Properties

Label 220.2.r.b
Level $220$
Weight $2$
Character orbit 220.r
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(51,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{15}^{7} + \cdots - \zeta_{15}^{3}) q^{2} + ( - \zeta_{15}^{7} + \zeta_{15}^{3} + 1) q^{3} + (2 \zeta_{15}^{7} + \zeta_{15}^{4} + \cdots - 1) q^{4} - \zeta_{15}^{6} q^{5} + ( - 2 \zeta_{15}^{6} - \zeta_{15}^{5} + \cdots - 1) q^{6} + \cdots + (3 \zeta_{15}^{7} - 4 \zeta_{15}^{6} + \cdots - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} + 5 q^{3} - q^{4} + 2 q^{5} + q^{6} - 3 q^{7} + 5 q^{8} + 3 q^{9} - 5 q^{10} - q^{11} - 10 q^{12} + 10 q^{13} + 5 q^{14} + 5 q^{15} + 7 q^{16} - 5 q^{17} - 10 q^{18} - 11 q^{19} - 4 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-\zeta_{15}^{3}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
0.913545 + 0.406737i
−0.104528 0.994522i
0.913545 0.406737i
−0.104528 + 0.994522i
−0.978148 + 0.207912i
0.669131 + 0.743145i
−0.978148 0.207912i
0.669131 0.743145i
−0.478148 1.33093i 2.28716 + 0.743145i −1.54275 + 1.27276i 0.809017 0.587785i −0.104528 3.39939i 1.53158 + 4.71372i 2.43162 + 1.44472i 2.25181 + 1.63603i −1.16913 0.795697i
51.2 1.16913 0.795697i 0.639886 + 0.207912i 0.733733 1.86055i 0.809017 0.587785i 0.913545 0.266080i 0.513506 + 1.58041i −0.622602 2.75905i −2.06082 1.49728i 0.478148 1.33093i
151.1 −0.478148 + 1.33093i 2.28716 0.743145i −1.54275 1.27276i 0.809017 + 0.587785i −0.104528 + 3.39939i 1.53158 4.71372i 2.43162 1.44472i 2.25181 1.63603i −1.16913 + 0.795697i
151.2 1.16913 + 0.795697i 0.639886 0.207912i 0.733733 + 1.86055i 0.809017 + 0.587785i 0.913545 + 0.266080i 0.513506 1.58041i −0.622602 + 2.75905i −2.06082 + 1.49728i 0.478148 + 1.33093i
171.1 0.395472 + 1.35779i 0.295511 0.406737i −1.68720 + 1.07394i −0.309017 + 0.951057i 0.669131 + 0.240391i −2.59618 + 1.88624i −2.12543 1.86616i 0.848943 + 2.61278i −1.41355 0.0434654i
171.2 1.41355 0.0434654i −0.722562 + 0.994522i 1.99622 0.122881i −0.309017 + 0.951057i −0.978148 + 1.43721i −0.948903 + 0.689419i 2.81641 0.260464i 0.460074 + 1.41596i −0.395472 + 1.35779i
211.1 0.395472 1.35779i 0.295511 + 0.406737i −1.68720 1.07394i −0.309017 0.951057i 0.669131 0.240391i −2.59618 1.88624i −2.12543 + 1.86616i 0.848943 2.61278i −1.41355 + 0.0434654i
211.2 1.41355 + 0.0434654i −0.722562 0.994522i 1.99622 + 0.122881i −0.309017 0.951057i −0.978148 1.43721i −0.948903 0.689419i 2.81641 + 0.260464i 0.460074 1.41596i −0.395472 1.35779i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
44.g even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.r.b yes 8
4.b odd 2 1 220.2.r.a 8
11.d odd 10 1 220.2.r.a 8
44.g even 10 1 inner 220.2.r.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.r.a 8 4.b odd 2 1
220.2.r.a 8 11.d odd 10 1
220.2.r.b yes 8 1.a even 1 1 trivial
220.2.r.b yes 8 44.g even 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 5T_{3}^{7} + 8T_{3}^{6} - 5T_{3}^{5} + 9T_{3}^{4} - 15T_{3}^{3} + 12T_{3}^{2} - 5T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 5 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( T^{8} - 5 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 3 T^{7} + \cdots + 961 \) Copy content Toggle raw display
$11$ \( T^{8} + T^{7} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{8} - 10 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} + 5 T^{7} + \cdots + 3481 \) Copy content Toggle raw display
$19$ \( T^{8} + 11 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{8} + 115 T^{6} + \cdots + 93025 \) Copy content Toggle raw display
$29$ \( T^{8} + 5 T^{7} + \cdots + 841 \) Copy content Toggle raw display
$31$ \( T^{8} - 10 T^{7} + \cdots + 177241 \) Copy content Toggle raw display
$37$ \( T^{8} - 20 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$41$ \( T^{8} - 10 T^{7} + \cdots + 292681 \) Copy content Toggle raw display
$43$ \( (T^{4} + 17 T^{3} + \cdots + 61)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 15 T^{6} + \cdots + 2025 \) Copy content Toggle raw display
$53$ \( T^{8} + 7 T^{7} + \cdots + 4932841 \) Copy content Toggle raw display
$59$ \( T^{8} + 5 T^{7} + \cdots + 7778521 \) Copy content Toggle raw display
$61$ \( T^{8} + 10 T^{7} + \cdots + 177241 \) Copy content Toggle raw display
$67$ \( T^{8} + 187 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 1707259761 \) Copy content Toggle raw display
$73$ \( T^{8} - 5 T^{7} + \cdots + 11082241 \) Copy content Toggle raw display
$79$ \( T^{8} + 21 T^{7} + \cdots + 1846881 \) Copy content Toggle raw display
$83$ \( T^{8} - 19 T^{7} + \cdots + 358801 \) Copy content Toggle raw display
$89$ \( (T^{4} - 10 T^{3} + \cdots + 295)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 44 T^{7} + \cdots + 961 \) Copy content Toggle raw display
show more
show less