Properties

Label 220.2.o.a
Level $220$
Weight $2$
Character orbit 220.o
Analytic conductor $1.757$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(19,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.o (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 128 q - 6 q^{4} - 6 q^{5} - 10 q^{6} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 128 q - 6 q^{4} - 6 q^{5} - 10 q^{6} - 36 q^{9} - 18 q^{14} - 26 q^{16} + 20 q^{20} - 10 q^{24} - 14 q^{25} - 40 q^{26} - 20 q^{29} + 30 q^{30} + 8 q^{34} - 32 q^{36} + 30 q^{40} + 38 q^{44} - 32 q^{45} - 90 q^{46} - 32 q^{49} + 30 q^{50} - 112 q^{56} + 28 q^{60} - 20 q^{61} - 90 q^{64} + 42 q^{66} - 72 q^{69} + 34 q^{70} - 80 q^{74} - 14 q^{80} + 12 q^{81} - 40 q^{84} + 30 q^{85} + 6 q^{86} - 24 q^{89} + 130 q^{90} + 60 q^{94} + 90 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1 −1.40908 0.120420i 0.358574 + 1.10358i 1.97100 + 0.339361i 2.17434 + 0.521772i −0.372366 1.59820i 1.17526 + 0.381865i −2.73642 0.715533i 1.33774 0.971928i −3.00098 0.997050i
19.2 −1.39601 + 0.226162i 0.0565130 + 0.173929i 1.89770 0.631450i −2.21829 0.281383i −0.118229 0.230026i 1.67119 + 0.543002i −2.50641 + 1.31070i 2.39999 1.74370i 3.16040 0.108880i
19.3 −1.30312 0.549445i −0.792163 2.43803i 1.39622 + 1.43198i −2.17036 0.538101i −0.307283 + 3.61228i −0.0886239 0.0287956i −1.03264 2.63318i −2.88940 + 2.09927i 2.53257 + 1.89370i
19.4 −1.26045 + 0.641292i −0.873724 2.68904i 1.17749 1.61664i 0.802730 + 2.08701i 2.82575 + 2.82911i 3.45331 + 1.12205i −0.447436 + 2.79281i −4.04052 + 2.93561i −2.35019 2.11580i
19.5 −1.23145 0.695360i 0.956633 + 2.94421i 1.03295 + 1.71261i −1.38646 + 1.75435i 0.869240 4.29086i 1.89963 + 0.617228i −0.0811505 2.82726i −5.32619 + 3.86970i 2.92726 1.19630i
19.6 −1.21462 + 0.724368i −0.584931 1.80023i 0.950583 1.75966i 0.815527 2.08205i 2.01450 + 1.76289i −2.76001 0.896781i 0.120044 + 2.82588i −0.471640 + 0.342666i 0.517615 + 3.11963i
19.7 −1.20080 0.747052i 0.370610 + 1.14062i 0.883825 + 1.79412i 0.123712 2.23264i 0.407076 1.64652i −4.41757 1.43535i 0.279004 2.81463i 1.26339 0.917906i −1.81645 + 2.58853i
19.8 −1.06425 + 0.931326i 0.584931 + 1.80023i 0.265262 1.98233i 0.815527 2.08205i −2.29912 1.37114i 2.76001 + 0.896781i 1.56389 + 2.35674i −0.471640 + 0.342666i 1.07114 + 2.97534i
19.9 −0.999406 + 1.00059i 0.873724 + 2.68904i −0.00237383 2.00000i 0.802730 + 2.08701i −3.56384 1.81321i −3.45331 1.12205i 2.00356 + 1.99644i −4.04052 + 2.93561i −2.89050 1.28257i
19.10 −0.914274 1.07894i −0.319262 0.982588i −0.328205 + 1.97289i −0.199146 + 2.22718i −0.768256 + 1.24282i 1.25217 + 0.406854i 2.42869 1.44965i 1.56350 1.13595i 2.58506 1.82139i
19.11 −0.743603 1.20294i −0.319262 0.982588i −0.894110 + 1.78901i 2.05664 0.877637i −0.944586 + 1.11471i 1.25217 + 0.406854i 2.81693 0.254757i 1.56350 1.13595i −2.58506 1.82139i
19.12 −0.646484 + 1.25780i −0.0565130 0.173929i −1.16412 1.62629i −2.21829 0.281383i 0.255303 + 0.0413605i −1.67119 0.543002i 2.79813 0.412850i 2.39999 1.74370i 1.78801 2.60826i
19.13 −0.339423 1.37288i 0.370610 + 1.14062i −1.76958 + 0.931971i −2.08514 + 0.807582i 1.44014 0.895954i −4.41757 1.43535i 1.88012 + 2.11309i 1.26339 0.917906i 1.81645 + 2.58853i
19.14 −0.320903 + 1.37732i −0.358574 1.10358i −1.79404 0.883975i 2.17434 + 0.521772i 1.63505 0.139731i −1.17526 0.381865i 1.79323 2.18731i 1.33774 0.971928i −1.41640 + 2.82733i
19.15 −0.280787 1.38606i 0.956633 + 2.94421i −1.84232 + 0.778374i 1.24004 1.86072i 3.81224 2.15265i 1.89963 + 0.617228i 1.59617 + 2.33500i −5.32619 + 3.86970i −2.92726 1.19630i
19.16 −0.119869 1.40912i −0.792163 2.43803i −1.97126 + 0.337820i −1.18244 1.89785i −3.34053 + 1.40850i −0.0886239 0.0287956i 0.712323 + 2.73726i −2.88940 + 2.09927i −2.53257 + 1.89370i
19.17 0.119869 + 1.40912i 0.792163 + 2.43803i −1.97126 + 0.337820i −2.17036 0.538101i −3.34053 + 1.40850i 0.0886239 + 0.0287956i −0.712323 2.73726i −2.88940 + 2.09927i 0.498094 3.12280i
19.18 0.280787 + 1.38606i −0.956633 2.94421i −1.84232 + 0.778374i −1.38646 + 1.75435i 3.81224 2.15265i −1.89963 0.617228i −1.59617 2.33500i −5.32619 + 3.86970i −2.82093 1.42912i
19.19 0.320903 1.37732i 0.358574 + 1.10358i −1.79404 0.883975i 1.16814 + 1.90668i 1.63505 0.139731i 1.17526 + 0.381865i −1.79323 + 2.18731i 1.33774 0.971928i 3.00098 0.997050i
19.20 0.339423 + 1.37288i −0.370610 1.14062i −1.76958 + 0.931971i 0.123712 2.23264i 1.44014 0.895954i 4.41757 + 1.43535i −1.88012 2.11309i 1.26339 0.917906i 3.10714 0.587967i
See next 80 embeddings (of 128 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
11.d odd 10 1 inner
20.d odd 2 1 inner
44.g even 10 1 inner
55.h odd 10 1 inner
220.o even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.o.a 128
4.b odd 2 1 inner 220.2.o.a 128
5.b even 2 1 inner 220.2.o.a 128
11.d odd 10 1 inner 220.2.o.a 128
20.d odd 2 1 inner 220.2.o.a 128
44.g even 10 1 inner 220.2.o.a 128
55.h odd 10 1 inner 220.2.o.a 128
220.o even 10 1 inner 220.2.o.a 128
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.o.a 128 1.a even 1 1 trivial
220.2.o.a 128 4.b odd 2 1 inner
220.2.o.a 128 5.b even 2 1 inner
220.2.o.a 128 11.d odd 10 1 inner
220.2.o.a 128 20.d odd 2 1 inner
220.2.o.a 128 44.g even 10 1 inner
220.2.o.a 128 55.h odd 10 1 inner
220.2.o.a 128 220.o even 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).