + 16.9713i 0.954153 + 1.31328i 0.949658 + 0.313289i \(0.101431\pi\)
0.00449557 + 0.999990i \(0.498569\pi\)
\(168\) 0 0
\(169\) −9.38521 + 28.8847i −0.721939 + 2.22190i
\(170\) 0 0
\(171\) −1.48562 1.07937i −0.113609 0.0825415i
\(172\) 0 0
\(173\) −23.6794 + 7.69389i −1.80031 + 0.584956i −0.999895 0.0144929i \(-0.995387\pi\)
−0.800413 + 0.599449i \(0.795387\pi\)
\(174\) 0 0
\(175\) −1.87961 + 1.26203i −0.142085 + 0.0954008i
\(176\) 0 0
\(177\) 2.90115i 0.218064i
\(178\) 0 0
\(179\) 1.71334 + 5.27311i 0.128061 + 0.394131i 0.994446 0.105245i \(-0.0335627\pi\)
−0.866385 + 0.499376i \(0.833563\pi\)
\(180\) 0 0
\(181\) −16.5782 12.0448i −1.23225 0.895283i −0.235194 0.971948i \(-0.575573\pi\)
−0.997057 + 0.0766655i \(0.975573\pi\)
\(182\) 0 0
\(183\) −16.9586 5.51017i −1.25361 0.407323i
\(184\) 0 0
\(185\) 1.78750 + 12.8171i 0.131420 + 0.942330i
\(186\) 0 0
\(187\) 3.73609 + 1.22461i 0.273210 + 0.0895520i
\(188\) 0 0
\(189\) −1.47327 + 1.07040i −0.107165 + 0.0778598i
\(190\) 0 0
\(191\) 2.63516 8.11018i 0.190673 0.586832i −0.809327 0.587359i \(-0.800168\pi\)
1.00000 0.000526942i \(0.000167731\pi\)
\(192\) 0 0
\(193\) 4.16169 5.72807i 0.299565 0.412316i −0.632527 0.774539i \(-0.717982\pi\)
0.932091 + 0.362223i \(0.117982\pi\)
\(194\) 0 0
\(195\) 5.13559 28.9463i 0.367768 2.07289i
\(196\) 0 0
\(197\) 12.5739i 0.895856i 0.894070 + 0.447928i \(0.147838\pi\)
−0.894070 + 0.447928i \(0.852162\pi\)
\(198\) 0 0
\(199\) 11.9790 0.849171 0.424585 0.905388i \(-0.360420\pi\)
0.424585 + 0.905388i \(0.360420\pi\)
\(200\) 0 0
\(201\) −2.69948 8.30816i −0.190407 0.586012i
\(202\) 0 0
\(203\) 2.02917 2.79292i 0.142420 0.196024i
\(204\) 0 0
\(205\) −0.537739 + 0.518190i −0.0375573 + 0.0361920i
\(206\) 0 0
\(207\) −3.11060 4.28138i −0.216202 0.297576i
\(208\) 0 0
\(209\) 5.00950 3.61988i 0.346514 0.250392i
\(210\) 0 0
\(211\) 7.65767 5.56363i 0.527176 0.383016i −0.292124 0.956380i \(-0.594362\pi\)
0.819300 + 0.573365i \(0.194362\pi\)
\(212\) 0 0
\(213\) 20.9277 + 6.79981i 1.43394 + 0.465915i
\(214\) 0 0
\(215\) −22.0028 + 10.7027i −1.50058 + 0.729916i
\(216\) 0 0
\(217\) −1.50654 + 0.489504i −0.102271 + 0.0332297i
\(218\) 0 0
\(219\) −7.05975 −0.477054
\(220\) 0 0
\(221\) −7.80694 −0.525152
\(222\) 0 0
\(223\) 5.57166 1.81034i 0.373106 0.121229i −0.116461 0.993195i \(-0.537155\pi\)
0.489567 + 0.871966i \(0.337155\pi\)
\(224\) 0 0
\(225\) −0.182372 + 4.92375i −0.0121581 + 0.328250i
\(226\) 0 0
\(227\) −4.07522 1.32412i −0.270482 0.0878848i 0.170636 0.985334i \(-0.445418\pi\)
−0.441118 + 0.897449i \(0.645418\pi\)
\(228\) 0 0
\(229\) 15.3127 11.1254i 1.01189 0.735184i 0.0472890 0.998881i \(-0.484942\pi\)
0.964606 + 0.263697i \(0.0849418\pi\)
\(230\) 0 0
\(231\) 0.919080 + 2.85370i 0.0604710 + 0.187759i
\(232\) 0 0
\(233\) −3.41237 4.69672i −0.223552 0.307692i 0.682478 0.730906i \(-0.260902\pi\)
−0.906030 + 0.423213i \(0.860902\pi\)
\(234\) 0 0
\(235\) −9.94999 10.3254i −0.649066 0.673552i
\(236\) 0 0
\(237\) −3.57623 + 4.92225i −0.232301 + 0.319735i
\(238\) 0 0
\(239\) 8.71209 + 26.8131i 0.563538 + 1.73439i 0.672255 + 0.740320i \(0.265326\pi\)
−0.108717 + 0.994073i \(0.534674\pi\)
\(240\) 0 0
\(241\) −25.1660 −1.62109 −0.810544 0.585678i \(-0.800828\pi\)
−0.810544 + 0.585678i \(0.800828\pi\)
\(242\) 0 0
\(243\) 9.86496i 0.632838i
\(244\) 0 0
\(245\) 2.65424 14.9604i 0.169573 0.955784i
\(246\) 0 0
\(247\) −7.21351 + 9.92855i −0.458985 + 0.631738i
\(248\) 0 0
\(249\) −6.06763 + 18.6742i −0.384520 + 1.18343i
\(250\) 0 0
\(251\) −2.05932 + 1.49618i −0.129983 + 0.0944381i −0.650877 0.759183i \(-0.725599\pi\)
0.520894 + 0.853621i \(0.325599\pi\)
\(252\) 0 0
\(253\) 16.9538 5.46026i 1.06588 0.343283i
\(254\) 0 0
\(255\) 5.24107 0.730931i 0.328208 0.0457727i
\(256\) 0 0
\(257\) −2.70766 0.879772i −0.168899 0.0548786i 0.223347 0.974739i \(-0.428302\pi\)
−0.392246 + 0.919860i \(0.628302\pi\)
\(258\) 0 0
\(259\) 2.12007 + 1.54032i 0.131735 + 0.0957107i
\(260\) 0 0
\(261\) −2.32168 7.14539i −0.143708 0.442288i
\(262\) 0 0
\(263\) 12.6105i 0.777594i 0.921323 + 0.388797i \(0.127109\pi\)
−0.921323 + 0.388797i \(0.872891\pi\)
\(264\) 0 0
\(265\) 2.41287 4.52639i 0.148221 0.278054i
\(266\) 0 0
\(267\) 24.2822 7.88977i 1.48605 0.482846i
\(268\) 0 0
\(269\) −11.1045 8.06788i −0.677053 0.491907i 0.195326 0.980738i \(-0.437424\pi\)
−0.872379 + 0.488831i \(0.837424\pi\)
\(270\) 0 0
\(271\) 5.81483 17.8962i 0.353226 1.08712i −0.603805 0.797132i \(-0.706350\pi\)
0.957031 0.289985i \(-0.0936504\pi\)
\(272\) 0 0
\(273\) −3.49914 4.81616i −0.211778 0.291487i
\(274\) 0 0
\(275\) −15.5562 5.74492i −0.938075 0.346432i
\(276\) 0 0
\(277\) −13.1019 18.0332i −0.787216 1.08351i −0.994449 0.105218i \(-0.966446\pi\)
0.207234 0.978291i \(-0.433554\pi\)
\(278\) 0 0
\(279\) −1.06531 + 3.27868i −0.0637784 + 0.196290i
\(280\) 0 0
\(281\) 13.6094 + 9.88778i 0.811867 + 0.589856i 0.914371 0.404877i \(-0.132686\pi\)
−0.102505 + 0.994733i \(0.532686\pi\)
\(282\) 0 0
\(283\) −21.4963 + 6.98457i −1.27782 + 0.415189i −0.867812 0.496892i \(-0.834474\pi\)
−0.410009 + 0.912081i \(0.634474\pi\)
\(284\) 0 0
\(285\) 3.91311 7.34075i 0.231793 0.434828i
\(286\) 0 0
\(287\) 0.151222i 0.00892633i
\(288\) 0 0
\(289\) 4.81904 + 14.8315i 0.283473 + 0.872439i
\(290\) 0 0
\(291\) 22.3788 + 16.2592i 1.31187 + 0.953128i
\(292\) 0 0
\(293\) 3.27699 + 1.06476i 0.191444 + 0.0622039i 0.403170 0.915125i \(-0.367908\pi\)
−0.211726 + 0.977329i \(0.567908\pi\)
\(294\) 0 0
\(295\) −3.21836 + 0.448840i −0.187380 + 0.0261325i
\(296\) 0 0
\(297\) −12.6753 4.15467i −0.735494 0.241078i
\(298\) 0 0
\(299\) −28.6128 + 20.7884i −1.65472 + 1.20222i
\(300\) 0 0
\(301\) −1.53107 + 4.71216i −0.0882496 + 0.271604i
\(302\) 0 0
\(303\) 6.53979 9.00125i 0.375701 0.517109i
\(304\) 0 0
\(305\) 3.48898 19.6653i 0.199778 1.12603i
\(306\) 0 0
\(307\) 9.58110i 0.546822i −0.961897 0.273411i \(-0.911848\pi\)
0.961897 0.273411i \(-0.0881520\pi\)
\(308\) 0 0
\(309\) 22.2603 1.26634
\(310\) 0 0
\(311\) 3.38071 + 10.4048i 0.191703 + 0.590000i 0.999999 + 0.00122469i \(0.000389831\pi\)
−0.808297 + 0.588776i \(0.799610\pi\)
\(312\) 0 0
\(313\) −7.28776 + 10.0307i −0.411928 + 0.566971i −0.963687 0.267033i \(-0.913957\pi\)
0.551759 + 0.834004i \(0.313957\pi\)
\(314\) 0 0
\(315\) 0.692323 + 0.718441i 0.0390080 + 0.0404796i
\(316\) 0 0
\(317\) −1.68638 2.32110i −0.0947165 0.130366i 0.759029 0.651057i \(-0.225674\pi\)
−0.853745 + 0.520691i \(0.825674\pi\)
\(318\) 0 0
\(319\) 25.2866 + 0.0653127i 1.41578 + 0.00365681i
\(320\) 0 0
\(321\) 11.6537 8.46687i 0.650443 0.472575i
\(322\) 0 0
\(323\) −2.10094 0.682637i −0.116900 0.0379830i
\(324\) 0 0
\(325\) 32.9058 + 1.21881i 1.82529 + 0.0676072i
\(326\) 0 0
\(327\) 9.77141 3.17492i 0.540360 0.175574i
\(328\) 0 0
\(329\) −2.90367 −0.160085
\(330\) 0 0
\(331\) −27.2623 −1.49847 −0.749237 0.662302i \(-0.769579\pi\)
−0.749237 + 0.662302i \(0.769579\pi\)
\(332\) 0 0
\(333\) 5.42397 1.76235i 0.297232 0.0965764i
\(334\) 0 0
\(335\) 8.79893 4.28001i 0.480737 0.233842i
\(336\) 0 0
\(337\) 29.5273 + 9.59399i 1.60845 + 0.522618i 0.969178 0.246361i \(-0.0792348\pi\)
0.639274 + 0.768979i \(0.279235\pi\)
\(338\) 0 0
\(339\) 16.2445 11.8023i 0.882280 0.641014i
\(340\) 0 0
\(341\) −9.36928 6.84422i −0.507375 0.370635i
\(342\) 0 0
\(343\) −3.67151 5.05340i −0.198243 0.272858i
\(344\) 0 0
\(345\) 17.2624 16.6349i 0.929377 0.895591i
\(346\) 0 0
\(347\) 13.8594 19.0758i 0.744012 1.02404i −0.254366 0.967108i \(-0.581867\pi\)
0.998378 0.0569361i \(-0.0181331\pi\)
\(348\) 0 0
\(349\) 7.42097 + 22.8394i 0.397236 + 1.22257i 0.927207 + 0.374550i \(0.122203\pi\)
−0.529971 + 0.848016i \(0.677797\pi\)
\(350\) 0 0
\(351\) 26.4863 1.41373
\(352\) 0 0
\(353\) 4.85808i 0.258570i 0.991608 + 0.129285i \(0.0412681\pi\)
−0.991608 + 0.129285i \(0.958732\pi\)
\(354\) 0 0
\(355\) −4.30556 + 24.2679i −0.228515 + 1.28801i
\(356\) 0 0
\(357\) 0.629856 0.866922i 0.0333355 0.0458824i
\(358\) 0 0
\(359\) 1.24032 3.81733i 0.0654618 0.201471i −0.912976 0.408014i \(-0.866221\pi\)
0.978437 + 0.206543i \(0.0662214\pi\)
\(360\) 0 0
\(361\) 12.5619 9.12678i 0.661154 0.480357i
\(362\) 0 0
\(363\) −12.9993 + 17.6990i −0.682286 + 0.928957i
\(364\) 0 0
\(365\) −1.09222 7.83167i −0.0571695 0.409928i
\(366\) 0 0
\(367\) 12.8542 + 4.17659i 0.670985 + 0.218016i 0.624644 0.780910i \(-0.285244\pi\)
0.0463406 + 0.998926i \(0.485244\pi\)
\(368\) 0 0
\(369\) 0.266251 + 0.193442i 0.0138605 + 0.0100702i
\(370\) 0 0
\(371\) −0.320969 0.987842i −0.0166639 0.0512862i
\(372\) 0 0
\(373\) 25.5794i 1.32445i 0.749305 + 0.662225i \(0.230388\pi\)
−0.749305 + 0.662225i \(0.769612\pi\)
\(374\) 0 0
\(375\) −22.2049 + 2.26261i −1.14666 + 0.116841i
\(376\) 0 0
\(377\) −47.7532 + 15.5160i −2.45941 + 0.799112i
\(378\) 0 0
\(379\) −5.21257 3.78715i −0.267752 0.194533i 0.445806 0.895130i \(-0.352917\pi\)
−0.713557 + 0.700597i \(0.752917\pi\)
\(380\) 0 0
\(381\) −8.21065 + 25.2698i −0.420644 + 1.29461i
\(382\) 0 0
\(383\) 7.96880 + 10.9681i 0.407187 + 0.560444i 0.962529 0.271177i \(-0.0874129\pi\)
−0.555343 + 0.831622i \(0.687413\pi\)
\(384\) 0 0
\(385\) −3.02353 + 1.46107i −0.154093 + 0.0744631i
\(386\) 0 0
\(387\) 6.33798 + 8.72349i 0.322178 + 0.443440i
\(388\) 0 0
\(389\) 4.16176 12.8086i 0.211010 0.649421i −0.788403 0.615159i \(-0.789092\pi\)
0.999413 0.0342621i \(-0.0109081\pi\)
\(390\) 0 0
\(391\) −5.15039 3.74197i −0.260466 0.189240i
\(392\) 0 0
\(393\) 32.0834 10.4245i 1.61839 0.525847i
\(394\) 0 0
\(395\) −6.01373 3.20572i −0.302584 0.161297i
\(396\) 0 0
\(397\) 19.3608i 0.971689i −0.874045 0.485844i \(-0.838512\pi\)
0.874045 0.485844i \(-0.161488\pi\)
\(398\) 0 0
\(399\) −0.520538 1.60205i −0.0260595 0.0802028i
\(400\) 0 0
\(401\) 2.19624 + 1.59567i 0.109675 + 0.0796837i 0.641271 0.767314i \(-0.278407\pi\)
−0.531596 + 0.846998i \(0.678407\pi\)
\(402\) 0 0
\(403\) 21.9117 + 7.11954i 1.09150 + 0.354650i
\(404\) 0 0
\(405\) −24.3282 + 3.39287i −1.20888 + 0.168593i
\(406\) 0 0
\(407\) −0.0495780 + 19.1947i −0.00245749 + 0.951447i
\(408\) 0 0
\(409\) −1.95665 + 1.42159i −0.0967500 + 0.0702930i −0.635109 0.772423i \(-0.719045\pi\)
0.538359 + 0.842716i \(0.319045\pi\)
\(410\) 0 0
\(411\) 11.6332 35.8032i 0.573822 1.76604i
\(412\) 0 0
\(413\) −0.386773 + 0.532348i −0.0190319 + 0.0261951i
\(414\) 0 0
\(415\) −21.6548 3.84195i −1.06299 0.188594i
\(416\) 0 0
\(417\) 12.0386i 0.589532i
\(418\) 0 0
\(419\) −22.0047 −1.07500 −0.537499 0.843264i \(-0.680631\pi\)
−0.537499 + 0.843264i \(0.680631\pi\)
\(420\) 0 0
\(421\) 4.24460 + 13.0635i 0.206869 + 0.636678i 0.999631 + 0.0271469i \(0.00864218\pi\)
−0.792762 + 0.609531i \(0.791358\pi\)
\(422\) 0 0
\(423\) −3.71437 + 5.11239i −0.180599 + 0.248573i
\(424\) 0 0
\(425\) 1.62170 + 5.70104i 0.0786641 + 0.276541i
\(426\) 0 0
\(427\) −2.37722 3.27196i −0.115042 0.158341i
\(428\) 0 0
\(429\) 13.5817 41.4357i 0.655730 2.00053i
\(430\) 0 0
\(431\) −30.8402 + 22.4067i −1.48552 + 1.07929i −0.509796 + 0.860296i \(0.670279\pi\)
−0.975725 + 0.218998i \(0.929721\pi\)
\(432\) 0 0
\(433\) −23.9214 7.77254i −1.14959 0.373524i −0.328601 0.944469i \(-0.606577\pi\)
−0.820989 + 0.570944i \(0.806577\pi\)
\(434\) 0 0
\(435\) 30.6057 14.8873i 1.46743 0.713792i
\(436\) 0 0
\(437\) −9.51778 + 3.09252i −0.455297 + 0.147935i
\(438\) 0 0
\(439\) −34.6857 −1.65546 −0.827729 0.561129i \(-0.810367\pi\)
−0.827729 + 0.561129i \(0.810367\pi\)
\(440\) 0 0
\(441\) −6.69594 −0.318854
\(442\) 0 0
\(443\) 0.218950 0.0711411i 0.0104026 0.00338002i −0.303811 0.952732i \(-0.598259\pi\)
0.314214 + 0.949352i \(0.398259\pi\)
\(444\) 0 0
\(445\) 12.5092 + 25.7166i 0.592991 + 1.21908i
\(446\) 0 0
\(447\) −21.7336 7.06167i −1.02796 0.334006i
\(448\) 0 0
\(449\) 6.09776 4.43028i 0.287771 0.209078i −0.434529 0.900658i \(-0.643085\pi\)
0.722300 + 0.691580i \(0.243085\pi\)
\(450\) 0 0
\(451\) −0.897792 + 0.648748i −0.0422754 + 0.0305484i
\(452\) 0 0
\(453\) −11.0761 15.2449i −0.520400 0.716269i
\(454\) 0 0
\(455\) 4.80140 4.62685i 0.225093 0.216910i
\(456\) 0 0
\(457\) 6.39765 8.80561i 0.299269 0.411909i −0.632728 0.774374i \(-0.718065\pi\)
0.931997 + 0.362465i \(0.118065\pi\)
\(458\) 0 0
\(459\) 1.47327 + 4.53427i 0.0687665 + 0.211641i
\(460\) 0 0
\(461\) −4.57537 −0.213096 −0.106548 0.994308i \(-0.533980\pi\)
−0.106548 + 0.994308i \(0.533980\pi\)
\(462\) 0 0
\(463\) 21.9889i 1.02191i −0.859607 0.510956i \(-0.829291\pi\)
0.859607 0.510956i \(-0.170709\pi\)
\(464\) 0 0
\(465\) −15.3767 2.72809i −0.713075 0.126512i
\(466\) 0 0
\(467\) −2.39509 + 3.29656i −0.110832 + 0.152547i −0.860829 0.508894i \(-0.830055\pi\)
0.749998 + 0.661440i \(0.230055\pi\)
\(468\) 0 0
\(469\) 0.612278 1.88440i 0.0282723 0.0870133i
\(470\) 0 0
\(471\) −8.34599 + 6.06372i −0.384563 + 0.279401i
\(472\) 0 0
\(473\) −34.5441 + 11.1255i −1.58834 + 0.511551i
\(474\) 0 0
\(475\) 8.74879 + 3.20528i 0.401422 + 0.147068i
\(476\) 0 0
\(477\) −2.14984 0.698526i −0.0984345 0.0319833i
\(478\) 0 0
\(479\) −18.1820 13.2100i −0.830758 0.603581i 0.0890157 0.996030i \(-0.471628\pi\)
−0.919774 + 0.392449i \(0.871628\pi\)
\(480\) 0 0
\(481\) −11.7780 36.2488i −0.537029 1.65280i
\(482\) 0 0
\(483\) 4.85450i 0.220887i
\(484\) 0 0
\(485\) −14.5747 + 27.3412i −0.661802 + 1.24150i
\(486\) 0 0
\(487\) 21.7952 7.08168i 0.987634 0.320902i 0.229720 0.973257i \(-0.426219\pi\)
0.757914 + 0.652355i \(0.226219\pi\)
\(488\) 0 0
\(489\) −26.9340 19.5687i −1.21800 0.884928i
\(490\) 0 0
\(491\) −8.39244 + 25.8293i −0.378746 + 1.16566i 0.562171 + 0.827021i \(0.309966\pi\)
−0.940917 + 0.338638i \(0.890034\pi\)
\(492\) 0 0
\(493\) −5.31244 7.31195i −0.239260 0.329314i
\(494\) 0 0
\(495\) −1.29523 + 7.19242i −0.0582165 + 0.323275i
\(496\) 0 0
\(497\) 2.93360 + 4.03775i 0.131590 + 0.181118i
\(498\) 0 0
\(499\) 6.23790 19.1983i 0.279247 0.859433i −0.708818 0.705392i \(-0.750771\pi\)
0.988064 0.154041i \(-0.0492288\pi\)
\(500\) 0 0
\(501\) 33.8807 + 24.6158i 1.51368 + 1.09975i
\(502\) 0 0
\(503\) 34.3741 11.1688i 1.53267 0.497994i 0.583325 0.812239i \(-0.301751\pi\)
0.949342 + 0.314245i \(0.101751\pi\)
\(504\) 0 0
\(505\) 10.9972 + 5.86226i 0.489370 + 0.260867i
\(506\) 0 0
\(507\) 60.6316i 2.69274i
\(508\) 0 0
\(509\) −12.2057 37.5652i −0.541007 1.66505i −0.730299 0.683127i \(-0.760619\pi\)
0.189292 0.981921i \(-0.439381\pi\)
\(510\) 0 0
\(511\) −1.29543 0.941186i −0.0573065 0.0416356i
\(512\) 0 0
\(513\) 7.12778 + 2.31596i 0.314699 + 0.102252i
\(514\) 0 0
\(515\) 3.44391 + 24.6942i 0.151757 + 1.08816i
\(516\) 0 0
\(517\) −12.4569 17.2389i −0.547853 0.758166i
\(518\) 0 0
\(519\) −40.2123 + 29.2159i −1.76512 + 1.28244i
\(520\) 0 0
\(521\) 3.89376 11.9838i 0.170589 0.525018i −0.828816 0.559521i \(-0.810985\pi\)
0.999405 + 0.0345036i \(0.0109850\pi\)
\(522\) 0 0
\(523\) −1.62625 + 2.23834i −0.0711109 + 0.0978757i −0.843091 0.537771i \(-0.819266\pi\)
0.771980 + 0.635647i \(0.219266\pi\)
\(524\) 0 0
\(525\) −2.79015 + 3.55570i −0.121772 + 0.155183i
\(526\) 0 0
\(527\) 4.14715i 0.180653i
\(528\) 0 0
\(529\) −5.84058 −0.253938
\(530\) 0 0
\(531\) 0.442526 + 1.36196i 0.0192040 + 0.0591038i
\(532\) 0 0
\(533\) 1.29279 1.77937i 0.0559970 0.0770733i
\(534\) 0 0
\(535\) 11.1956 + 11.6179i 0.484028 + 0.502288i
\(536\) 0 0
\(537\) 6.50604 + 8.95479i 0.280756 + 0.386428i
\(538\) 0 0
\(539\) 7.01946 21.4153i 0.302350 0.922423i
\(540\) 0 0
\(541\) 16.0757 11.6797i 0.691150 0.502150i −0.185888 0.982571i \(-0.559516\pi\)
0.877038 + 0.480421i \(0.159516\pi\)
\(542\) 0 0
\(543\) −38.9067 12.6416i −1.66965 0.542501i
\(544\) 0 0
\(545\) 5.03381 + 10.3486i 0.215625 + 0.443286i
\(546\) 0 0
\(547\) −14.7398 + 4.78926i −0.630229 + 0.204774i −0.606677 0.794949i \(-0.707498\pi\)
−0.0235526 + 0.999723i \(0.507498\pi\)
\(548\) 0 0
\(549\) −8.80175 −0.375650
\(550\) 0 0
\(551\) −14.2077 −0.605267
\(552\) 0 0
\(553\) −1.31244 + 0.426438i −0.0558107 + 0.0181340i
\(554\) 0 0
\(555\) 11.3008 + 23.2324i 0.479691 + 0.986159i
\(556\) 0 0
\(557\) 40.7773 + 13.2493i 1.72779 + 0.561393i 0.993127 0.117041i \(-0.0373410\pi\)
0.734662 + 0.678434i \(0.237341\pi\)
\(558\) 0 0
\(559\) 58.2998 42.3573i 2.46582 1.79152i
\(560\) 0 0
\(561\) 7.84897 + 0.0202731i 0.331384 + 0.000855931i
\(562\) 0 0
\(563\) 10.3901 + 14.3007i 0.437890 + 0.602704i 0.969742 0.244134i \(-0.0785035\pi\)
−0.531851 + 0.846838i \(0.678504\pi\)
\(564\) 0 0
\(565\) 15.6060 + 16.1947i 0.656549 + 0.681318i
\(566\) 0 0
\(567\) −2.92370 + 4.02412i −0.122784 + 0.168997i
\(568\) 0 0
\(569\) 6.53602 + 20.1158i 0.274004 + 0.843298i 0.989481 + 0.144662i \(0.0462095\pi\)
−0.715477 + 0.698636i \(0.753791\pi\)
\(570\) 0 0
\(571\) −24.5047 −1.02549 −0.512745 0.858541i \(-0.671371\pi\)
−0.512745 + 0.858541i \(0.671371\pi\)
\(572\) 0 0
\(573\) 17.0240i 0.711188i
\(574\) 0 0
\(575\) 21.1244 + 16.5763i 0.880949 + 0.691279i
\(576\) 0 0
\(577\) −11.2053 + 15.4228i −0.466485 + 0.642061i −0.975838 0.218496i \(-0.929885\pi\)
0.509353 + 0.860558i \(0.329885\pi\)
\(578\) 0 0
\(579\) 4.36788 13.4430i 0.181523 0.558670i
\(580\) 0 0
\(581\) −3.60298 + 2.61772i −0.149477 + 0.108601i
\(582\) 0 0
\(583\) 4.48778 6.14346i 0.185865 0.254436i
\(584\) 0 0
\(585\) −2.00439 14.3723i −0.0828715 0.594222i
\(586\) 0 0
\(587\) −3.32326 1.07979i −0.137165 0.0445677i 0.239630 0.970864i \(-0.422974\pi\)
−0.376795 + 0.926297i \(0.622974\pi\)
\(588\) 0 0
\(589\) 5.27417 + 3.83191i 0.217319 + 0.157891i
\(590\) 0 0
\(591\) 7.75695 + 23.8734i 0.319078 + 0.982022i
\(592\) 0 0
\(593\) 21.3791i 0.877933i −0.898503 0.438967i \(-0.855345\pi\)
0.898503 0.438967i \(-0.144655\pi\)
\(594\) 0 0
\(595\) 1.05916 + 0.564602i 0.0434212 + 0.0231464i
\(596\) 0 0
\(597\) 22.7439 7.38995i 0.930847 0.302450i
\(598\) 0 0
\(599\) −25.3976 18.4524i −1.03772 0.753946i −0.0678787 0.997694i \(-0.521623\pi\)
−0.969839 + 0.243748i \(0.921623\pi\)
\(600\) 0 0
\(601\) 2.63123 8.09811i 0.107330 0.330329i −0.882940 0.469486i \(-0.844439\pi\)
0.990270 + 0.139157i \(0.0444393\pi\)
\(602\) 0 0
\(603\) −2.53457 3.48853i −0.103216 0.142064i
\(604\) 0 0
\(605\) −21.6454 11.6824i −0.880009 0.474958i
\(606\) 0 0
\(607\) −18.4093 25.3383i −0.747211 1.02845i −0.998171 0.0604508i \(-0.980746\pi\)
0.250960 0.967998i \(-0.419254\pi\)
\(608\) 0 0
\(609\) 2.12971 6.55457i 0.0863001 0.265604i
\(610\) 0 0
\(611\) 34.1665 + 24.8234i 1.38223 + 1.00425i
\(612\) 0 0
\(613\) 15.4136 5.00820i 0.622551 0.202279i 0.0192784 0.999814i \(-0.493863\pi\)
0.603273 + 0.797535i \(0.293863\pi\)
\(614\) 0 0
\(615\) −0.701300 + 1.31559i −0.0282791 + 0.0530499i
\(616\) 0 0
\(617\) 36.1862i 1.45680i −0.685151 0.728401i \(-0.740264\pi\)
0.685151 0.728401i \(-0.259736\pi\)
\(618\) 0 0
\(619\) 9.73725 + 29.9682i 0.391373 + 1.20452i 0.931750 + 0.363099i \(0.118281\pi\)
−0.540378 + 0.841423i \(0.681719\pi\)
\(620\) 0 0
\(621\) 17.4735 + 12.6953i 0.701188 + 0.509443i
\(622\) 0 0
\(623\) 5.50752 + 1.78950i 0.220654 + 0.0716948i
\(624\) 0 0
\(625\) −5.94535 24.2828i −0.237814 0.971311i
\(626\) 0 0
\(627\) 7.27813 9.96327i 0.290660 0.397894i
\(628\) 0 0
\(629\) 5.55041 4.03261i 0.221309 0.160791i
\(630\) 0 0
\(631\) −0.596734 + 1.83656i −0.0237556 + 0.0731123i −0.962232 0.272232i \(-0.912238\pi\)
0.938476 + 0.345345i \(0.112238\pi\)
\(632\) 0 0
\(633\) 11.1070 15.2874i 0.441462 0.607620i
\(634\) 0 0
\(635\) −29.3031 5.19889i −1.16286 0.206312i
\(636\) 0 0
\(637\) 44.7495i 1.77304i
\(638\) 0 0
\(639\) 10.8618 0.429685
\(640\) 0 0
\(641\) 5.81266 + 17.8895i 0.229586 + 0.706594i 0.997794 + 0.0663928i \(0.0211490\pi\)
−0.768207 + 0.640201i \(0.778851\pi\)
\(642\) 0 0
\(643\) 25.8302 35.5522i 1.01864 1.40204i 0.105490 0.994420i \(-0.466359\pi\)
0.913152 0.407620i \(-0.133641\pi\)
\(644\) 0 0
\(645\) −35.1729 + 33.8942i −1.38493 + 1.33458i
\(646\) 0 0
\(647\) −16.6889 22.9703i −0.656108 0.903055i 0.343237 0.939249i \(-0.388477\pi\)
−0.999345 + 0.0361942i \(0.988477\pi\)
\(648\) 0 0
\(649\) −4.81978 0.0124490i −0.189193 0.000488667i
\(650\) 0 0
\(651\) −2.55840 + 1.85879i −0.100272 + 0.0728517i
\(652\) 0 0
\(653\) 0.0226164 + 0.00734853i 0.000885050 + 0.000287570i 0.309459 0.950913i \(-0.399852\pi\)
−0.308574 + 0.951200i \(0.599852\pi\)
\(654\) 0 0
\(655\) 16.5280 + 33.9786i 0.645802 + 1.32765i
\(656\) 0 0
\(657\) −3.31423 + 1.07686i −0.129300 + 0.0420122i
\(658\) 0 0
\(659\) 10.0841 0.392821 0.196410 0.980522i \(-0.437072\pi\)
0.196410 + 0.980522i \(0.437072\pi\)
\(660\) 0 0
\(661\) 7.89227 0.306974 0.153487 0.988151i \(-0.450950\pi\)
0.153487 + 0.988151i \(0.450950\pi\)
\(662\) 0 0
\(663\) −14.8226 + 4.81616i −0.575662 + 0.187044i
\(664\) 0 0
\(665\) 1.69669 0.825308i 0.0657947 0.0320041i
\(666\) 0 0
\(667\) −38.9407 12.6526i −1.50779 0.489911i
\(668\) 0 0
\(669\) 9.46179 6.87439i 0.365814 0.265779i
\(670\) 0 0
\(671\) 9.22702 28.1502i 0.356205 1.08673i
\(672\) 0 0
\(673\) 20.5307 + 28.2580i 0.791399 + 1.08927i 0.993933 + 0.109992i \(0.0350824\pi\)
−0.202534 + 0.979275i \(0.564918\pi\)
\(674\) 0 0
\(675\) −5.50188 19.3417i −0.211768 0.744462i
\(676\) 0 0
\(677\) 11.0939 15.2694i 0.426372 0.586851i −0.540744 0.841187i \(-0.681857\pi\)
0.967116 + 0.254337i \(0.0818572\pi\)
\(678\) 0 0
\(679\) 1.93878 + 5.96696i 0.0744036 + 0.228991i
\(680\) 0 0
\(681\) −8.55425 −0.327799
\(682\) 0 0
\(683\) 30.1188i 1.15246i 0.817286 + 0.576232i \(0.195478\pi\)
−0.817286 + 0.576232i \(0.804522\pi\)
\(684\) 0 0
\(685\) 41.5177 + 7.36599i 1.58631 + 0.281440i
\(686\) 0 0
\(687\) 22.2101 30.5696i 0.847370 1.16630i
\(688\) 0 0
\(689\) −4.66831 + 14.3676i −0.177848 + 0.547361i
\(690\) 0 0
\(691\) −22.1409 + 16.0863i −0.842279 + 0.611951i −0.923006 0.384785i \(-0.874276\pi\)
0.0807277 + 0.996736i \(0.474276\pi\)
\(692\) 0 0
\(693\) 0.866754 + 1.19949i 0.0329253 + 0.0455647i
\(694\) 0 0
\(695\) 13.3549 1.86250i 0.506580 0.0706488i
\(696\) 0 0
\(697\) 0.376527 + 0.122341i 0.0142620 + 0.00463399i
\(698\) 0 0
\(699\) −9.37631 6.81229i −0.354645 0.257664i
\(700\) 0 0
\(701\) 0.281166 + 0.865341i 0.0106195 + 0.0326835i 0.956226 0.292630i \(-0.0945303\pi\)
−0.945606 + 0.325313i \(0.894530\pi\)
\(702\) 0 0
\(703\) 10.7849i 0.406759i
\(704\) 0 0
\(705\) −25.2613 13.4660i −0.951395 0.507157i
\(706\) 0 0
\(707\) 2.40004 0.779822i 0.0902629 0.0293282i
\(708\) 0 0
\(709\) −26.7984 19.4701i −1.00643 0.731217i −0.0429754 0.999076i \(-0.513684\pi\)
−0.963458 + 0.267859i \(0.913684\pi\)
\(710\) 0 0
\(711\) −0.928058 + 2.85627i −0.0348049 + 0.107118i
\(712\) 0 0
\(713\) 11.0431 + 15.1995i 0.413566 + 0.569225i
\(714\) 0 0
\(715\) 48.0675 + 8.65616i 1.79762 + 0.323722i
\(716\) 0 0
\(717\) 33.0823 + 45.5339i 1.23548 + 1.70050i
\(718\) 0 0
\(719\) −6.87209 + 21.1501i −0.256286 + 0.788766i 0.737288 + 0.675578i \(0.236106\pi\)
−0.993574 + 0.113187i \(0.963894\pi\)
\(720\) 0 0
\(721\) 4.08466 + 2.96768i 0.152121 + 0.110522i
\(722\) 0 0
\(723\) −47.7814 + 15.5251i −1.77701 + 0.577385i
\(724\) 0 0
\(725\) 21.2501 + 31.6489i 0.789210 + 1.17541i
\(726\) 0 0
\(727\) 25.2768i 0.937466i 0.883340 + 0.468733i \(0.155289\pi\)
−0.883340 + 0.468733i \(0.844711\pi\)
\(728\) 0 0
\(729\) −4.09809 12.6126i −0.151781 0.467134i
\(730\) 0 0
\(731\) 10.4941 + 7.62443i 0.388139 + 0.282000i
\(732\) 0 0
\(733\) −25.8940 8.41348i −0.956417 0.310759i −0.211097 0.977465i \(-0.567704\pi\)
−0.745321 + 0.666706i \(0.767704\pi\)
\(734\) 0 0
\(735\) −4.18971 30.0419i −0.154540 1.10811i
\(736\) 0 0
\(737\) 13.8142 4.44910i 0.508854 0.163885i
\(738\) 0 0
\(739\) 20.9752 15.2394i 0.771587 0.560591i −0.130855 0.991401i \(-0.541772\pi\)
0.902442 + 0.430811i \(0.141772\pi\)
\(740\) 0 0
\(741\) −7.57091 + 23.3009i −0.278124 + 0.855978i
\(742\) 0 0
\(743\) −4.85699 + 6.68508i −0.178186 + 0.245252i −0.888762 0.458368i \(-0.848434\pi\)
0.710577 + 0.703620i \(0.248434\pi\)
\(744\) 0 0
\(745\) 4.47137 25.2025i 0.163818 0.923347i
\(746\) 0 0
\(747\) 9.69221i 0.354620i
\(748\) 0 0
\(749\) 3.26717 0.119380
\(750\) 0 0
\(751\) −4.78129 14.7153i −0.174472 0.536969i 0.825137 0.564933i \(-0.191098\pi\)
−0.999609 + 0.0279634i \(0.991098\pi\)
\(752\) 0 0
\(753\) −2.98691 + 4.11112i −0.108849 + 0.149818i
\(754\) 0 0
\(755\) 15.1982 14.6457i 0.553120 0.533012i
\(756\) 0 0
\(757\) −19.6231 27.0088i −0.713212 0.981653i −0.999722 0.0235752i \(-0.992495\pi\)
0.286510 0.958077i \(-0.407505\pi\)
\(758\) 0 0
\(759\) 28.8208 20.8260i 1.04613 0.755937i
\(760\) 0 0
\(761\) 42.5921 30.9449i 1.54396 1.12175i 0.596171 0.802857i \(-0.296688\pi\)
0.947790 0.318896i \(-0.103312\pi\)
\(762\) 0 0
\(763\) 2.21628 + 0.720113i 0.0802347 + 0.0260698i
\(764\) 0 0
\(765\) 2.34895 1.14258i 0.0849263 0.0413102i
\(766\) 0 0
\(767\) 9.10206 2.95744i 0.328656 0.106787i
\(768\) 0 0
\(769\) −50.2205 −1.81100 −0.905499 0.424349i \(-0.860503\pi\)
−0.905499 + 0.424349i \(0.860503\pi\)
\(770\) 0 0
\(771\) −5.68362 −0.204691
\(772\) 0 0
\(773\) −14.7823 + 4.80308i −0.531684 + 0.172755i −0.562541 0.826769i \(-0.690176\pi\)
0.0308572 + 0.999524i \(0.490176\pi\)
\(774\) 0 0
\(775\) 0.647446 17.4800i 0.0232569 0.627900i
\(776\) 0 0
\(777\) 4.97549 + 1.61663i 0.178495 + 0.0579964i
\(778\) 0 0
\(779\) 0.503494 0.365810i 0.0180395 0.0131065i
\(780\) 0 0
\(781\) −11.3866 + 34.7387i −0.407443 + 1.24305i
\(782\) 0 0
\(783\) 18.0233 + 24.8070i 0.644101 + 0.886529i
\(784\) 0 0
\(785\) −8.01794 8.32042i −0.286173 0.296969i
\(786\) 0 0
\(787\) 7.50169 10.3252i 0.267406 0.368053i −0.654106 0.756403i \(-0.726955\pi\)
0.921512 + 0.388350i \(0.126955\pi\)
\(788\) 0 0
\(789\) 7.77948 + 23.9428i 0.276957 + 0.852385i
\(790\) 0 0
\(791\) 4.55425 0.161930
\(792\) 0 0
\(793\) 58.8228i 2.08886i
\(794\) 0 0
\(795\) 1.78882 10.0825i 0.0634429 0.357590i
\(796\) 0 0
\(797\) −14.5203 + 19.9855i −0.514336 + 0.707923i −0.984643 0.174580i \(-0.944143\pi\)
0.470307 + 0.882503i \(0.344143\pi\)
\(798\) 0 0
\(799\) −2.34912 + 7.22985i −0.0831059 + 0.255774i
\(800\) 0 0
\(801\) 10.1959 7.40777i 0.360255 0.261741i
\(802\) 0 0
\(803\) 0.0302939 11.7286i 0.00106905 0.413894i
\(804\) 0 0
\(805\) 5.38529 0.751044i 0.189806 0.0264708i
\(806\) 0 0
\(807\) −26.0606 8.46760i −0.917377 0.298074i
\(808\) 0 0
\(809\) 7.44932 + 5.41225i 0.261904 + 0.190285i 0.710986 0.703206i \(-0.248249\pi\)
−0.449082 + 0.893491i \(0.648249\pi\)
\(810\) 0 0
\(811\) −14.8169 45.6016i −0.520291 1.60129i −0.773445 0.633864i \(-0.781468\pi\)
0.253154 0.967426i \(-0.418532\pi\)
\(812\) 0 0
\(813\) 37.5657i 1.31749i
\(814\) 0 0
\(815\) 17.5414 32.9065i 0.614447 1.15266i
\(816\) 0 0
\(817\) 19.3929 6.30113i 0.678471 0.220449i
\(818\) 0 0
\(819\) −2.37732 1.72722i −0.0830702 0.0603540i
\(820\) 0 0
\(821\) −5.81350 + 17.8921i −0.202892 + 0.624439i 0.796901 + 0.604110i \(0.206471\pi\)
−0.999793 + 0.0203286i \(0.993529\pi\)
\(822\) 0 0
\(823\) 26.1803 + 36.0340i 0.912586 + 1.25607i 0.966276 + 0.257509i \(0.0829018\pi\)
−0.0536896 + 0.998558i \(0.517098\pi\)
\(824\) 0 0
\(825\) −33.0798 1.31082i −1.15169 0.0456368i
\(826\) 0 0
\(827\) −21.2181 29.2042i −0.737825 1.01553i −0.998741 0.0501675i \(-0.984024\pi\)
0.260916 0.965362i \(-0.415976\pi\)
\(828\) 0 0
\(829\) −3.34254 + 10.2873i −0.116091 + 0.357292i −0.992173 0.124870i \(-0.960148\pi\)
0.876082 + 0.482162i \(0.160148\pi\)
\(830\) 0 0
\(831\) −36.0006 26.1560i −1.24885 0.907341i
\(832\) 0 0
\(833\) −7.66080 + 2.48915i −0.265431 + 0.0862438i
\(834\) 0 0
\(835\) −22.0656 + 41.3936i −0.763610 + 1.43248i
\(836\) 0 0
\(837\) 14.0699i 0.486326i
\(838\) 0 0
\(839\) −3.28493 10.1100i −0.113408 0.349035i 0.878203 0.478287i \(-0.158742\pi\)
−0.991612 + 0.129252i \(0.958742\pi\)
\(840\) 0 0
\(841\) −23.5656 17.1214i −0.812608 0.590394i
\(842\) 0 0
\(843\) 31.9392 + 10.3777i 1.10004 + 0.357426i
\(844\) 0 0
\(845\) −67.2611 + 9.38038i −2.31385 + 0.322695i
\(846\) 0 0
\(847\) −4.74489 + 1.51466i −0.163036 + 0.0520442i
\(848\) 0 0
\(849\) −36.5050 + 26.5224i −1.25285 + 0.910247i
\(850\) 0 0
\(851\) 9.60442 29.5594i 0.329235 1.01328i
\(852\) 0 0
\(853\) −15.8546 + 21.8219i −0.542850 + 0.747169i −0.989020 0.147779i \(-0.952787\pi\)
0.446171 + 0.894948i \(0.352787\pi\)
\(854\) 0 0
\(855\) 0.717306 4.04303i 0.0245313 0.138269i
\(856\) 0 0
\(857\) 3.11130i 0.106280i −0.998587 0.0531400i \(-0.983077\pi\)
0.998587 0.0531400i \(-0.0169230\pi\)
\(858\) 0 0
\(859\) 31.5630 1.07692 0.538458 0.842652i \(-0.319007\pi\)
0.538458 + 0.842652i \(0.319007\pi\)
\(860\) 0 0
\(861\) 0.0932897 + 0.287116i 0.00317931 + 0.00978490i
\(862\) 0 0
\(863\) −2.97188 + 4.09044i −0.101164 + 0.139240i −0.856598 0.515985i \(-0.827426\pi\)
0.755434 + 0.655225i \(0.227426\pi\)
\(864\) 0 0
\(865\) −38.6317 40.0891i −1.31352 1.36307i
\(866\) 0 0
\(867\) 18.2993 + 25.1868i 0.621476 + 0.855388i
\(868\) 0 0
\(869\) −8.16217 5.96244i −0.276883 0.202262i
\(870\) 0 0
\(871\) −23.3141 + 16.9387i −0.789969 + 0.573946i
\(872\) 0 0
\(873\) 12.9859 + 4.21937i 0.439506 + 0.142804i
\(874\) 0 0
\(875\) −4.37615 2.54512i −0.147941 0.0860408i
\(876\) 0 0
\(877\) −8.71216 + 2.83075i −0.294189 + 0.0955877i −0.452393 0.891819i \(-0.649430\pi\)
0.158204 + 0.987406i \(0.449430\pi\)
\(878\) 0 0
\(879\) 6.87871 0.232013
\(880\) 0 0
\(881\) 2.47296 0.0833160 0.0416580 0.999132i \(-0.486736\pi\)
0.0416580 + 0.999132i \(0.486736\pi\)
\(882\) 0 0
\(883\) −7.76566 + 2.52321i −0.261335 + 0.0849129i −0.436754 0.899581i \(-0.643872\pi\)
0.175419 + 0.984494i \(0.443872\pi\)
\(884\) 0 0
\(885\) −5.83363 + 2.83762i −0.196095 + 0.0953855i
\(886\) 0 0
\(887\) −32.1992 10.4622i −1.08114 0.351285i −0.286325 0.958132i \(-0.592434\pi\)
−0.794818 + 0.606848i \(0.792434\pi\)
\(888\) 0 0
\(889\) −4.87551 + 3.54227i −0.163520 + 0.118804i
\(890\) 0 0
\(891\) −36.4337 0.0941046i −1.22058 0.00315262i
\(892\) 0 0
\(893\) 7.02407 + 9.66780i 0.235052 + 0.323521i
\(894\) 0 0
\(895\) −8.92736 + 8.60282i −0.298409 + 0.287560i
\(896\) 0 0
\(897\) −41.5010 + 57.1212i −1.38568 + 1.90722i
\(898\) 0 0
\(899\) 8.24227 + 25.3671i 0.274895 + 0.846040i
\(900\) 0 0
\(901\) −2.71930 −0.0905929
\(902\) 0 0
\(903\) 9.89124i 0.329160i
\(904\) 0 0
\(905\) 8.00449 45.1166i 0.266078 1.49973i
\(906\) 0 0
\(907\) 6.08974 8.38181i 0.202207 0.278314i −0.695856 0.718182i \(-0.744975\pi\)
0.898062 + 0.439868i \(0.144975\pi\)
\(908\) 0 0
\(909\) 1.69713 5.22322i 0.0562901 0.173243i
\(910\) 0 0
\(911\) 12.7866 9.28999i 0.423638 0.307791i −0.355462 0.934691i \(-0.615676\pi\)
0.779100 + 0.626900i \(0.215676\pi\)
\(912\) 0 0
\(913\) −30.9981 10.1605i −1.02589 0.336263i
\(914\) 0 0
\(915\) −5.50733 39.4898i −0.182067 1.30549i
\(916\) 0 0
\(917\) 7.27692 + 2.36441i 0.240305 + 0.0780798i
\(918\) 0 0
\(919\) −13.2348 9.61568i −0.436577 0.317192i 0.347696 0.937607i \(-0.386964\pi\)
−0.784273 + 0.620415i \(0.786964\pi\)
\(920\) 0 0
\(921\) −5.91065 18.1911i −0.194763 0.599417i
\(922\) 0 0
\(923\) 72.5901i 2.38933i
\(924\) 0 0
\(925\) −24.0242 + 16.1307i −0.789912 + 0.530374i
\(926\) 0 0
\(927\) 10.4502 3.39546i 0.343228 0.111522i
\(928\) 0 0
\(929\) 21.6132 + 15.7029i 0.709105 + 0.515195i 0.882885 0.469589i \(-0.155598\pi\)
−0.173780 + 0.984785i \(0.555598\pi\)
\(930\) 0 0
\(931\) −3.91289 + 12.0426i −0.128240 + 0.394682i
\(932\) 0 0
\(933\) 12.8376 + 17.6694i 0.420283 + 0.578469i
\(934\) 0 0
\(935\) 1.19183 + 8.71031i 0.0389771 + 0.284858i
\(936\) 0 0
\(937\) −9.85708 13.5671i −0.322017 0.443218i 0.617065 0.786912i \(-0.288322\pi\)
−0.939082 + 0.343694i \(0.888322\pi\)
\(938\) 0 0
\(939\) −7.64883 + 23.5407i −0.249610 + 0.768221i
\(940\) 0 0
\(941\) 13.7088 + 9.95999i 0.446893 + 0.324687i 0.788368 0.615204i \(-0.210926\pi\)
−0.341475 + 0.939891i \(0.610926\pi\)
\(942\) 0 0
\(943\) 1.70576 0.554234i 0.0555471 0.0180484i
\(944\) 0 0
\(945\) −3.59336 1.91550i −0.116892 0.0623113i
\(946\) 0 0
\(947\) 24.7264i 0.803501i −0.915749 0.401750i \(-0.868402\pi\)
0.915749 0.401750i \(-0.131598\pi\)
\(948\) 0 0
\(949\) 7.19673 + 22.1492i 0.233616 + 0.718995i
\(950\) 0 0
\(951\) −4.63374 3.36661i −0.150259 0.109170i
\(952\) 0 0
\(953\) 7.15058 + 2.32337i 0.231630 + 0.0752612i 0.422532 0.906348i \(-0.361141\pi\)
−0.190902 + 0.981609i \(0.561141\pi\)
\(954\) 0 0
\(955\) 18.8854 2.63380i 0.611117 0.0852278i
\(956\) 0 0
\(957\) 48.0505 15.4755i 1.55325 0.500251i
\(958\) 0 0
\(959\) 6.90781 5.01882i 0.223065 0.162066i
\(960\) 0 0
\(961\) −5.79753 + 17.8430i −0.187017 + 0.575580i
\(962\) 0 0
\(963\) 4.17936 5.75239i 0.134678 0.185368i
\(964\) 0 0
\(965\) 15.5886 + 2.76569i 0.501814 + 0.0890307i
\(966\) 0 0
\(967\) 15.0563i 0.484177i 0.970254 + 0.242089i \(0.0778325\pi\)
−0.970254 + 0.242089i \(0.922168\pi\)
\(968\) 0 0
\(969\) −4.41007 −0.141672
\(970\) 0 0
\(971\) −13.9054 42.7966i −0.446247 1.37341i −0.881110 0.472911i \(-0.843203\pi\)
0.434863 0.900496i \(-0.356797\pi\)
\(972\) 0 0
\(973\) 1.60495 2.20903i 0.0514524 0.0708181i
\(974\) 0 0
\(975\) 63.2284 17.9858i 2.02493 0.576005i
\(976\) 0 0
\(977\) 7.45912 + 10.2666i 0.238638 + 0.328458i 0.911492 0.411318i \(-0.134932\pi\)
−0.672853 + 0.739776i \(0.734932\pi\)
\(978\) 0 0
\(979\) 13.0034 + 40.3748i 0.415589 + 1.29038i
\(980\) 0 0
\(981\) 4.10294 2.98096i 0.130997 0.0951747i
\(982\) 0 0
\(983\) −6.42717 2.08831i −0.204995 0.0666069i 0.204720 0.978821i \(-0.434372\pi\)
−0.409715 + 0.912214i \(0.634372\pi\)
\(984\) 0 0
\(985\) −25.2837 + 12.2986i −0.805605 + 0.391865i
\(986\) 0 0
\(987\) −5.51304 + 1.79130i −0.175482 + 0.0570176i
\(988\) 0 0
\(989\) 58.7639 1.86858
\(990\) 0 0
\(991\) −8.57936 −0.272532 −0.136266 0.990672i \(-0.543510\pi\)
−0.136266 + 0.990672i \(0.543510\pi\)
\(992\) 0 0
\(993\) −51.7615 + 16.8183i −1.64260 + 0.533713i
\(994\) 0 0
\(995\) 11.7167 + 24.0874i 0.371444 + 0.763623i
\(996\) 0 0
\(997\) 15.8982 + 5.16564i 0.503501 + 0.163598i 0.549745 0.835333i \(-0.314725\pi\)
−0.0462434 + 0.998930i \(0.514725\pi\)
\(998\) 0 0
\(999\) −18.8306 + 13.6813i −0.595775 + 0.432856i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.t.a.69.5 yes 24
4.3 odd 2 880.2.cd.d.289.2 24
5.2 odd 4 1100.2.n.f.201.2 24
5.3 odd 4 1100.2.n.f.201.5 24
5.4 even 2 inner 220.2.t.a.69.2 24
11.2 odd 10 2420.2.b.h.969.4 12
11.4 even 5 inner 220.2.t.a.169.2 yes 24
11.9 even 5 2420.2.b.i.969.4 12
20.19 odd 2 880.2.cd.d.289.5 24
44.15 odd 10 880.2.cd.d.609.5 24
55.4 even 10 inner 220.2.t.a.169.5 yes 24
55.9 even 10 2420.2.b.i.969.9 12
55.24 odd 10 2420.2.b.h.969.9 12
55.37 odd 20 1100.2.n.f.301.2 24
55.48 odd 20 1100.2.n.f.301.5 24
220.59 odd 10 880.2.cd.d.609.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.t.a.69.2 24 5.4 even 2 inner
220.2.t.a.69.5 yes 24 1.1 even 1 trivial
220.2.t.a.169.2 yes 24 11.4 even 5 inner
220.2.t.a.169.5 yes 24 55.4 even 10 inner
880.2.cd.d.289.2 24 4.3 odd 2
880.2.cd.d.289.5 24 20.19 odd 2
880.2.cd.d.609.2 24 220.59 odd 10
880.2.cd.d.609.5 24 44.15 odd 10
1100.2.n.f.201.2 24 5.2 odd 4
1100.2.n.f.201.5 24 5.3 odd 4
1100.2.n.f.301.2 24 55.37 odd 20
1100.2.n.f.301.5 24 55.48 odd 20
2420.2.b.h.969.4 12 11.2 odd 10
2420.2.b.h.969.9 12 55.24 odd 10
2420.2.b.i.969.4 12 11.9 even 5
2420.2.b.i.969.9 12 55.9 even 10