Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(19,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.o (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.40908 | − | 0.120420i | 0.358574 | + | 1.10358i | 1.97100 | + | 0.339361i | 2.17434 | + | 0.521772i | −0.372366 | − | 1.59820i | 1.17526 | + | 0.381865i | −2.73642 | − | 0.715533i | 1.33774 | − | 0.971928i | −3.00098 | − | 0.997050i |
19.2 | −1.39601 | + | 0.226162i | 0.0565130 | + | 0.173929i | 1.89770 | − | 0.631450i | −2.21829 | − | 0.281383i | −0.118229 | − | 0.230026i | 1.67119 | + | 0.543002i | −2.50641 | + | 1.31070i | 2.39999 | − | 1.74370i | 3.16040 | − | 0.108880i |
19.3 | −1.30312 | − | 0.549445i | −0.792163 | − | 2.43803i | 1.39622 | + | 1.43198i | −2.17036 | − | 0.538101i | −0.307283 | + | 3.61228i | −0.0886239 | − | 0.0287956i | −1.03264 | − | 2.63318i | −2.88940 | + | 2.09927i | 2.53257 | + | 1.89370i |
19.4 | −1.26045 | + | 0.641292i | −0.873724 | − | 2.68904i | 1.17749 | − | 1.61664i | 0.802730 | + | 2.08701i | 2.82575 | + | 2.82911i | 3.45331 | + | 1.12205i | −0.447436 | + | 2.79281i | −4.04052 | + | 2.93561i | −2.35019 | − | 2.11580i |
19.5 | −1.23145 | − | 0.695360i | 0.956633 | + | 2.94421i | 1.03295 | + | 1.71261i | −1.38646 | + | 1.75435i | 0.869240 | − | 4.29086i | 1.89963 | + | 0.617228i | −0.0811505 | − | 2.82726i | −5.32619 | + | 3.86970i | 2.92726 | − | 1.19630i |
19.6 | −1.21462 | + | 0.724368i | −0.584931 | − | 1.80023i | 0.950583 | − | 1.75966i | 0.815527 | − | 2.08205i | 2.01450 | + | 1.76289i | −2.76001 | − | 0.896781i | 0.120044 | + | 2.82588i | −0.471640 | + | 0.342666i | 0.517615 | + | 3.11963i |
19.7 | −1.20080 | − | 0.747052i | 0.370610 | + | 1.14062i | 0.883825 | + | 1.79412i | 0.123712 | − | 2.23264i | 0.407076 | − | 1.64652i | −4.41757 | − | 1.43535i | 0.279004 | − | 2.81463i | 1.26339 | − | 0.917906i | −1.81645 | + | 2.58853i |
19.8 | −1.06425 | + | 0.931326i | 0.584931 | + | 1.80023i | 0.265262 | − | 1.98233i | 0.815527 | − | 2.08205i | −2.29912 | − | 1.37114i | 2.76001 | + | 0.896781i | 1.56389 | + | 2.35674i | −0.471640 | + | 0.342666i | 1.07114 | + | 2.97534i |
19.9 | −0.999406 | + | 1.00059i | 0.873724 | + | 2.68904i | −0.00237383 | − | 2.00000i | 0.802730 | + | 2.08701i | −3.56384 | − | 1.81321i | −3.45331 | − | 1.12205i | 2.00356 | + | 1.99644i | −4.04052 | + | 2.93561i | −2.89050 | − | 1.28257i |
19.10 | −0.914274 | − | 1.07894i | −0.319262 | − | 0.982588i | −0.328205 | + | 1.97289i | −0.199146 | + | 2.22718i | −0.768256 | + | 1.24282i | 1.25217 | + | 0.406854i | 2.42869 | − | 1.44965i | 1.56350 | − | 1.13595i | 2.58506 | − | 1.82139i |
19.11 | −0.743603 | − | 1.20294i | −0.319262 | − | 0.982588i | −0.894110 | + | 1.78901i | 2.05664 | − | 0.877637i | −0.944586 | + | 1.11471i | 1.25217 | + | 0.406854i | 2.81693 | − | 0.254757i | 1.56350 | − | 1.13595i | −2.58506 | − | 1.82139i |
19.12 | −0.646484 | + | 1.25780i | −0.0565130 | − | 0.173929i | −1.16412 | − | 1.62629i | −2.21829 | − | 0.281383i | 0.255303 | + | 0.0413605i | −1.67119 | − | 0.543002i | 2.79813 | − | 0.412850i | 2.39999 | − | 1.74370i | 1.78801 | − | 2.60826i |
19.13 | −0.339423 | − | 1.37288i | 0.370610 | + | 1.14062i | −1.76958 | + | 0.931971i | −2.08514 | + | 0.807582i | 1.44014 | − | 0.895954i | −4.41757 | − | 1.43535i | 1.88012 | + | 2.11309i | 1.26339 | − | 0.917906i | 1.81645 | + | 2.58853i |
19.14 | −0.320903 | + | 1.37732i | −0.358574 | − | 1.10358i | −1.79404 | − | 0.883975i | 2.17434 | + | 0.521772i | 1.63505 | − | 0.139731i | −1.17526 | − | 0.381865i | 1.79323 | − | 2.18731i | 1.33774 | − | 0.971928i | −1.41640 | + | 2.82733i |
19.15 | −0.280787 | − | 1.38606i | 0.956633 | + | 2.94421i | −1.84232 | + | 0.778374i | 1.24004 | − | 1.86072i | 3.81224 | − | 2.15265i | 1.89963 | + | 0.617228i | 1.59617 | + | 2.33500i | −5.32619 | + | 3.86970i | −2.92726 | − | 1.19630i |
19.16 | −0.119869 | − | 1.40912i | −0.792163 | − | 2.43803i | −1.97126 | + | 0.337820i | −1.18244 | − | 1.89785i | −3.34053 | + | 1.40850i | −0.0886239 | − | 0.0287956i | 0.712323 | + | 2.73726i | −2.88940 | + | 2.09927i | −2.53257 | + | 1.89370i |
19.17 | 0.119869 | + | 1.40912i | 0.792163 | + | 2.43803i | −1.97126 | + | 0.337820i | −2.17036 | − | 0.538101i | −3.34053 | + | 1.40850i | 0.0886239 | + | 0.0287956i | −0.712323 | − | 2.73726i | −2.88940 | + | 2.09927i | 0.498094 | − | 3.12280i |
19.18 | 0.280787 | + | 1.38606i | −0.956633 | − | 2.94421i | −1.84232 | + | 0.778374i | −1.38646 | + | 1.75435i | 3.81224 | − | 2.15265i | −1.89963 | − | 0.617228i | −1.59617 | − | 2.33500i | −5.32619 | + | 3.86970i | −2.82093 | − | 1.42912i |
19.19 | 0.320903 | − | 1.37732i | 0.358574 | + | 1.10358i | −1.79404 | − | 0.883975i | 1.16814 | + | 1.90668i | 1.63505 | − | 0.139731i | 1.17526 | + | 0.381865i | −1.79323 | + | 2.18731i | 1.33774 | − | 0.971928i | 3.00098 | − | 0.997050i |
19.20 | 0.339423 | + | 1.37288i | −0.370610 | − | 1.14062i | −1.76958 | + | 0.931971i | 0.123712 | − | 2.23264i | 1.44014 | − | 0.895954i | 4.41757 | + | 1.43535i | −1.88012 | − | 2.11309i | 1.26339 | − | 0.917906i | 3.10714 | − | 0.587967i |
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
20.d | odd | 2 | 1 | inner |
44.g | even | 10 | 1 | inner |
55.h | odd | 10 | 1 | inner |
220.o | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.o.a | ✓ | 128 |
4.b | odd | 2 | 1 | inner | 220.2.o.a | ✓ | 128 |
5.b | even | 2 | 1 | inner | 220.2.o.a | ✓ | 128 |
11.d | odd | 10 | 1 | inner | 220.2.o.a | ✓ | 128 |
20.d | odd | 2 | 1 | inner | 220.2.o.a | ✓ | 128 |
44.g | even | 10 | 1 | inner | 220.2.o.a | ✓ | 128 |
55.h | odd | 10 | 1 | inner | 220.2.o.a | ✓ | 128 |
220.o | even | 10 | 1 | inner | 220.2.o.a | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.o.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
220.2.o.a | ✓ | 128 | 4.b | odd | 2 | 1 | inner |
220.2.o.a | ✓ | 128 | 5.b | even | 2 | 1 | inner |
220.2.o.a | ✓ | 128 | 11.d | odd | 10 | 1 | inner |
220.2.o.a | ✓ | 128 | 20.d | odd | 2 | 1 | inner |
220.2.o.a | ✓ | 128 | 44.g | even | 10 | 1 | inner |
220.2.o.a | ✓ | 128 | 55.h | odd | 10 | 1 | inner |
220.2.o.a | ✓ | 128 | 220.o | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(220, [\chi])\).