Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(51,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.r (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.26745 | − | 0.627351i | −1.88633 | − | 0.612906i | 1.21286 | + | 1.59027i | 0.809017 | − | 0.587785i | 2.00632 | + | 1.96022i | 0.668539 | + | 2.05755i | −0.539585 | − | 2.77648i | 0.755537 | + | 0.548930i | −1.39414 | + | 0.237451i |
51.2 | −1.26745 | − | 0.627351i | 2.42619 | + | 0.788316i | 1.21286 | + | 1.59027i | 0.809017 | − | 0.587785i | −2.58052 | − | 2.52122i | −1.33130 | − | 4.09732i | −0.539585 | − | 2.77648i | 2.83789 | + | 2.06185i | −1.39414 | + | 0.237451i |
51.3 | −1.21274 | + | 0.727497i | −2.51735 | − | 0.817938i | 0.941497 | − | 1.76453i | 0.809017 | − | 0.587785i | 3.64795 | − | 0.839417i | 0.0373322 | + | 0.114897i | 0.141898 | + | 2.82487i | 3.24099 | + | 2.35472i | −0.553519 | + | 1.30139i |
51.4 | −1.21274 | + | 0.727497i | 0.919215 | + | 0.298671i | 0.941497 | − | 1.76453i | 0.809017 | − | 0.587785i | −1.33205 | + | 0.306514i | 0.819704 | + | 2.52279i | 0.141898 | + | 2.82487i | −1.67130 | − | 1.21427i | −0.553519 | + | 1.30139i |
51.5 | −0.317132 | + | 1.37820i | −0.919215 | − | 0.298671i | −1.79885 | − | 0.874140i | 0.809017 | − | 0.587785i | 0.703140 | − | 1.17214i | −0.819704 | − | 2.52279i | 1.77521 | − | 2.20196i | −1.67130 | − | 1.21427i | 0.553519 | + | 1.30139i |
51.6 | −0.317132 | + | 1.37820i | 2.51735 | + | 0.817938i | −1.79885 | − | 0.874140i | 0.809017 | − | 0.587785i | −1.92561 | + | 3.21001i | −0.0373322 | − | 0.114897i | 1.77521 | − | 2.20196i | 3.24099 | + | 2.35472i | 0.553519 | + | 1.30139i |
51.7 | 0.988310 | + | 1.01156i | −2.42619 | − | 0.788316i | −0.0464877 | + | 1.99946i | 0.809017 | − | 0.587785i | −1.60040 | − | 3.23332i | 1.33130 | + | 4.09732i | −2.06851 | + | 1.92906i | 2.83789 | + | 2.06185i | 1.39414 | + | 0.237451i |
51.8 | 0.988310 | + | 1.01156i | 1.88633 | + | 0.612906i | −0.0464877 | + | 1.99946i | 0.809017 | − | 0.587785i | 1.24429 | + | 2.51387i | −0.668539 | − | 2.05755i | −2.06851 | + | 1.92906i | 0.755537 | + | 0.548930i | 1.39414 | + | 0.237451i |
151.1 | −1.26745 | + | 0.627351i | −1.88633 | + | 0.612906i | 1.21286 | − | 1.59027i | 0.809017 | + | 0.587785i | 2.00632 | − | 1.96022i | 0.668539 | − | 2.05755i | −0.539585 | + | 2.77648i | 0.755537 | − | 0.548930i | −1.39414 | − | 0.237451i |
151.2 | −1.26745 | + | 0.627351i | 2.42619 | − | 0.788316i | 1.21286 | − | 1.59027i | 0.809017 | + | 0.587785i | −2.58052 | + | 2.52122i | −1.33130 | + | 4.09732i | −0.539585 | + | 2.77648i | 2.83789 | − | 2.06185i | −1.39414 | − | 0.237451i |
151.3 | −1.21274 | − | 0.727497i | −2.51735 | + | 0.817938i | 0.941497 | + | 1.76453i | 0.809017 | + | 0.587785i | 3.64795 | + | 0.839417i | 0.0373322 | − | 0.114897i | 0.141898 | − | 2.82487i | 3.24099 | − | 2.35472i | −0.553519 | − | 1.30139i |
151.4 | −1.21274 | − | 0.727497i | 0.919215 | − | 0.298671i | 0.941497 | + | 1.76453i | 0.809017 | + | 0.587785i | −1.33205 | − | 0.306514i | 0.819704 | − | 2.52279i | 0.141898 | − | 2.82487i | −1.67130 | + | 1.21427i | −0.553519 | − | 1.30139i |
151.5 | −0.317132 | − | 1.37820i | −0.919215 | + | 0.298671i | −1.79885 | + | 0.874140i | 0.809017 | + | 0.587785i | 0.703140 | + | 1.17214i | −0.819704 | + | 2.52279i | 1.77521 | + | 2.20196i | −1.67130 | + | 1.21427i | 0.553519 | − | 1.30139i |
151.6 | −0.317132 | − | 1.37820i | 2.51735 | − | 0.817938i | −1.79885 | + | 0.874140i | 0.809017 | + | 0.587785i | −1.92561 | − | 3.21001i | −0.0373322 | + | 0.114897i | 1.77521 | + | 2.20196i | 3.24099 | − | 2.35472i | 0.553519 | − | 1.30139i |
151.7 | 0.988310 | − | 1.01156i | −2.42619 | + | 0.788316i | −0.0464877 | − | 1.99946i | 0.809017 | + | 0.587785i | −1.60040 | + | 3.23332i | 1.33130 | − | 4.09732i | −2.06851 | − | 1.92906i | 2.83789 | − | 2.06185i | 1.39414 | − | 0.237451i |
151.8 | 0.988310 | − | 1.01156i | 1.88633 | − | 0.612906i | −0.0464877 | − | 1.99946i | 0.809017 | + | 0.587785i | 1.24429 | − | 2.51387i | −0.668539 | + | 2.05755i | −2.06851 | − | 1.92906i | 0.755537 | − | 0.548930i | 1.39414 | − | 0.237451i |
171.1 | −1.32039 | − | 0.506519i | 0.181311 | − | 0.249553i | 1.48688 | + | 1.33761i | −0.309017 | + | 0.951057i | −0.365805 | + | 0.237671i | −3.62272 | + | 2.63206i | −1.28574 | − | 2.51930i | 0.897648 | + | 2.76268i | 0.889752 | − | 1.09925i |
171.2 | −1.32039 | − | 0.506519i | 1.52406 | − | 2.09769i | 1.48688 | + | 1.33761i | −0.309017 | + | 0.951057i | −3.07488 | + | 1.99781i | 2.61302 | − | 1.89847i | −1.28574 | − | 2.51930i | −1.15049 | − | 3.54085i | 0.889752 | − | 1.09925i |
171.3 | −0.770496 | + | 1.18589i | −1.52406 | + | 2.09769i | −0.812670 | − | 1.82745i | −0.309017 | + | 0.951057i | −1.31335 | − | 3.42363i | −2.61302 | + | 1.89847i | 2.79331 | + | 0.444304i | −1.15049 | − | 3.54085i | −0.889752 | − | 1.09925i |
171.4 | −0.770496 | + | 1.18589i | −0.181311 | + | 0.249553i | −0.812670 | − | 1.82745i | −0.309017 | + | 0.951057i | −0.156243 | − | 0.407294i | 3.62272 | − | 2.63206i | 2.79331 | + | 0.444304i | 0.897648 | + | 2.76268i | −0.889752 | − | 1.09925i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
44.g | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.r.c | ✓ | 32 |
4.b | odd | 2 | 1 | inner | 220.2.r.c | ✓ | 32 |
11.d | odd | 10 | 1 | inner | 220.2.r.c | ✓ | 32 |
44.g | even | 10 | 1 | inner | 220.2.r.c | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.r.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
220.2.r.c | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
220.2.r.c | ✓ | 32 | 11.d | odd | 10 | 1 | inner |
220.2.r.c | ✓ | 32 | 44.g | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{32} - 17 T_{3}^{30} + 240 T_{3}^{28} - 3030 T_{3}^{26} + 31755 T_{3}^{24} - 250386 T_{3}^{22} + \cdots + 16777216 \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\).