Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(51,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.r (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41421 | + | 0.00460387i | −2.09469 | − | 0.680607i | 1.99996 | − | 0.0130217i | −0.809017 | + | 0.587785i | 2.96546 | + | 0.952875i | −0.548700 | − | 1.68872i | −2.82829 | + | 0.0276229i | 1.49746 | + | 1.08797i | 1.14141 | − | 0.834974i |
51.2 | −1.30396 | + | 0.547426i | 3.21575 | + | 1.04486i | 1.40065 | − | 1.42765i | −0.809017 | + | 0.587785i | −4.76521 | + | 0.397924i | −0.161812 | − | 0.498007i | −1.04486 | + | 2.62836i | 6.82226 | + | 4.95666i | 0.733161 | − | 1.20933i |
51.3 | −1.01371 | − | 0.986100i | −0.260392 | − | 0.0846065i | 0.0552150 | + | 1.99924i | −0.809017 | + | 0.587785i | 0.180532 | + | 0.342539i | −0.560317 | − | 1.72448i | 1.91548 | − | 2.08109i | −2.36641 | − | 1.71929i | 1.39972 | + | 0.201928i |
51.4 | −1.00805 | + | 0.991888i | 0.115659 | + | 0.0375799i | 0.0323155 | − | 1.99974i | −0.809017 | + | 0.587785i | −0.153865 | + | 0.0768386i | −1.38450 | − | 4.26105i | 1.95094 | + | 2.04788i | −2.41509 | − | 1.75466i | 0.232509 | − | 1.39497i |
51.5 | −0.631838 | + | 1.26522i | −0.115659 | − | 0.0375799i | −1.20156 | − | 1.59883i | −0.809017 | + | 0.587785i | 0.120625 | − | 0.122590i | 1.38450 | + | 4.26105i | 2.78206 | − | 0.510037i | −2.41509 | − | 1.75466i | −0.232509 | − | 1.39497i |
51.6 | −0.385414 | − | 1.36068i | −1.51690 | − | 0.492870i | −1.70291 | + | 1.04885i | −0.809017 | + | 0.587785i | −0.0860056 | + | 2.25398i | 1.09672 | + | 3.37535i | 2.08348 | + | 1.91288i | −0.368991 | − | 0.268088i | 1.11160 | + | 0.874274i |
51.7 | −0.117686 | + | 1.40931i | −3.21575 | − | 1.04486i | −1.97230 | − | 0.331712i | −0.809017 | + | 0.587785i | 1.85098 | − | 4.40902i | 0.161812 | + | 0.498007i | 0.699596 | − | 2.74054i | 6.82226 | + | 4.95666i | −0.733161 | − | 1.20933i |
51.8 | 0.432635 | + | 1.34641i | 2.09469 | + | 0.680607i | −1.62565 | + | 1.16501i | −0.809017 | + | 0.587785i | −0.0101400 | + | 3.11478i | 0.548700 | + | 1.68872i | −2.27190 | − | 1.68478i | 1.49746 | + | 1.08797i | −1.14141 | − | 0.834974i |
51.9 | 0.766165 | − | 1.18869i | −2.27074 | − | 0.737810i | −0.825983 | − | 1.82147i | −0.809017 | + | 0.587785i | −2.61679 | + | 2.13393i | −0.461886 | − | 1.42154i | −2.79801 | − | 0.413706i | 2.18487 | + | 1.58740i | 0.0788559 | + | 1.41201i |
51.10 | 0.893756 | − | 1.09599i | 2.27074 | + | 0.737810i | −0.402399 | − | 1.95910i | −0.809017 | + | 0.587785i | 2.83813 | − | 1.82930i | 0.461886 | + | 1.42154i | −2.50681 | − | 1.30993i | 2.18487 | + | 1.58740i | −0.0788559 | + | 1.41201i |
51.11 | 1.25109 | + | 0.659374i | 0.260392 | + | 0.0846065i | 1.13045 | + | 1.64987i | −0.809017 | + | 0.587785i | 0.269987 | + | 0.277546i | 0.560317 | + | 1.72448i | 0.326416 | + | 2.80953i | −2.36641 | − | 1.71929i | −1.39972 | + | 0.201928i |
51.12 | 1.41319 | − | 0.0539233i | 1.51690 | + | 0.492870i | 1.99418 | − | 0.152407i | −0.809017 | + | 0.587785i | 2.17024 | + | 0.614721i | −1.09672 | − | 3.37535i | 2.80993 | − | 0.322913i | −0.368991 | − | 0.268088i | −1.11160 | + | 0.874274i |
151.1 | −1.41421 | − | 0.00460387i | −2.09469 | + | 0.680607i | 1.99996 | + | 0.0130217i | −0.809017 | − | 0.587785i | 2.96546 | − | 0.952875i | −0.548700 | + | 1.68872i | −2.82829 | − | 0.0276229i | 1.49746 | − | 1.08797i | 1.14141 | + | 0.834974i |
151.2 | −1.30396 | − | 0.547426i | 3.21575 | − | 1.04486i | 1.40065 | + | 1.42765i | −0.809017 | − | 0.587785i | −4.76521 | − | 0.397924i | −0.161812 | + | 0.498007i | −1.04486 | − | 2.62836i | 6.82226 | − | 4.95666i | 0.733161 | + | 1.20933i |
151.3 | −1.01371 | + | 0.986100i | −0.260392 | + | 0.0846065i | 0.0552150 | − | 1.99924i | −0.809017 | − | 0.587785i | 0.180532 | − | 0.342539i | −0.560317 | + | 1.72448i | 1.91548 | + | 2.08109i | −2.36641 | + | 1.71929i | 1.39972 | − | 0.201928i |
151.4 | −1.00805 | − | 0.991888i | 0.115659 | − | 0.0375799i | 0.0323155 | + | 1.99974i | −0.809017 | − | 0.587785i | −0.153865 | − | 0.0768386i | −1.38450 | + | 4.26105i | 1.95094 | − | 2.04788i | −2.41509 | + | 1.75466i | 0.232509 | + | 1.39497i |
151.5 | −0.631838 | − | 1.26522i | −0.115659 | + | 0.0375799i | −1.20156 | + | 1.59883i | −0.809017 | − | 0.587785i | 0.120625 | + | 0.122590i | 1.38450 | − | 4.26105i | 2.78206 | + | 0.510037i | −2.41509 | + | 1.75466i | −0.232509 | + | 1.39497i |
151.6 | −0.385414 | + | 1.36068i | −1.51690 | + | 0.492870i | −1.70291 | − | 1.04885i | −0.809017 | − | 0.587785i | −0.0860056 | − | 2.25398i | 1.09672 | − | 3.37535i | 2.08348 | − | 1.91288i | −0.368991 | + | 0.268088i | 1.11160 | − | 0.874274i |
151.7 | −0.117686 | − | 1.40931i | −3.21575 | + | 1.04486i | −1.97230 | + | 0.331712i | −0.809017 | − | 0.587785i | 1.85098 | + | 4.40902i | 0.161812 | − | 0.498007i | 0.699596 | + | 2.74054i | 6.82226 | − | 4.95666i | −0.733161 | + | 1.20933i |
151.8 | 0.432635 | − | 1.34641i | 2.09469 | − | 0.680607i | −1.62565 | − | 1.16501i | −0.809017 | − | 0.587785i | −0.0101400 | − | 3.11478i | 0.548700 | − | 1.68872i | −2.27190 | + | 1.68478i | 1.49746 | − | 1.08797i | −1.14141 | + | 0.834974i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
44.g | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.r.d | ✓ | 48 |
4.b | odd | 2 | 1 | inner | 220.2.r.d | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 220.2.r.d | ✓ | 48 |
44.g | even | 10 | 1 | inner | 220.2.r.d | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.r.d | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
220.2.r.d | ✓ | 48 | 4.b | odd | 2 | 1 | inner |
220.2.r.d | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
220.2.r.d | ✓ | 48 | 44.g | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{48} - 26 T_{3}^{46} + 393 T_{3}^{44} - 4613 T_{3}^{42} + 51675 T_{3}^{40} - 431059 T_{3}^{38} + \cdots + 65536 \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\).