Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(9,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.t (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −1.60349 | − | 2.20702i | 0 | 2.23079 | − | 0.153527i | 0 | 1.00600 | − | 1.38464i | 0 | −1.37268 | + | 4.22469i | 0 | ||||||||||
9.2 | 0 | −1.22731 | − | 1.68925i | 0 | −2.22531 | − | 0.219109i | 0 | −1.67492 | + | 2.30533i | 0 | −0.420216 | + | 1.29329i | 0 | ||||||||||
9.3 | 0 | −0.447653 | − | 0.616141i | 0 | −0.909494 | + | 2.04275i | 0 | 2.82695 | − | 3.89096i | 0 | 0.747814 | − | 2.30153i | 0 | ||||||||||
9.4 | 0 | 0.447653 | + | 0.616141i | 0 | 1.93649 | + | 1.11803i | 0 | −2.82695 | + | 3.89096i | 0 | 0.747814 | − | 2.30153i | 0 | ||||||||||
9.5 | 0 | 1.22731 | + | 1.68925i | 0 | 1.67152 | − | 1.48527i | 0 | 1.67492 | − | 2.30533i | 0 | −0.420216 | + | 1.29329i | 0 | ||||||||||
9.6 | 0 | 1.60349 | + | 2.20702i | 0 | −1.89499 | + | 1.18702i | 0 | −1.00600 | + | 1.38464i | 0 | −1.37268 | + | 4.22469i | 0 | ||||||||||
49.1 | 0 | −1.60349 | + | 2.20702i | 0 | 2.23079 | + | 0.153527i | 0 | 1.00600 | + | 1.38464i | 0 | −1.37268 | − | 4.22469i | 0 | ||||||||||
49.2 | 0 | −1.22731 | + | 1.68925i | 0 | −2.22531 | + | 0.219109i | 0 | −1.67492 | − | 2.30533i | 0 | −0.420216 | − | 1.29329i | 0 | ||||||||||
49.3 | 0 | −0.447653 | + | 0.616141i | 0 | −0.909494 | − | 2.04275i | 0 | 2.82695 | + | 3.89096i | 0 | 0.747814 | + | 2.30153i | 0 | ||||||||||
49.4 | 0 | 0.447653 | − | 0.616141i | 0 | 1.93649 | − | 1.11803i | 0 | −2.82695 | − | 3.89096i | 0 | 0.747814 | + | 2.30153i | 0 | ||||||||||
49.5 | 0 | 1.22731 | − | 1.68925i | 0 | 1.67152 | + | 1.48527i | 0 | 1.67492 | + | 2.30533i | 0 | −0.420216 | − | 1.29329i | 0 | ||||||||||
49.6 | 0 | 1.60349 | − | 2.20702i | 0 | −1.89499 | − | 1.18702i | 0 | −1.00600 | − | 1.38464i | 0 | −1.37268 | − | 4.22469i | 0 | ||||||||||
69.1 | 0 | −2.93917 | + | 0.954994i | 0 | −1.85993 | − | 1.24124i | 0 | 2.42366 | + | 0.787496i | 0 | 5.29965 | − | 3.85042i | 0 | ||||||||||
69.2 | 0 | −1.89864 | + | 0.616907i | 0 | 2.21463 | + | 0.308858i | 0 | −0.430637 | − | 0.139922i | 0 | 0.797226 | − | 0.579219i | 0 | ||||||||||
69.3 | 0 | −0.989226 | + | 0.321419i | 0 | −1.25698 | + | 1.84933i | 0 | −2.15207 | − | 0.699249i | 0 | −1.55179 | + | 1.12744i | 0 | ||||||||||
69.4 | 0 | 0.989226 | − | 0.321419i | 0 | 1.37039 | − | 1.76693i | 0 | 2.15207 | + | 0.699249i | 0 | −1.55179 | + | 1.12744i | 0 | ||||||||||
69.5 | 0 | 1.89864 | − | 0.616907i | 0 | 0.978101 | + | 2.01080i | 0 | 0.430637 | + | 0.139922i | 0 | 0.797226 | − | 0.579219i | 0 | ||||||||||
69.6 | 0 | 2.93917 | − | 0.954994i | 0 | −1.75524 | − | 1.38533i | 0 | −2.42366 | − | 0.787496i | 0 | 5.29965 | − | 3.85042i | 0 | ||||||||||
169.1 | 0 | −2.93917 | − | 0.954994i | 0 | −1.85993 | + | 1.24124i | 0 | 2.42366 | − | 0.787496i | 0 | 5.29965 | + | 3.85042i | 0 | ||||||||||
169.2 | 0 | −1.89864 | − | 0.616907i | 0 | 2.21463 | − | 0.308858i | 0 | −0.430637 | + | 0.139922i | 0 | 0.797226 | + | 0.579219i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.t.a | ✓ | 24 |
4.b | odd | 2 | 1 | 880.2.cd.d | 24 | ||
5.b | even | 2 | 1 | inner | 220.2.t.a | ✓ | 24 |
5.c | odd | 4 | 2 | 1100.2.n.f | 24 | ||
11.c | even | 5 | 1 | inner | 220.2.t.a | ✓ | 24 |
11.c | even | 5 | 1 | 2420.2.b.i | 12 | ||
11.d | odd | 10 | 1 | 2420.2.b.h | 12 | ||
20.d | odd | 2 | 1 | 880.2.cd.d | 24 | ||
44.h | odd | 10 | 1 | 880.2.cd.d | 24 | ||
55.h | odd | 10 | 1 | 2420.2.b.h | 12 | ||
55.j | even | 10 | 1 | inner | 220.2.t.a | ✓ | 24 |
55.j | even | 10 | 1 | 2420.2.b.i | 12 | ||
55.k | odd | 20 | 2 | 1100.2.n.f | 24 | ||
220.n | odd | 10 | 1 | 880.2.cd.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.t.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
220.2.t.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
220.2.t.a | ✓ | 24 | 11.c | even | 5 | 1 | inner |
220.2.t.a | ✓ | 24 | 55.j | even | 10 | 1 | inner |
880.2.cd.d | 24 | 4.b | odd | 2 | 1 | ||
880.2.cd.d | 24 | 20.d | odd | 2 | 1 | ||
880.2.cd.d | 24 | 44.h | odd | 10 | 1 | ||
880.2.cd.d | 24 | 220.n | odd | 10 | 1 | ||
1100.2.n.f | 24 | 5.c | odd | 4 | 2 | ||
1100.2.n.f | 24 | 55.k | odd | 20 | 2 | ||
2420.2.b.h | 12 | 11.d | odd | 10 | 1 | ||
2420.2.b.h | 12 | 55.h | odd | 10 | 1 | ||
2420.2.b.i | 12 | 11.c | even | 5 | 1 | ||
2420.2.b.i | 12 | 55.j | even | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).