Properties

Label 220.2.g.b.219.16
Level $220$
Weight $2$
Character 220.219
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(219,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.219"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 219.16
Character \(\chi\) \(=\) 220.219
Dual form 220.2.g.b.219.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.419204 + 1.35065i) q^{2} +2.05261 q^{3} +(-1.64854 + 1.13240i) q^{4} +(1.54194 - 1.61939i) q^{5} +(0.860462 + 2.77236i) q^{6} +1.06270i q^{7} +(-2.22056 - 1.75189i) q^{8} +1.21320 q^{9} +(2.83363 + 1.40377i) q^{10} +(3.17551 + 0.957146i) q^{11} +(-3.38380 + 2.32437i) q^{12} -4.77094 q^{13} +(-1.43534 + 0.445487i) q^{14} +(3.16499 - 3.32398i) q^{15} +(1.43534 - 3.73361i) q^{16} +0.329831 q^{17} +(0.508578 + 1.63861i) q^{18} -0.677013 q^{19} +(-0.708135 + 4.41572i) q^{20} +2.18130i q^{21} +(0.0384155 + 4.69026i) q^{22} -4.71498 q^{23} +(-4.55793 - 3.59595i) q^{24} +(-0.244866 - 4.99400i) q^{25} +(-2.00000 - 6.44389i) q^{26} -3.66760 q^{27} +(-1.20340 - 1.75189i) q^{28} -7.19190i q^{29} +(5.81632 + 2.88138i) q^{30} +9.04510i q^{31} +(5.64451 + 0.373501i) q^{32} +(6.51808 + 1.96464i) q^{33} +(0.138267 + 0.445487i) q^{34} +(1.72092 + 1.63861i) q^{35} +(-2.00000 + 1.37383i) q^{36} -5.33925i q^{37} +(-0.283807 - 0.914411i) q^{38} -9.79287 q^{39} +(-6.26096 + 0.894642i) q^{40} +5.01060i q^{41} +(-2.94618 + 0.914411i) q^{42} -5.08692i q^{43} +(-6.31881 + 2.01806i) q^{44} +(1.87067 - 1.96464i) q^{45} +(-1.97654 - 6.36832i) q^{46} +1.61500 q^{47} +(2.94618 - 7.66363i) q^{48} +5.87067 q^{49} +(6.64252 - 2.42424i) q^{50} +0.677013 q^{51} +(7.86507 - 5.40262i) q^{52} +8.57804i q^{53} +(-1.53748 - 4.95366i) q^{54} +(6.44643 - 3.66654i) q^{55} +(1.86173 - 2.35978i) q^{56} -1.38964 q^{57} +(9.71378 - 3.01488i) q^{58} -0.336403i q^{59} +(-1.45352 + 9.06373i) q^{60} -13.2708i q^{61} +(-12.2168 + 3.79175i) q^{62} +1.28926i q^{63} +(1.86173 + 7.78036i) q^{64} +(-7.35649 + 7.72603i) q^{65} +(0.0788519 + 9.62726i) q^{66} +4.71498 q^{67} +(-0.543738 + 0.373501i) q^{68} -9.67801 q^{69} +(-1.49178 + 3.01129i) q^{70} -3.97503i q^{71} +(-2.69397 - 2.12539i) q^{72} +11.6189 q^{73} +(7.21148 - 2.23824i) q^{74} +(-0.502613 - 10.2507i) q^{75} +(1.11608 - 0.766650i) q^{76} +(-1.01716 + 3.37461i) q^{77} +(-4.10522 - 13.2268i) q^{78} -6.35102 q^{79} +(-3.83297 - 8.08136i) q^{80} -11.1677 q^{81} +(-6.76759 + 2.10047i) q^{82} +12.0945i q^{83} +(-2.47011 - 3.59595i) q^{84} +(0.508578 - 0.534126i) q^{85} +(6.87067 - 2.13246i) q^{86} -14.7622i q^{87} +(-5.37458 - 7.68855i) q^{88} -7.95455 q^{89} +(3.43775 + 1.70305i) q^{90} -5.07007i q^{91} +(7.77282 - 5.33925i) q^{92} +18.5660i q^{93} +(0.677013 + 2.18130i) q^{94} +(-1.04391 + 1.09635i) q^{95} +(11.5860 + 0.766650i) q^{96} -3.23879i q^{97} +(2.46101 + 7.92925i) q^{98} +(3.85252 + 1.16121i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{5} + 40 q^{9} + 12 q^{14} - 12 q^{16} - 20 q^{20} - 36 q^{25} - 48 q^{26} + 28 q^{34} - 48 q^{36} + 56 q^{44} - 48 q^{45} + 48 q^{49} + 20 q^{56} - 8 q^{60} + 20 q^{64} - 52 q^{66}+ \cdots - 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.419204 + 1.35065i 0.296422 + 0.955057i
\(3\) 2.05261 1.18507 0.592537 0.805543i \(-0.298126\pi\)
0.592537 + 0.805543i \(0.298126\pi\)
\(4\) −1.64854 + 1.13240i −0.824268 + 0.566200i
\(5\) 1.54194 1.61939i 0.689575 0.724214i
\(6\) 0.860462 + 2.77236i 0.351282 + 1.13181i
\(7\) 1.06270i 0.401662i 0.979626 + 0.200831i \(0.0643642\pi\)
−0.979626 + 0.200831i \(0.935636\pi\)
\(8\) −2.22056 1.75189i −0.785085 0.619388i
\(9\) 1.21320 0.404399
\(10\) 2.83363 + 1.40377i 0.896071 + 0.443910i
\(11\) 3.17551 + 0.957146i 0.957453 + 0.288590i
\(12\) −3.38380 + 2.32437i −0.976818 + 0.670989i
\(13\) −4.77094 −1.32322 −0.661611 0.749848i \(-0.730127\pi\)
−0.661611 + 0.749848i \(0.730127\pi\)
\(14\) −1.43534 + 0.445487i −0.383610 + 0.119062i
\(15\) 3.16499 3.32398i 0.817197 0.858247i
\(16\) 1.43534 3.73361i 0.358834 0.933401i
\(17\) 0.329831 0.0799957 0.0399979 0.999200i \(-0.487265\pi\)
0.0399979 + 0.999200i \(0.487265\pi\)
\(18\) 0.508578 + 1.63861i 0.119873 + 0.386224i
\(19\) −0.677013 −0.155317 −0.0776587 0.996980i \(-0.524744\pi\)
−0.0776587 + 0.996980i \(0.524744\pi\)
\(20\) −0.708135 + 4.41572i −0.158344 + 0.987384i
\(21\) 2.18130i 0.475999i
\(22\) 0.0384155 + 4.69026i 0.00819021 + 0.999966i
\(23\) −4.71498 −0.983142 −0.491571 0.870837i \(-0.663577\pi\)
−0.491571 + 0.870837i \(0.663577\pi\)
\(24\) −4.55793 3.59595i −0.930383 0.734021i
\(25\) −0.244866 4.99400i −0.0489731 0.998800i
\(26\) −2.00000 6.44389i −0.392232 1.26375i
\(27\) −3.66760 −0.705831
\(28\) −1.20340 1.75189i −0.227421 0.331077i
\(29\) 7.19190i 1.33550i −0.744384 0.667751i \(-0.767257\pi\)
0.744384 0.667751i \(-0.232743\pi\)
\(30\) 5.81632 + 2.88138i 1.06191 + 0.526066i
\(31\) 9.04510i 1.62455i 0.583276 + 0.812274i \(0.301770\pi\)
−0.583276 + 0.812274i \(0.698230\pi\)
\(32\) 5.64451 + 0.373501i 0.997818 + 0.0660262i
\(33\) 6.51808 + 1.96464i 1.13465 + 0.342001i
\(34\) 0.138267 + 0.445487i 0.0237125 + 0.0764005i
\(35\) 1.72092 + 1.63861i 0.290889 + 0.276976i
\(36\) −2.00000 + 1.37383i −0.333333 + 0.228971i
\(37\) 5.33925i 0.877768i −0.898544 0.438884i \(-0.855374\pi\)
0.898544 0.438884i \(-0.144626\pi\)
\(38\) −0.283807 0.914411i −0.0460396 0.148337i
\(39\) −9.79287 −1.56811
\(40\) −6.26096 + 0.894642i −0.989945 + 0.141455i
\(41\) 5.01060i 0.782525i 0.920279 + 0.391262i \(0.127961\pi\)
−0.920279 + 0.391262i \(0.872039\pi\)
\(42\) −2.94618 + 0.914411i −0.454606 + 0.141097i
\(43\) 5.08692i 0.775748i −0.921712 0.387874i \(-0.873210\pi\)
0.921712 0.387874i \(-0.126790\pi\)
\(44\) −6.31881 + 2.01806i −0.952597 + 0.304234i
\(45\) 1.87067 1.96464i 0.278864 0.292872i
\(46\) −1.97654 6.36832i −0.291425 0.938957i
\(47\) 1.61500 0.235571 0.117786 0.993039i \(-0.462420\pi\)
0.117786 + 0.993039i \(0.462420\pi\)
\(48\) 2.94618 7.66363i 0.425245 1.10615i
\(49\) 5.87067 0.838668
\(50\) 6.64252 2.42424i 0.939394 0.342839i
\(51\) 0.677013 0.0948008
\(52\) 7.86507 5.40262i 1.09069 0.749208i
\(53\) 8.57804i 1.17828i 0.808029 + 0.589142i \(0.200534\pi\)
−0.808029 + 0.589142i \(0.799466\pi\)
\(54\) −1.53748 4.95366i −0.209224 0.674108i
\(55\) 6.44643 3.66654i 0.869237 0.494397i
\(56\) 1.86173 2.35978i 0.248785 0.315339i
\(57\) −1.38964 −0.184063
\(58\) 9.71378 3.01488i 1.27548 0.395873i
\(59\) 0.336403i 0.0437959i −0.999760 0.0218980i \(-0.993029\pi\)
0.999760 0.0218980i \(-0.00697090\pi\)
\(60\) −1.45352 + 9.06373i −0.187649 + 1.17012i
\(61\) 13.2708i 1.69915i −0.527471 0.849573i \(-0.676860\pi\)
0.527471 0.849573i \(-0.323140\pi\)
\(62\) −12.2168 + 3.79175i −1.55154 + 0.481552i
\(63\) 1.28926i 0.162432i
\(64\) 1.86173 + 7.78036i 0.232717 + 0.972545i
\(65\) −7.35649 + 7.72603i −0.912460 + 0.958296i
\(66\) 0.0788519 + 9.62726i 0.00970600 + 1.18503i
\(67\) 4.71498 0.576027 0.288014 0.957626i \(-0.407005\pi\)
0.288014 + 0.957626i \(0.407005\pi\)
\(68\) −0.543738 + 0.373501i −0.0659379 + 0.0452936i
\(69\) −9.67801 −1.16510
\(70\) −1.49178 + 3.01129i −0.178302 + 0.359918i
\(71\) 3.97503i 0.471749i −0.971783 0.235875i \(-0.924205\pi\)
0.971783 0.235875i \(-0.0757955\pi\)
\(72\) −2.69397 2.12539i −0.317488 0.250480i
\(73\) 11.6189 1.35988 0.679942 0.733266i \(-0.262005\pi\)
0.679942 + 0.733266i \(0.262005\pi\)
\(74\) 7.21148 2.23824i 0.838318 0.260190i
\(75\) −0.502613 10.2507i −0.0580368 1.18365i
\(76\) 1.11608 0.766650i 0.128023 0.0879408i
\(77\) −1.01716 + 3.37461i −0.115916 + 0.384572i
\(78\) −4.10522 13.2268i −0.464824 1.49764i
\(79\) −6.35102 −0.714546 −0.357273 0.934000i \(-0.616293\pi\)
−0.357273 + 0.934000i \(0.616293\pi\)
\(80\) −3.83297 8.08136i −0.428540 0.903523i
\(81\) −11.1677 −1.24086
\(82\) −6.76759 + 2.10047i −0.747356 + 0.231958i
\(83\) 12.0945i 1.32754i 0.747935 + 0.663772i \(0.231045\pi\)
−0.747935 + 0.663772i \(0.768955\pi\)
\(84\) −2.47011 3.59595i −0.269511 0.392350i
\(85\) 0.508578 0.534126i 0.0551630 0.0579341i
\(86\) 6.87067 2.13246i 0.740884 0.229949i
\(87\) 14.7622i 1.58267i
\(88\) −5.37458 7.68855i −0.572932 0.819603i
\(89\) −7.95455 −0.843180 −0.421590 0.906787i \(-0.638528\pi\)
−0.421590 + 0.906787i \(0.638528\pi\)
\(90\) 3.43775 + 1.70305i 0.362371 + 0.179517i
\(91\) 5.07007i 0.531487i
\(92\) 7.77282 5.33925i 0.810372 0.556656i
\(93\) 18.5660i 1.92521i
\(94\) 0.677013 + 2.18130i 0.0698286 + 0.224984i
\(95\) −1.04391 + 1.09635i −0.107103 + 0.112483i
\(96\) 11.5860 + 0.766650i 1.18249 + 0.0782459i
\(97\) 3.23879i 0.328849i −0.986390 0.164424i \(-0.947423\pi\)
0.986390 0.164424i \(-0.0525767\pi\)
\(98\) 2.46101 + 7.92925i 0.248600 + 0.800975i
\(99\) 3.85252 + 1.16121i 0.387193 + 0.116706i
\(100\) 6.05888 + 7.95550i 0.605888 + 0.795550i
\(101\) 11.0895i 1.10344i 0.834029 + 0.551721i \(0.186029\pi\)
−0.834029 + 0.551721i \(0.813971\pi\)
\(102\) 0.283807 + 0.914411i 0.0281011 + 0.0905402i
\(103\) −3.70976 −0.365533 −0.182767 0.983156i \(-0.558505\pi\)
−0.182767 + 0.983156i \(0.558505\pi\)
\(104\) 10.5941 + 8.35819i 1.03884 + 0.819587i
\(105\) 3.53238 + 3.36343i 0.344725 + 0.328237i
\(106\) −11.5860 + 3.59595i −1.12533 + 0.349270i
\(107\) 13.2463i 1.28057i 0.768137 + 0.640285i \(0.221184\pi\)
−0.768137 + 0.640285i \(0.778816\pi\)
\(108\) 6.04617 4.15320i 0.581793 0.399642i
\(109\) 10.4415i 1.00011i 0.865994 + 0.500055i \(0.166687\pi\)
−0.865994 + 0.500055i \(0.833313\pi\)
\(110\) 7.65460 + 7.16987i 0.729838 + 0.683620i
\(111\) 10.9594i 1.04022i
\(112\) 3.96769 + 1.52533i 0.374912 + 0.144130i
\(113\) 12.5363i 1.17931i 0.807654 + 0.589657i \(0.200737\pi\)
−0.807654 + 0.589657i \(0.799263\pi\)
\(114\) −0.582544 1.87693i −0.0545603 0.175790i
\(115\) −7.27021 + 7.63541i −0.677950 + 0.712006i
\(116\) 8.14412 + 11.8561i 0.756162 + 1.10081i
\(117\) −5.78810 −0.535110
\(118\) 0.454364 0.141022i 0.0418276 0.0129821i
\(119\) 0.350510i 0.0321312i
\(120\) −12.8513 + 1.83635i −1.17316 + 0.167635i
\(121\) 9.16774 + 6.07885i 0.833431 + 0.552623i
\(122\) 17.9242 5.56316i 1.62278 0.503665i
\(123\) 10.2848i 0.927349i
\(124\) −10.2427 14.9112i −0.919819 1.33906i
\(125\) −8.46482 7.30390i −0.757116 0.653280i
\(126\) −1.74135 + 0.540465i −0.155132 + 0.0481484i
\(127\) 6.69188i 0.593808i 0.954907 + 0.296904i \(0.0959542\pi\)
−0.954907 + 0.296904i \(0.904046\pi\)
\(128\) −9.72813 + 5.77612i −0.859853 + 0.510542i
\(129\) 10.4415i 0.919319i
\(130\) −13.5191 6.69729i −1.18570 0.587391i
\(131\) 13.9117 1.21547 0.607737 0.794138i \(-0.292078\pi\)
0.607737 + 0.794138i \(0.292078\pi\)
\(132\) −12.9700 + 4.14229i −1.12890 + 0.360540i
\(133\) 0.719460i 0.0623851i
\(134\) 1.97654 + 6.36832i 0.170747 + 0.550139i
\(135\) −5.65521 + 5.93929i −0.486723 + 0.511173i
\(136\) −0.732408 0.577829i −0.0628034 0.0495484i
\(137\) 0.690503i 0.0589937i 0.999565 + 0.0294968i \(0.00939050\pi\)
−0.999565 + 0.0294968i \(0.990610\pi\)
\(138\) −4.05707 13.0717i −0.345360 1.11273i
\(139\) 16.1439 1.36931 0.684654 0.728869i \(-0.259953\pi\)
0.684654 + 0.728869i \(0.259953\pi\)
\(140\) −4.69257 0.752533i −0.396595 0.0636006i
\(141\) 3.31495 0.279169
\(142\) 5.36889 1.66635i 0.450548 0.139837i
\(143\) −15.1502 4.56649i −1.26692 0.381869i
\(144\) 1.74135 4.52960i 0.145112 0.377467i
\(145\) −11.6465 11.0895i −0.967190 0.920929i
\(146\) 4.87067 + 15.6931i 0.403100 + 1.29877i
\(147\) 12.0502 0.993883
\(148\) 6.04617 + 8.80195i 0.496992 + 0.723515i
\(149\) 7.83990i 0.642270i 0.947033 + 0.321135i \(0.104064\pi\)
−0.947033 + 0.321135i \(0.895936\pi\)
\(150\) 13.6345 4.97601i 1.11325 0.406289i
\(151\) −20.9398 −1.70405 −0.852027 0.523498i \(-0.824627\pi\)
−0.852027 + 0.523498i \(0.824627\pi\)
\(152\) 1.50335 + 1.18606i 0.121937 + 0.0962018i
\(153\) 0.400150 0.0323502
\(154\) −4.98433 + 0.0408240i −0.401648 + 0.00328969i
\(155\) 14.6476 + 13.9470i 1.17652 + 1.12025i
\(156\) 16.1439 11.0895i 1.29255 0.887867i
\(157\) 18.5660i 1.48173i −0.671653 0.740866i \(-0.734416\pi\)
0.671653 0.740866i \(-0.265584\pi\)
\(158\) −2.66238 8.57804i −0.211807 0.682432i
\(159\) 17.6073i 1.39635i
\(160\) 9.30832 8.56476i 0.735887 0.677104i
\(161\) 5.01060i 0.394891i
\(162\) −4.68157 15.0838i −0.367819 1.18509i
\(163\) −4.27737 −0.335030 −0.167515 0.985870i \(-0.553574\pi\)
−0.167515 + 0.985870i \(0.553574\pi\)
\(164\) −5.67401 8.26015i −0.443066 0.645010i
\(165\) 13.2320 7.52597i 1.03011 0.585896i
\(166\) −16.3355 + 5.07007i −1.26788 + 0.393514i
\(167\) 14.6247i 1.13169i −0.824510 0.565847i \(-0.808549\pi\)
0.824510 0.565847i \(-0.191451\pi\)
\(168\) 3.82141 4.84370i 0.294828 0.373700i
\(169\) 9.76189 0.750914
\(170\) 0.934617 + 0.463005i 0.0716819 + 0.0355109i
\(171\) −0.821351 −0.0628103
\(172\) 5.76043 + 8.38597i 0.439229 + 0.639424i
\(173\) −6.58840 −0.500907 −0.250453 0.968129i \(-0.580580\pi\)
−0.250453 + 0.968129i \(0.580580\pi\)
\(174\) 19.9386 6.18836i 1.51154 0.469138i
\(175\) 5.30711 0.260218i 0.401180 0.0196706i
\(176\) 8.13153 10.4823i 0.612937 0.790132i
\(177\) 0.690503i 0.0519014i
\(178\) −3.33458 10.7438i −0.249937 0.805285i
\(179\) 17.6215i 1.31709i −0.752542 0.658545i \(-0.771172\pi\)
0.752542 0.658545i \(-0.228828\pi\)
\(180\) −0.859108 + 5.35714i −0.0640341 + 0.399298i
\(181\) −0.231080 −0.0171760 −0.00858801 0.999963i \(-0.502734\pi\)
−0.00858801 + 0.999963i \(0.502734\pi\)
\(182\) 6.84791 2.12539i 0.507601 0.157545i
\(183\) 27.2397i 2.01361i
\(184\) 10.4699 + 8.26015i 0.771850 + 0.608947i
\(185\) −8.64635 8.23279i −0.635692 0.605286i
\(186\) −25.0763 + 7.78297i −1.83868 + 0.570675i
\(187\) 1.04738 + 0.315696i 0.0765921 + 0.0230860i
\(188\) −2.66238 + 1.82882i −0.194174 + 0.133381i
\(189\) 3.89755i 0.283505i
\(190\) −1.91840 0.950368i −0.139176 0.0689470i
\(191\) 8.56225i 0.619542i −0.950811 0.309771i \(-0.899748\pi\)
0.950811 0.309771i \(-0.100252\pi\)
\(192\) 3.82141 + 15.9700i 0.275786 + 1.15254i
\(193\) −5.36028 −0.385842 −0.192921 0.981214i \(-0.561796\pi\)
−0.192921 + 0.981214i \(0.561796\pi\)
\(194\) 4.37448 1.35771i 0.314069 0.0974781i
\(195\) −15.1000 + 15.8585i −1.08133 + 1.13565i
\(196\) −9.67801 + 6.64796i −0.691287 + 0.474854i
\(197\) 18.1646 1.29417 0.647087 0.762416i \(-0.275987\pi\)
0.647087 + 0.762416i \(0.275987\pi\)
\(198\) 0.0466056 + 5.69021i 0.00331211 + 0.404386i
\(199\) 2.00012i 0.141785i −0.997484 0.0708923i \(-0.977415\pi\)
0.997484 0.0708923i \(-0.0225847\pi\)
\(200\) −8.20522 + 11.5184i −0.580197 + 0.814476i
\(201\) 9.67801 0.682634
\(202\) −14.9780 + 4.64875i −1.05385 + 0.327085i
\(203\) 7.64282 0.536421
\(204\) −1.11608 + 0.766650i −0.0781412 + 0.0536763i
\(205\) 8.11413 + 7.72603i 0.566716 + 0.539609i
\(206\) −1.55515 5.01060i −0.108352 0.349105i
\(207\) −5.72021 −0.397582
\(208\) −6.84791 + 17.8128i −0.474817 + 1.23510i
\(209\) −2.14986 0.648000i −0.148709 0.0448231i
\(210\) −3.06204 + 6.18099i −0.211301 + 0.426529i
\(211\) −17.3536 −1.19467 −0.597335 0.801992i \(-0.703774\pi\)
−0.597335 + 0.801992i \(0.703774\pi\)
\(212\) −9.71378 14.1412i −0.667145 0.971221i
\(213\) 8.15918i 0.559058i
\(214\) −17.8912 + 5.55292i −1.22302 + 0.379590i
\(215\) −8.23772 7.84371i −0.561808 0.534937i
\(216\) 8.14412 + 6.42525i 0.554137 + 0.437183i
\(217\) −9.61220 −0.652519
\(218\) −14.1028 + 4.37710i −0.955162 + 0.296455i
\(219\) 23.8489 1.61156
\(220\) −6.47517 + 13.3444i −0.436556 + 0.899677i
\(221\) −1.57360 −0.105852
\(222\) 14.8023 4.59422i 0.993469 0.308344i
\(223\) 25.5854 1.71332 0.856662 0.515879i \(-0.172534\pi\)
0.856662 + 0.515879i \(0.172534\pi\)
\(224\) −0.396918 + 5.99841i −0.0265202 + 0.400785i
\(225\) −0.297071 6.05871i −0.0198047 0.403914i
\(226\) −16.9322 + 5.25527i −1.12631 + 0.349575i
\(227\) 9.44867i 0.627130i 0.949567 + 0.313565i \(0.101523\pi\)
−0.949567 + 0.313565i \(0.898477\pi\)
\(228\) 2.29087 1.57363i 0.151717 0.104216i
\(229\) 23.2927 1.53922 0.769612 0.638512i \(-0.220450\pi\)
0.769612 + 0.638512i \(0.220450\pi\)
\(230\) −13.3605 6.61874i −0.880966 0.436427i
\(231\) −2.08782 + 6.92675i −0.137369 + 0.455746i
\(232\) −12.5995 + 15.9700i −0.827195 + 1.04848i
\(233\) 12.3488 0.808999 0.404499 0.914538i \(-0.367446\pi\)
0.404499 + 0.914538i \(0.367446\pi\)
\(234\) −2.42640 7.81772i −0.158618 0.511060i
\(235\) 2.49022 2.61531i 0.162444 0.170604i
\(236\) 0.380943 + 0.554572i 0.0247973 + 0.0360996i
\(237\) −13.0362 −0.846789
\(238\) −0.473418 + 0.146935i −0.0306872 + 0.00952441i
\(239\) −19.0531 −1.23244 −0.616220 0.787574i \(-0.711337\pi\)
−0.616220 + 0.787574i \(0.711337\pi\)
\(240\) −7.86759 16.5879i −0.507851 1.07074i
\(241\) 26.1213i 1.68262i −0.540554 0.841309i \(-0.681785\pi\)
0.540554 0.841309i \(-0.318215\pi\)
\(242\) −4.36727 + 14.9307i −0.280739 + 0.959784i
\(243\) −11.9202 −0.764680
\(244\) 15.0278 + 21.8773i 0.962057 + 1.40055i
\(245\) 9.05220 9.50693i 0.578324 0.607375i
\(246\) −13.8912 + 4.31143i −0.885671 + 0.274887i
\(247\) 3.22999 0.205519
\(248\) 15.8461 20.0851i 1.00623 1.27541i
\(249\) 24.8253i 1.57324i
\(250\) 6.31655 14.4949i 0.399494 0.916736i
\(251\) 5.56703i 0.351388i −0.984445 0.175694i \(-0.943783\pi\)
0.984445 0.175694i \(-0.0562169\pi\)
\(252\) −1.45996 2.12539i −0.0919690 0.133887i
\(253\) −14.9725 4.51293i −0.941312 0.283725i
\(254\) −9.03842 + 2.80527i −0.567121 + 0.176018i
\(255\) 1.04391 1.09635i 0.0653723 0.0686561i
\(256\) −11.8796 10.7180i −0.742476 0.669873i
\(257\) 6.74922i 0.421004i 0.977593 + 0.210502i \(0.0675099\pi\)
−0.977593 + 0.210502i \(0.932490\pi\)
\(258\) 14.1028 4.37710i 0.878002 0.272507i
\(259\) 5.67401 0.352566
\(260\) 3.37847 21.0671i 0.209524 1.30653i
\(261\) 8.72520i 0.540077i
\(262\) 5.83186 + 18.7899i 0.360294 + 1.16085i
\(263\) 3.81948i 0.235520i −0.993042 0.117760i \(-0.962429\pi\)
0.993042 0.117760i \(-0.0375713\pi\)
\(264\) −11.0319 15.7816i −0.678967 0.971289i
\(265\) 13.8912 + 13.2268i 0.853330 + 0.812515i
\(266\) 0.971742 0.301601i 0.0595813 0.0184923i
\(267\) −16.3276 −0.999231
\(268\) −7.77282 + 5.33925i −0.474800 + 0.326147i
\(269\) 4.76189 0.290337 0.145169 0.989407i \(-0.453628\pi\)
0.145169 + 0.989407i \(0.453628\pi\)
\(270\) −10.3926 5.14846i −0.632475 0.313325i
\(271\) 14.7899 0.898420 0.449210 0.893426i \(-0.351705\pi\)
0.449210 + 0.893426i \(0.351705\pi\)
\(272\) 0.473418 1.23146i 0.0287052 0.0746681i
\(273\) 10.4069i 0.629852i
\(274\) −0.932631 + 0.289462i −0.0563423 + 0.0174870i
\(275\) 4.00241 16.0929i 0.241355 0.970437i
\(276\) 15.9545 10.9594i 0.960351 0.659678i
\(277\) 29.6855 1.78363 0.891813 0.452404i \(-0.149433\pi\)
0.891813 + 0.452404i \(0.149433\pi\)
\(278\) 6.76759 + 21.8048i 0.405893 + 1.30777i
\(279\) 10.9735i 0.656966i
\(280\) −0.950734 6.65351i −0.0568172 0.397623i
\(281\) 18.2366i 1.08790i −0.839117 0.543951i \(-0.816928\pi\)
0.839117 0.543951i \(-0.183072\pi\)
\(282\) 1.38964 + 4.47735i 0.0827520 + 0.266623i
\(283\) 6.17144i 0.366854i 0.983033 + 0.183427i \(0.0587191\pi\)
−0.983033 + 0.183427i \(0.941281\pi\)
\(284\) 4.50133 + 6.55298i 0.267105 + 0.388848i
\(285\) −2.14274 + 2.25038i −0.126925 + 0.133301i
\(286\) −0.183278 22.3770i −0.0108375 1.32318i
\(287\) −5.32475 −0.314310
\(288\) 6.84791 + 0.453130i 0.403517 + 0.0267010i
\(289\) −16.8912 −0.993601
\(290\) 10.0958 20.3792i 0.592843 1.19671i
\(291\) 6.64796i 0.389710i
\(292\) −19.1541 + 13.1572i −1.12091 + 0.769967i
\(293\) −2.21761 −0.129554 −0.0647770 0.997900i \(-0.520634\pi\)
−0.0647770 + 0.997900i \(0.520634\pi\)
\(294\) 5.05149 + 16.2756i 0.294609 + 0.949215i
\(295\) −0.544768 0.518712i −0.0317176 0.0302006i
\(296\) −9.35380 + 11.8561i −0.543679 + 0.689122i
\(297\) −11.6465 3.51043i −0.675799 0.203696i
\(298\) −10.5890 + 3.28652i −0.613404 + 0.190383i
\(299\) 22.4949 1.30091
\(300\) 12.4365 + 16.3295i 0.718022 + 0.942785i
\(301\) 5.40586 0.311589
\(302\) −8.77804 28.2824i −0.505120 1.62747i
\(303\) 22.7623i 1.30766i
\(304\) −0.971742 + 2.52770i −0.0557332 + 0.144974i
\(305\) −21.4906 20.4627i −1.23055 1.17169i
\(306\) 0.167745 + 0.540465i 0.00958933 + 0.0308963i
\(307\) 14.3308i 0.817905i −0.912556 0.408952i \(-0.865894\pi\)
0.912556 0.408952i \(-0.134106\pi\)
\(308\) −2.14459 6.71499i −0.122199 0.382622i
\(309\) −7.61468 −0.433184
\(310\) −12.6972 + 25.6304i −0.721153 + 1.45571i
\(311\) 29.8223i 1.69107i 0.533921 + 0.845535i \(0.320718\pi\)
−0.533921 + 0.845535i \(0.679282\pi\)
\(312\) 21.7456 + 17.1561i 1.23110 + 0.971271i
\(313\) 17.8466i 1.00875i −0.863485 0.504374i \(-0.831723\pi\)
0.863485 0.504374i \(-0.168277\pi\)
\(314\) 25.0763 7.78297i 1.41514 0.439218i
\(315\) 2.08782 + 1.98796i 0.117635 + 0.112009i
\(316\) 10.4699 7.19190i 0.588977 0.404576i
\(317\) 18.2944i 1.02752i 0.857935 + 0.513758i \(0.171747\pi\)
−0.857935 + 0.513758i \(0.828253\pi\)
\(318\) −23.7814 + 7.38108i −1.33360 + 0.413910i
\(319\) 6.88370 22.8380i 0.385413 1.27868i
\(320\) 15.4701 + 8.98194i 0.864806 + 0.502105i
\(321\) 27.1895i 1.51757i
\(322\) 6.76759 2.10047i 0.377143 0.117054i
\(323\) −0.223300 −0.0124247
\(324\) 18.4104 12.6464i 1.02280 0.702576i
\(325\) 1.16824 + 23.8261i 0.0648023 + 1.32163i
\(326\) −1.79309 5.77725i −0.0993103 0.319972i
\(327\) 21.4322i 1.18520i
\(328\) 8.77804 11.1263i 0.484686 0.614348i
\(329\) 1.71625i 0.0946200i
\(330\) 15.7119 + 14.7169i 0.864912 + 0.810140i
\(331\) 21.8582i 1.20143i 0.799462 + 0.600717i \(0.205118\pi\)
−0.799462 + 0.600717i \(0.794882\pi\)
\(332\) −13.6958 19.9382i −0.751656 1.09425i
\(333\) 6.47757i 0.354969i
\(334\) 19.7529 6.13075i 1.08083 0.335460i
\(335\) 7.27021 7.63541i 0.397214 0.417167i
\(336\) 8.14412 + 3.13090i 0.444298 + 0.170805i
\(337\) −22.1076 −1.20428 −0.602138 0.798392i \(-0.705684\pi\)
−0.602138 + 0.798392i \(0.705684\pi\)
\(338\) 4.09223 + 13.1849i 0.222588 + 0.717166i
\(339\) 25.7321i 1.39757i
\(340\) −0.233565 + 1.45644i −0.0126668 + 0.0789865i
\(341\) −8.65748 + 28.7228i −0.468829 + 1.55543i
\(342\) −0.344314 1.10936i −0.0186184 0.0599874i
\(343\) 13.6776i 0.738523i
\(344\) −8.91175 + 11.2958i −0.480489 + 0.609028i
\(345\) −14.9229 + 15.6725i −0.803421 + 0.843779i
\(346\) −2.76189 8.89865i −0.148480 0.478394i
\(347\) 5.65101i 0.303362i 0.988429 + 0.151681i \(0.0484686\pi\)
−0.988429 + 0.151681i \(0.951531\pi\)
\(348\) 16.7167 + 24.3359i 0.896108 + 1.30454i
\(349\) 1.06825i 0.0571822i −0.999591 0.0285911i \(-0.990898\pi\)
0.999591 0.0285911i \(-0.00910207\pi\)
\(350\) 2.57623 + 7.05899i 0.137705 + 0.377319i
\(351\) 17.4979 0.933970
\(352\) 17.5667 + 6.58867i 0.936309 + 0.351177i
\(353\) 13.9173i 0.740743i −0.928884 0.370371i \(-0.879230\pi\)
0.928884 0.370371i \(-0.120770\pi\)
\(354\) 0.932631 0.289462i 0.0495688 0.0153847i
\(355\) −6.43714 6.12924i −0.341648 0.325306i
\(356\) 13.1134 9.00773i 0.695006 0.477409i
\(357\) 0.719460i 0.0380779i
\(358\) 23.8005 7.38699i 1.25790 0.390415i
\(359\) −21.1409 −1.11577 −0.557887 0.829917i \(-0.688388\pi\)
−0.557887 + 0.829917i \(0.688388\pi\)
\(360\) −7.59578 + 1.08538i −0.400333 + 0.0572045i
\(361\) −18.5417 −0.975876
\(362\) −0.0968696 0.312109i −0.00509135 0.0164041i
\(363\) 18.8178 + 12.4775i 0.987677 + 0.654899i
\(364\) 5.74135 + 8.35819i 0.300928 + 0.438088i
\(365\) 17.9155 18.8155i 0.937742 0.984847i
\(366\) 36.7914 11.4190i 1.92312 0.596880i
\(367\) −19.3854 −1.01191 −0.505955 0.862560i \(-0.668860\pi\)
−0.505955 + 0.862560i \(0.668860\pi\)
\(368\) −6.76759 + 17.6039i −0.352785 + 0.917666i
\(369\) 6.07885i 0.316452i
\(370\) 7.49506 15.1294i 0.389650 0.786542i
\(371\) −9.11586 −0.473272
\(372\) −21.0242 30.6068i −1.09005 1.58689i
\(373\) −0.0979830 −0.00507337 −0.00253668 0.999997i \(-0.500807\pi\)
−0.00253668 + 0.999997i \(0.500807\pi\)
\(374\) 0.0126706 + 1.54699i 0.000655181 + 0.0799930i
\(375\) −17.3749 14.9920i −0.897238 0.774185i
\(376\) −3.58619 2.82930i −0.184943 0.145910i
\(377\) 34.3122i 1.76717i
\(378\) 5.26425 1.63387i 0.270764 0.0840373i
\(379\) 35.5511i 1.82614i −0.407806 0.913069i \(-0.633706\pi\)
0.407806 0.913069i \(-0.366294\pi\)
\(380\) 0.479417 2.98950i 0.0245935 0.153358i
\(381\) 13.7358i 0.703707i
\(382\) 11.5646 3.58933i 0.591698 0.183646i
\(383\) 13.2697 0.678051 0.339026 0.940777i \(-0.389903\pi\)
0.339026 + 0.940777i \(0.389903\pi\)
\(384\) −19.9680 + 11.8561i −1.01899 + 0.605029i
\(385\) 3.89643 + 6.85061i 0.198580 + 0.349139i
\(386\) −2.24705 7.23989i −0.114372 0.368501i
\(387\) 6.17144i 0.313712i
\(388\) 3.66760 + 5.33925i 0.186194 + 0.271059i
\(389\) 24.0135 1.21753 0.608766 0.793349i \(-0.291665\pi\)
0.608766 + 0.793349i \(0.291665\pi\)
\(390\) −27.7493 13.7469i −1.40514 0.696102i
\(391\) −1.55515 −0.0786472
\(392\) −13.0362 10.2848i −0.658425 0.519461i
\(393\) 28.5553 1.44043
\(394\) 7.61468 + 24.5341i 0.383622 + 1.23601i
\(395\) −9.79287 + 10.2848i −0.492733 + 0.517484i
\(396\) −7.66597 + 2.44831i −0.385230 + 0.123032i
\(397\) 4.20093i 0.210839i 0.994428 + 0.105419i \(0.0336185\pi\)
−0.994428 + 0.105419i \(0.966381\pi\)
\(398\) 2.70147 0.838459i 0.135412 0.0420281i
\(399\) 1.47677i 0.0739310i
\(400\) −18.9971 6.25384i −0.949855 0.312692i
\(401\) −11.5968 −0.579116 −0.289558 0.957160i \(-0.593508\pi\)
−0.289558 + 0.957160i \(0.593508\pi\)
\(402\) 4.05707 + 13.0717i 0.202348 + 0.651955i
\(403\) 43.1536i 2.14964i
\(404\) −12.5577 18.2814i −0.624769 0.909532i
\(405\) −17.2199 + 18.0850i −0.855666 + 0.898649i
\(406\) 3.20390 + 10.3228i 0.159007 + 0.512312i
\(407\) 5.11044 16.9549i 0.253315 0.840421i
\(408\) −1.50335 1.18606i −0.0744267 0.0587185i
\(409\) 24.8253i 1.22753i −0.789489 0.613765i \(-0.789654\pi\)
0.789489 0.613765i \(-0.210346\pi\)
\(410\) −7.03371 + 14.1982i −0.347370 + 0.701198i
\(411\) 1.41733i 0.0699118i
\(412\) 6.11567 4.20093i 0.301297 0.206965i
\(413\) 0.357495 0.0175912
\(414\) −2.39794 7.72603i −0.117852 0.379714i
\(415\) 19.5857 + 18.6489i 0.961426 + 0.915441i
\(416\) −26.9296 1.78195i −1.32033 0.0873673i
\(417\) 33.1371 1.62273
\(418\) −0.0260078 3.17537i −0.00127208 0.155312i
\(419\) 19.5964i 0.957345i −0.877994 0.478673i \(-0.841118\pi\)
0.877994 0.478673i \(-0.158882\pi\)
\(420\) −9.63200 1.54465i −0.469994 0.0753714i
\(421\) −8.59414 −0.418853 −0.209426 0.977824i \(-0.567160\pi\)
−0.209426 + 0.977824i \(0.567160\pi\)
\(422\) −7.27470 23.4387i −0.354127 1.14098i
\(423\) 1.95931 0.0952649
\(424\) 15.0278 19.0480i 0.729815 0.925053i
\(425\) −0.0807642 1.64718i −0.00391764 0.0798997i
\(426\) 11.0202 3.42036i 0.533932 0.165717i
\(427\) 14.1028 0.682482
\(428\) −15.0002 21.8370i −0.725060 1.05553i
\(429\) −31.0974 9.37320i −1.50140 0.452543i
\(430\) 7.14085 14.4144i 0.344362 0.695126i
\(431\) 16.9652 0.817187 0.408594 0.912716i \(-0.366019\pi\)
0.408594 + 0.912716i \(0.366019\pi\)
\(432\) −5.26425 + 13.6934i −0.253276 + 0.658823i
\(433\) 3.78207i 0.181755i 0.995862 + 0.0908775i \(0.0289672\pi\)
−0.995862 + 0.0908775i \(0.971033\pi\)
\(434\) −4.02948 12.9828i −0.193421 0.623193i
\(435\) −23.9057 22.7623i −1.14619 1.09137i
\(436\) −11.8239 17.2131i −0.566263 0.824358i
\(437\) 3.19211 0.152699
\(438\) 9.99758 + 32.2117i 0.477703 + 1.53913i
\(439\) −18.2317 −0.870152 −0.435076 0.900394i \(-0.643279\pi\)
−0.435076 + 0.900394i \(0.643279\pi\)
\(440\) −20.7381 3.15170i −0.988648 0.150252i
\(441\) 7.12229 0.339157
\(442\) −0.659662 2.12539i −0.0313769 0.101095i
\(443\) −27.5958 −1.31112 −0.655559 0.755144i \(-0.727567\pi\)
−0.655559 + 0.755144i \(0.727567\pi\)
\(444\) 12.4104 + 18.0669i 0.588973 + 0.857419i
\(445\) −12.2654 + 12.8815i −0.581436 + 0.610643i
\(446\) 10.7255 + 34.5570i 0.507867 + 1.63632i
\(447\) 16.0922i 0.761137i
\(448\) −8.26816 + 1.97846i −0.390634 + 0.0934734i
\(449\) 2.53081 0.119436 0.0597181 0.998215i \(-0.480980\pi\)
0.0597181 + 0.998215i \(0.480980\pi\)
\(450\) 8.05869 2.94108i 0.379890 0.138644i
\(451\) −4.79588 + 15.9112i −0.225829 + 0.749230i
\(452\) −14.1961 20.6665i −0.667728 0.972071i
\(453\) −42.9811 −2.01943
\(454\) −12.7619 + 3.96092i −0.598945 + 0.185895i
\(455\) −8.21043 7.81772i −0.384911 0.366500i
\(456\) 3.08578 + 2.43451i 0.144505 + 0.114006i
\(457\) −8.33554 −0.389920 −0.194960 0.980811i \(-0.562458\pi\)
−0.194960 + 0.980811i \(0.562458\pi\)
\(458\) 9.76440 + 31.4604i 0.456260 + 1.47005i
\(459\) −1.20969 −0.0564634
\(460\) 3.33884 20.8200i 0.155674 0.970739i
\(461\) 19.3496i 0.901201i −0.892726 0.450601i \(-0.851210\pi\)
0.892726 0.450601i \(-0.148790\pi\)
\(462\) −10.2309 + 0.0837957i −0.475983 + 0.00389853i
\(463\) 3.57976 0.166365 0.0831827 0.996534i \(-0.473491\pi\)
0.0831827 + 0.996534i \(0.473491\pi\)
\(464\) −26.8517 10.3228i −1.24656 0.479224i
\(465\) 30.0657 + 28.6276i 1.39426 + 1.32758i
\(466\) 5.17669 + 16.6790i 0.239805 + 0.772640i
\(467\) −16.8073 −0.777751 −0.388875 0.921290i \(-0.627136\pi\)
−0.388875 + 0.921290i \(0.627136\pi\)
\(468\) 9.54188 6.55445i 0.441074 0.302979i
\(469\) 5.01060i 0.231368i
\(470\) 4.57629 + 2.26708i 0.211089 + 0.104572i
\(471\) 38.1088i 1.75596i
\(472\) −0.589342 + 0.747001i −0.0271267 + 0.0343835i
\(473\) 4.86892 16.1536i 0.223873 0.742742i
\(474\) −5.46482 17.6073i −0.251007 0.808732i
\(475\) 0.165777 + 3.38100i 0.00760638 + 0.155131i
\(476\) −0.396918 0.577829i −0.0181927 0.0264847i
\(477\) 10.4069i 0.476497i
\(478\) −7.98713 25.7341i −0.365323 1.17705i
\(479\) −25.2030 −1.15155 −0.575777 0.817607i \(-0.695300\pi\)
−0.575777 + 0.817607i \(0.695300\pi\)
\(480\) 19.1063 17.5801i 0.872081 0.802418i
\(481\) 25.4733i 1.16148i
\(482\) 35.2808 10.9501i 1.60700 0.498766i
\(483\) 10.2848i 0.467975i
\(484\) −21.9970 + 0.360357i −0.999866 + 0.0163799i
\(485\) −5.24487 4.99400i −0.238157 0.226766i
\(486\) −4.99700 16.1001i −0.226668 0.730313i
\(487\) 20.6049 0.933699 0.466849 0.884337i \(-0.345389\pi\)
0.466849 + 0.884337i \(0.345389\pi\)
\(488\) −23.2490 + 29.4685i −1.05243 + 1.33397i
\(489\) −8.77977 −0.397035
\(490\) 16.6353 + 8.24106i 0.751506 + 0.372293i
\(491\) −7.22916 −0.326247 −0.163124 0.986606i \(-0.552157\pi\)
−0.163124 + 0.986606i \(0.552157\pi\)
\(492\) −11.6465 16.9549i −0.525065 0.764384i
\(493\) 2.37211i 0.106835i
\(494\) 1.35403 + 4.36260i 0.0609205 + 0.196283i
\(495\) 7.82080 4.44824i 0.351519 0.199934i
\(496\) 33.7708 + 12.9828i 1.51635 + 0.582943i
\(497\) 4.22426 0.189484
\(498\) −33.5304 + 10.4069i −1.50253 + 0.466343i
\(499\) 31.4143i 1.40630i 0.711042 + 0.703149i \(0.248223\pi\)
−0.711042 + 0.703149i \(0.751777\pi\)
\(500\) 22.2255 + 2.45517i 0.993954 + 0.109798i
\(501\) 30.0188i 1.34114i
\(502\) 7.51913 2.33372i 0.335595 0.104159i
\(503\) 34.1581i 1.52303i −0.648145 0.761517i \(-0.724455\pi\)
0.648145 0.761517i \(-0.275545\pi\)
\(504\) 2.25865 2.86288i 0.100608 0.127523i
\(505\) 17.9582 + 17.0992i 0.799129 + 0.760906i
\(506\) −0.181128 22.1145i −0.00805214 0.983109i
\(507\) 20.0373 0.889889
\(508\) −7.57789 11.0318i −0.336215 0.489457i
\(509\) −13.4604 −0.596623 −0.298312 0.954469i \(-0.596423\pi\)
−0.298312 + 0.954469i \(0.596423\pi\)
\(510\) 1.91840 + 0.950368i 0.0849483 + 0.0420830i
\(511\) 12.3473i 0.546213i
\(512\) 9.49628 20.5383i 0.419680 0.907672i
\(513\) 2.48302 0.109628
\(514\) −9.11586 + 2.82930i −0.402083 + 0.124795i
\(515\) −5.72021 + 6.00756i −0.252063 + 0.264725i
\(516\) 11.8239 + 17.2131i 0.520519 + 0.757765i
\(517\) 5.12844 + 1.54579i 0.225548 + 0.0679836i
\(518\) 2.37857 + 7.66363i 0.104508 + 0.336720i
\(519\) −13.5234 −0.593611
\(520\) 29.8707 4.26829i 1.30992 0.187177i
\(521\) 7.25162 0.317699 0.158850 0.987303i \(-0.449222\pi\)
0.158850 + 0.987303i \(0.449222\pi\)
\(522\) 11.7847 3.65764i 0.515804 0.160091i
\(523\) 22.9670i 1.00428i 0.864787 + 0.502139i \(0.167454\pi\)
−0.864787 + 0.502139i \(0.832546\pi\)
\(524\) −22.9340 + 15.7537i −1.00188 + 0.688202i
\(525\) 10.8934 0.534126i 0.475428 0.0233112i
\(526\) 5.15880 1.60114i 0.224935 0.0698132i
\(527\) 2.98335i 0.129957i
\(528\) 16.6908 21.5160i 0.726376 0.936364i
\(529\) −0.768920 −0.0334313
\(530\) −12.0416 + 24.3070i −0.523052 + 1.05583i
\(531\) 0.408123i 0.0177110i
\(532\) 0.814717 + 1.18606i 0.0353225 + 0.0514220i
\(533\) 23.9053i 1.03545i
\(534\) −6.84459 22.0529i −0.296194 0.954322i
\(535\) 21.4510 + 20.4250i 0.927408 + 0.883049i
\(536\) −10.4699 8.26015i −0.452230 0.356784i
\(537\) 36.1699i 1.56085i
\(538\) 1.99620 + 6.43166i 0.0860625 + 0.277289i
\(539\) 18.6424 + 5.61909i 0.802985 + 0.242031i
\(540\) 2.59716 16.1951i 0.111764 0.696926i
\(541\) 0.465049i 0.0199940i −0.999950 0.00999702i \(-0.996818\pi\)
0.999950 0.00999702i \(-0.00318220\pi\)
\(542\) 6.19998 + 19.9760i 0.266312 + 0.858043i
\(543\) −0.474316 −0.0203548
\(544\) 1.86173 + 0.123192i 0.0798212 + 0.00528181i
\(545\) 16.9088 + 16.1001i 0.724294 + 0.689651i
\(546\) 14.0561 4.36260i 0.601544 0.186702i
\(547\) 25.0251i 1.07000i −0.844853 0.534999i \(-0.820312\pi\)
0.844853 0.534999i \(-0.179688\pi\)
\(548\) −0.781926 1.13832i −0.0334022 0.0486266i
\(549\) 16.1001i 0.687134i
\(550\) 23.4137 1.34033i 0.998365 0.0571519i
\(551\) 4.86901i 0.207427i
\(552\) 21.4906 + 16.9549i 0.914699 + 0.721647i
\(553\) 6.74922i 0.287006i
\(554\) 12.4443 + 40.0948i 0.528707 + 1.70347i
\(555\) −17.7476 16.8987i −0.753342 0.717309i
\(556\) −26.6138 + 18.2814i −1.12868 + 0.775302i
\(557\) −9.49923 −0.402495 −0.201248 0.979540i \(-0.564500\pi\)
−0.201248 + 0.979540i \(0.564500\pi\)
\(558\) −14.8214 + 4.60014i −0.627440 + 0.194739i
\(559\) 24.2694i 1.02649i
\(560\) 8.58804 4.07329i 0.362911 0.172128i
\(561\) 2.14986 + 0.648000i 0.0907673 + 0.0273586i
\(562\) 24.6313 7.64485i 1.03901 0.322478i
\(563\) 6.75919i 0.284866i 0.989804 + 0.142433i \(0.0454925\pi\)
−0.989804 + 0.142433i \(0.954507\pi\)
\(564\) −5.46482 + 3.75385i −0.230110 + 0.158066i
\(565\) 20.3012 + 19.3301i 0.854076 + 0.813225i
\(566\) −8.33549 + 2.58710i −0.350367 + 0.108744i
\(567\) 11.8679i 0.498406i
\(568\) −6.96383 + 8.82678i −0.292196 + 0.370363i
\(569\) 10.4415i 0.437729i 0.975755 + 0.218864i \(0.0702352\pi\)
−0.975755 + 0.218864i \(0.929765\pi\)
\(570\) −3.93773 1.95073i −0.164933 0.0817072i
\(571\) −9.93721 −0.415859 −0.207930 0.978144i \(-0.566673\pi\)
−0.207930 + 0.978144i \(0.566673\pi\)
\(572\) 30.1467 9.62806i 1.26050 0.402570i
\(573\) 17.5749i 0.734203i
\(574\) −2.23216 7.19190i −0.0931686 0.300184i
\(575\) 1.15454 + 23.5466i 0.0481476 + 0.981963i
\(576\) 2.25865 + 9.43911i 0.0941105 + 0.393296i
\(577\) 27.4157i 1.14133i −0.821182 0.570666i \(-0.806685\pi\)
0.821182 0.570666i \(-0.193315\pi\)
\(578\) −7.08087 22.8142i −0.294525 0.948945i
\(579\) −11.0026 −0.457251
\(580\) 31.7574 + 5.09284i 1.31865 + 0.211468i
\(581\) −12.8528 −0.533224
\(582\) 8.97909 2.78685i 0.372195 0.115519i
\(583\) −8.21043 + 27.2397i −0.340041 + 1.12815i
\(584\) −25.8003 20.3550i −1.06762 0.842296i
\(585\) −8.92488 + 9.37320i −0.368998 + 0.387534i
\(586\) −0.929631 2.99522i −0.0384027 0.123731i
\(587\) −9.60213 −0.396322 −0.198161 0.980169i \(-0.563497\pi\)
−0.198161 + 0.980169i \(0.563497\pi\)
\(588\) −19.8652 + 13.6456i −0.819226 + 0.562737i
\(589\) 6.12365i 0.252321i
\(590\) 0.472231 0.953240i 0.0194414 0.0392443i
\(591\) 37.2848 1.53369
\(592\) −19.9347 7.66363i −0.819309 0.314973i
\(593\) −18.8243 −0.773020 −0.386510 0.922285i \(-0.626319\pi\)
−0.386510 + 0.922285i \(0.626319\pi\)
\(594\) −0.140893 17.2020i −0.00578090 0.705807i
\(595\) 0.567614 + 0.540465i 0.0232699 + 0.0221569i
\(596\) −8.87791 12.9244i −0.363653 0.529402i
\(597\) 4.10546i 0.168025i
\(598\) 9.42997 + 30.3829i 0.385620 + 1.24245i
\(599\) 28.5808i 1.16778i 0.811832 + 0.583891i \(0.198470\pi\)
−0.811832 + 0.583891i \(0.801530\pi\)
\(600\) −16.8421 + 23.6428i −0.687576 + 0.965214i
\(601\) 13.7358i 0.560295i −0.959957 0.280148i \(-0.909617\pi\)
0.959957 0.280148i \(-0.0903834\pi\)
\(602\) 2.26616 + 7.30145i 0.0923618 + 0.297585i
\(603\) 5.72021 0.232945
\(604\) 34.5199 23.7122i 1.40460 0.964836i
\(605\) 23.9801 5.47298i 0.974931 0.222508i
\(606\) −30.7440 + 9.54206i −1.24889 + 0.387620i
\(607\) 17.9019i 0.726617i 0.931669 + 0.363309i \(0.118353\pi\)
−0.931669 + 0.363309i \(0.881647\pi\)
\(608\) −3.82141 0.252865i −0.154979 0.0102550i
\(609\) 15.6877 0.635698
\(610\) 18.6290 37.6044i 0.754268 1.52256i
\(611\) −7.70505 −0.311713
\(612\) −0.659662 + 0.453130i −0.0266652 + 0.0183167i
\(613\) −23.6932 −0.956959 −0.478479 0.878099i \(-0.658812\pi\)
−0.478479 + 0.878099i \(0.658812\pi\)
\(614\) 19.3560 6.00756i 0.781146 0.242445i
\(615\) 16.6551 + 15.8585i 0.671600 + 0.639477i
\(616\) 8.17061 5.71155i 0.329203 0.230125i
\(617\) 20.8137i 0.837929i 0.908003 + 0.418964i \(0.137607\pi\)
−0.908003 + 0.418964i \(0.862393\pi\)
\(618\) −3.19211 10.2848i −0.128405 0.413715i
\(619\) 16.6557i 0.669451i −0.942316 0.334726i \(-0.891356\pi\)
0.942316 0.334726i \(-0.108644\pi\)
\(620\) −39.9406 6.40515i −1.60405 0.257237i
\(621\) 17.2927 0.693932
\(622\) −40.2797 + 12.5017i −1.61507 + 0.501271i
\(623\) 8.45328i 0.338673i
\(624\) −14.0561 + 36.5627i −0.562693 + 1.46368i
\(625\) −24.8801 + 2.44572i −0.995203 + 0.0978287i
\(626\) 24.1046 7.48136i 0.963412 0.299015i
\(627\) −4.41283 1.33009i −0.176231 0.0531187i
\(628\) 21.0242 + 30.6068i 0.838957 + 1.22134i
\(629\) 1.76105i 0.0702177i
\(630\) −1.80982 + 3.65329i −0.0721051 + 0.145551i
\(631\) 9.20565i 0.366471i −0.983069 0.183236i \(-0.941343\pi\)
0.983069 0.183236i \(-0.0586571\pi\)
\(632\) 14.1028 + 11.1263i 0.560979 + 0.442581i
\(633\) −35.6201 −1.41577
\(634\) −24.7094 + 7.66909i −0.981336 + 0.304579i
\(635\) 10.8368 + 10.3185i 0.430045 + 0.409475i
\(636\) −19.9386 29.0263i −0.790616 1.15097i
\(637\) −28.0086 −1.10974
\(638\) 33.7319 0.276280i 1.33546 0.0109380i
\(639\) 4.82250i 0.190775i
\(640\) −5.64635 + 24.6601i −0.223191 + 0.974775i
\(641\) 39.7780 1.57114 0.785569 0.618774i \(-0.212370\pi\)
0.785569 + 0.618774i \(0.212370\pi\)
\(642\) −36.7236 + 11.3980i −1.44937 + 0.449842i
\(643\) 15.5035 0.611398 0.305699 0.952128i \(-0.401110\pi\)
0.305699 + 0.952128i \(0.401110\pi\)
\(644\) 5.67401 + 8.26015i 0.223587 + 0.325496i
\(645\) −16.9088 16.1001i −0.665784 0.633939i
\(646\) −0.0936083 0.301601i −0.00368297 0.0118663i
\(647\) −1.82931 −0.0719175 −0.0359588 0.999353i \(-0.511448\pi\)
−0.0359588 + 0.999353i \(0.511448\pi\)
\(648\) 24.7986 + 19.5647i 0.974181 + 0.768574i
\(649\) 0.321987 1.06825i 0.0126391 0.0419325i
\(650\) −31.6911 + 11.5659i −1.24303 + 0.453651i
\(651\) −19.7301 −0.773283
\(652\) 7.05140 4.84370i 0.276154 0.189694i
\(653\) 7.88753i 0.308663i 0.988019 + 0.154332i \(0.0493224\pi\)
−0.988019 + 0.154332i \(0.950678\pi\)
\(654\) −28.9475 + 8.98448i −1.13194 + 0.351321i
\(655\) 21.4510 22.5286i 0.838160 0.880264i
\(656\) 18.7076 + 7.19190i 0.730409 + 0.280797i
\(657\) 14.0960 0.549936
\(658\) −2.31806 + 0.719460i −0.0903675 + 0.0280475i
\(659\) −20.0616 −0.781490 −0.390745 0.920499i \(-0.627783\pi\)
−0.390745 + 0.920499i \(0.627783\pi\)
\(660\) −13.2910 + 27.3908i −0.517351 + 1.06618i
\(661\) 13.9367 0.542073 0.271037 0.962569i \(-0.412634\pi\)
0.271037 + 0.962569i \(0.412634\pi\)
\(662\) −29.5228 + 9.16304i −1.14744 + 0.356132i
\(663\) −3.22999 −0.125442
\(664\) 21.1883 26.8565i 0.822265 1.04223i
\(665\) −1.16509 1.10936i −0.0451802 0.0430192i
\(666\) 8.74896 2.71543i 0.339015 0.105221i
\(667\) 33.9097i 1.31299i
\(668\) 16.5610 + 24.1094i 0.640766 + 0.932819i
\(669\) 52.5167 2.03041
\(670\) 13.3605 + 6.61874i 0.516161 + 0.255704i
\(671\) 12.7020 42.1414i 0.490357 1.62685i
\(672\) −0.814717 + 12.3124i −0.0314284 + 0.474960i
\(673\) 21.1457 0.815109 0.407554 0.913181i \(-0.366382\pi\)
0.407554 + 0.913181i \(0.366382\pi\)
\(674\) −9.26759 29.8597i −0.356974 1.15015i
\(675\) 0.898070 + 18.3160i 0.0345667 + 0.704984i
\(676\) −16.0928 + 11.0544i −0.618954 + 0.425168i
\(677\) 23.2804 0.894737 0.447368 0.894350i \(-0.352361\pi\)
0.447368 + 0.894350i \(0.352361\pi\)
\(678\) −34.7551 + 10.7870i −1.33476 + 0.414272i
\(679\) 3.44185 0.132086
\(680\) −2.06506 + 0.295081i −0.0791913 + 0.0113158i
\(681\) 19.3944i 0.743195i
\(682\) −42.4238 + 0.347472i −1.62449 + 0.0133054i
\(683\) 37.8077 1.44667 0.723336 0.690496i \(-0.242608\pi\)
0.723336 + 0.690496i \(0.242608\pi\)
\(684\) 1.35403 0.930099i 0.0517725 0.0355632i
\(685\) 1.11820 + 1.06471i 0.0427241 + 0.0406805i
\(686\) −18.4738 + 5.73372i −0.705331 + 0.218915i
\(687\) 47.8108 1.82409
\(688\) −18.9926 7.30145i −0.724084 0.278365i
\(689\) 40.9253i 1.55913i
\(690\) −27.4239 13.5857i −1.04401 0.517198i
\(691\) 28.9749i 1.10226i −0.834421 0.551128i \(-0.814198\pi\)
0.834421 0.551128i \(-0.185802\pi\)
\(692\) 10.8612 7.46071i 0.412881 0.283614i
\(693\) −1.23401 + 4.09407i −0.0468762 + 0.155521i
\(694\) −7.63256 + 2.36893i −0.289728 + 0.0899233i
\(695\) 24.8929 26.1433i 0.944240 0.991672i
\(696\) −25.8617 + 32.7802i −0.980286 + 1.24253i
\(697\) 1.65265i 0.0625986i
\(698\) 1.44284 0.447816i 0.0546122 0.0169501i
\(699\) 25.3473 0.958723
\(700\) −8.45429 + 6.43876i −0.319542 + 0.243362i
\(701\) 23.0642i 0.871123i 0.900159 + 0.435562i \(0.143450\pi\)
−0.900159 + 0.435562i \(0.856550\pi\)
\(702\) 7.33521 + 23.6336i 0.276850 + 0.891994i
\(703\) 3.61474i 0.136333i
\(704\) −1.53498 + 26.4886i −0.0578517 + 0.998325i
\(705\) 5.11144 5.36821i 0.192508 0.202178i
\(706\) 18.7975 5.83419i 0.707451 0.219573i
\(707\) −11.7847 −0.443211
\(708\) 0.781926 + 1.13832i 0.0293866 + 0.0427806i
\(709\) −28.0135 −1.05207 −0.526035 0.850463i \(-0.676322\pi\)
−0.526035 + 0.850463i \(0.676322\pi\)
\(710\) 5.58002 11.2638i 0.209414 0.422721i
\(711\) −7.70505 −0.288962
\(712\) 17.6635 + 13.9355i 0.661968 + 0.522256i
\(713\) 42.6475i 1.59716i
\(714\) −0.971742 + 0.301601i −0.0363665 + 0.0112871i
\(715\) −30.7555 + 17.4929i −1.15019 + 0.654196i
\(716\) 19.9545 + 29.0496i 0.745736 + 1.08563i
\(717\) −39.1085 −1.46053
\(718\) −8.86236 28.5540i −0.330740 1.06563i
\(719\) 2.99823i 0.111815i 0.998436 + 0.0559075i \(0.0178052\pi\)
−0.998436 + 0.0559075i \(0.982195\pi\)
\(720\) −4.65016 9.80429i −0.173301 0.365384i
\(721\) 3.94235i 0.146821i
\(722\) −7.77274 25.0434i −0.289272 0.932018i
\(723\) 53.6167i 1.99403i
\(724\) 0.380943 0.261675i 0.0141576 0.00972506i
\(725\) −35.9164 + 1.76105i −1.33390 + 0.0654038i
\(726\) −8.96429 + 30.6469i −0.332696 + 1.13741i
\(727\) −45.5805 −1.69049 −0.845244 0.534380i \(-0.820545\pi\)
−0.845244 + 0.534380i \(0.820545\pi\)
\(728\) −8.88222 + 11.2584i −0.329197 + 0.417263i
\(729\) 9.03576 0.334658
\(730\) 32.9235 + 16.3102i 1.21855 + 0.603666i
\(731\) 1.67782i 0.0620565i
\(732\) 30.8462 + 44.9055i 1.14011 + 1.65976i
\(733\) 45.9346 1.69663 0.848317 0.529489i \(-0.177616\pi\)
0.848317 + 0.529489i \(0.177616\pi\)
\(734\) −8.12644 26.1830i −0.299953 0.966431i
\(735\) 18.5806 19.5140i 0.685357 0.719784i
\(736\) −26.6138 1.76105i −0.980997 0.0649132i
\(737\) 14.9725 + 4.51293i 0.551519 + 0.166236i
\(738\) −8.21043 + 2.54828i −0.302230 + 0.0938036i
\(739\) −5.52967 −0.203412 −0.101706 0.994814i \(-0.532430\pi\)
−0.101706 + 0.994814i \(0.532430\pi\)
\(740\) 23.5766 + 3.78091i 0.866694 + 0.138989i
\(741\) 6.62990 0.243556
\(742\) −3.82141 12.3124i −0.140288 0.452002i
\(743\) 34.4520i 1.26392i 0.775001 + 0.631960i \(0.217749\pi\)
−0.775001 + 0.631960i \(0.782251\pi\)
\(744\) 32.5257 41.2269i 1.19245 1.51145i
\(745\) 12.6959 + 12.0886i 0.465141 + 0.442893i
\(746\) −0.0410749 0.132341i −0.00150386 0.00484536i
\(747\) 14.6730i 0.536858i
\(748\) −2.08414 + 0.665619i −0.0762037 + 0.0243375i
\(749\) −14.0768 −0.514356
\(750\) 12.9654 29.7523i 0.473430 1.08640i
\(751\) 19.1741i 0.699674i −0.936811 0.349837i \(-0.886237\pi\)
0.936811 0.349837i \(-0.113763\pi\)
\(752\) 2.31806 6.02976i 0.0845311 0.219883i
\(753\) 11.4269i 0.416420i
\(754\) −46.3439 + 14.3838i −1.68774 + 0.523827i
\(755\) −32.2878 + 33.9097i −1.17507 + 1.23410i
\(756\) 4.41359 + 6.42525i 0.160521 + 0.233684i
\(757\) 14.3941i 0.523161i 0.965182 + 0.261581i \(0.0842437\pi\)
−0.965182 + 0.261581i \(0.915756\pi\)
\(758\) 48.0172 14.9032i 1.74406 0.541308i
\(759\) −30.7326 9.26327i −1.11552 0.336235i
\(760\) 4.23875 0.605685i 0.153756 0.0219705i
\(761\) 9.79345i 0.355012i 0.984120 + 0.177506i \(0.0568030\pi\)
−0.984120 + 0.177506i \(0.943197\pi\)
\(762\) −18.5523 + 5.75811i −0.672080 + 0.208594i
\(763\) −11.0961 −0.401706
\(764\) 9.69589 + 14.1152i 0.350785 + 0.510669i
\(765\) 0.617006 0.648000i 0.0223079 0.0234285i
\(766\) 5.56273 + 17.9228i 0.200990 + 0.647578i
\(767\) 1.60496i 0.0579517i
\(768\) −24.3842 21.9998i −0.879889 0.793848i
\(769\) 35.4945i 1.27996i 0.768390 + 0.639982i \(0.221058\pi\)
−0.768390 + 0.639982i \(0.778942\pi\)
\(770\) −7.61940 + 8.13453i −0.274584 + 0.293148i
\(771\) 13.8535i 0.498921i
\(772\) 8.83662 6.06999i 0.318037 0.218464i
\(773\) 35.9272i 1.29221i −0.763247 0.646107i \(-0.776396\pi\)
0.763247 0.646107i \(-0.223604\pi\)
\(774\) 8.33549 2.58710i 0.299613 0.0929913i
\(775\) 45.1712 2.21483i 1.62260 0.0795592i
\(776\) −5.67401 + 7.19190i −0.203685 + 0.258174i
\(777\) 11.6465 0.417816
\(778\) 10.0666 + 32.4339i 0.360904 + 1.16281i
\(779\) 3.39224i 0.121540i
\(780\) 6.93467 43.2425i 0.248301 1.54833i
\(781\) 3.80468 12.6228i 0.136142 0.451678i
\(782\) −0.651925 2.10047i −0.0233128 0.0751125i
\(783\) 26.3770i 0.942639i
\(784\) 8.42640 21.9188i 0.300943 0.782814i
\(785\) −30.0657 28.6276i −1.07309 1.02176i
\(786\) 11.9705 + 38.5684i 0.426974 + 1.37569i
\(787\) 53.0554i 1.89122i −0.325299 0.945611i \(-0.605465\pi\)
0.325299 0.945611i \(-0.394535\pi\)
\(788\) −29.9450 + 20.5696i −1.06675 + 0.732762i
\(789\) 7.83990i 0.279108i
\(790\) −17.9964 8.91535i −0.640284 0.317194i
\(791\) −13.3223 −0.473686
\(792\) −6.52043 9.32774i −0.231693 0.331447i
\(793\) 63.3140i 2.24835i
\(794\) −5.67401 + 1.76105i −0.201363 + 0.0624973i
\(795\) 28.5132 + 27.1494i 1.01126 + 0.962890i
\(796\) 2.26494 + 3.29727i 0.0802785 + 0.116869i
\(797\) 41.4802i 1.46930i 0.678444 + 0.734652i \(0.262655\pi\)
−0.678444 + 0.734652i \(0.737345\pi\)
\(798\) 1.99461 0.619068i 0.0706083 0.0219148i
\(799\) 0.532675 0.0188447
\(800\) 0.483116 28.2801i 0.0170807 0.999854i
\(801\) −9.65044 −0.340982
\(802\) −4.86143 15.6633i −0.171663 0.553089i
\(803\) 36.8958 + 11.1209i 1.30202 + 0.392449i
\(804\) −15.9545 + 10.9594i −0.562673 + 0.386508i
\(805\) −8.11413 7.72603i −0.285986 0.272307i
\(806\) 58.2857 18.0902i 2.05302 0.637200i
\(807\) 9.77428 0.344071
\(808\) 19.4276 24.6248i 0.683459 0.866296i
\(809\) 1.06825i 0.0375577i −0.999824 0.0187789i \(-0.994022\pi\)
0.999824 0.0187789i \(-0.00597785\pi\)
\(810\) −31.6452 15.6769i −1.11190 0.550830i
\(811\) −14.1129 −0.495569 −0.247785 0.968815i \(-0.579703\pi\)
−0.247785 + 0.968815i \(0.579703\pi\)
\(812\) −12.5995 + 8.65473i −0.442154 + 0.303722i
\(813\) 30.3578 1.06469
\(814\) 25.0425 0.205110i 0.877738 0.00718910i
\(815\) −6.59544 + 6.92675i −0.231028 + 0.242633i
\(816\) 0.971742 2.52770i 0.0340178 0.0884872i
\(817\) 3.44391i 0.120487i
\(818\) 33.5304 10.4069i 1.17236 0.363867i
\(819\) 6.15100i 0.214933i
\(820\) −22.1254 3.54818i −0.772652 0.123908i
\(821\) 29.1879i 1.01866i −0.860570 0.509332i \(-0.829893\pi\)
0.860570 0.509332i \(-0.170107\pi\)
\(822\) −1.91433 + 0.594152i −0.0667698 + 0.0207234i
\(823\) −20.2606 −0.706241 −0.353120 0.935578i \(-0.614879\pi\)
−0.353120 + 0.935578i \(0.614879\pi\)
\(824\) 8.23772 + 6.49910i 0.286975 + 0.226407i
\(825\) 8.21538 33.0324i 0.286023 1.15004i
\(826\) 0.149863 + 0.482852i 0.00521441 + 0.0168006i
\(827\) 18.5380i 0.644629i −0.946633 0.322315i \(-0.895539\pi\)
0.946633 0.322315i \(-0.104461\pi\)
\(828\) 9.42997 6.47757i 0.327714 0.225111i
\(829\) 2.86630 0.0995506 0.0497753 0.998760i \(-0.484149\pi\)
0.0497753 + 0.998760i \(0.484149\pi\)
\(830\) −16.9779 + 34.2713i −0.589310 + 1.18957i
\(831\) 60.9326 2.11373
\(832\) −8.88222 37.1196i −0.307936 1.28689i
\(833\) 1.93633 0.0670898
\(834\) 13.8912 + 44.7567i 0.481013 + 1.54980i
\(835\) −23.6832 22.5504i −0.819590 0.780388i
\(836\) 4.27792 1.36626i 0.147955 0.0472529i
\(837\) 33.1738i 1.14666i
\(838\) 26.4679 8.21488i 0.914319 0.283778i
\(839\) 8.40169i 0.290059i 0.989427 + 0.145029i \(0.0463276\pi\)
−0.989427 + 0.145029i \(0.953672\pi\)
\(840\) −1.95148 13.6570i −0.0673326 0.471213i
\(841\) −22.7235 −0.783568
\(842\) −3.60270 11.6077i −0.124157 0.400028i
\(843\) 37.4325i 1.28924i
\(844\) 28.6080 19.6512i 0.984728 0.676423i
\(845\) 15.0522 15.8083i 0.517812 0.543823i
\(846\) 0.821351 + 2.64635i 0.0282386 + 0.0909834i
\(847\) −6.45998 + 9.74254i −0.221968 + 0.334758i
\(848\) 32.0270 + 12.3124i 1.09981 + 0.422809i
\(849\) 12.6676i 0.434749i
\(850\) 2.19091 0.799588i 0.0751475 0.0274256i
\(851\) 25.1745i 0.862970i
\(852\) 9.23946 + 13.4507i 0.316539 + 0.460813i
\(853\) 21.1398 0.723815 0.361907 0.932214i \(-0.382126\pi\)
0.361907 + 0.932214i \(0.382126\pi\)
\(854\) 5.91196 + 19.0480i 0.202303 + 0.651809i
\(855\) −1.26647 + 1.33009i −0.0433124 + 0.0454881i
\(856\) 23.2062 29.4142i 0.793170 1.00536i
\(857\) −43.1494 −1.47396 −0.736978 0.675916i \(-0.763748\pi\)
−0.736978 + 0.675916i \(0.763748\pi\)
\(858\) −0.376198 45.9311i −0.0128432 1.56806i
\(859\) 36.5279i 1.24632i 0.782096 + 0.623158i \(0.214151\pi\)
−0.782096 + 0.623158i \(0.785849\pi\)
\(860\) 22.4624 + 3.60223i 0.765962 + 0.122835i
\(861\) −10.9296 −0.372481
\(862\) 7.11191 + 22.9142i 0.242232 + 0.780460i
\(863\) −39.7815 −1.35418 −0.677089 0.735902i \(-0.736759\pi\)
−0.677089 + 0.735902i \(0.736759\pi\)
\(864\) −20.7018 1.36985i −0.704290 0.0466033i
\(865\) −10.1589 + 10.6692i −0.345413 + 0.362764i
\(866\) −5.10828 + 1.58546i −0.173586 + 0.0538762i
\(867\) −34.6710 −1.17749
\(868\) 15.8461 10.8849i 0.537850 0.369456i
\(869\) −20.1677 6.07885i −0.684144 0.206211i
\(870\) 20.7226 41.8304i 0.702563 1.41818i
\(871\) −22.4949 −0.762211
\(872\) 18.2923 23.1858i 0.619456 0.785171i
\(873\) 3.92929i 0.132986i
\(874\) 1.33815 + 4.31143i 0.0452634 + 0.145836i
\(875\) 7.76183 8.99554i 0.262398 0.304105i
\(876\) −39.3158 + 27.0066i −1.32836 + 0.912467i
\(877\) 8.83957 0.298491 0.149245 0.988800i \(-0.452316\pi\)
0.149245 + 0.988800i \(0.452316\pi\)
\(878\) −7.64282 24.6248i −0.257933 0.831045i
\(879\) −4.55188 −0.153531
\(880\) −4.43662 29.3312i −0.149558 0.988753i
\(881\) 7.37829 0.248581 0.124290 0.992246i \(-0.460335\pi\)
0.124290 + 0.992246i \(0.460335\pi\)
\(882\) 2.98570 + 9.61975i 0.100534 + 0.323914i
\(883\) −51.9581 −1.74853 −0.874265 0.485449i \(-0.838656\pi\)
−0.874265 + 0.485449i \(0.838656\pi\)
\(884\) 2.59414 1.78195i 0.0872504 0.0599335i
\(885\) −1.11820 1.06471i −0.0375877 0.0357899i
\(886\) −11.5683 37.2724i −0.388644 1.25219i
\(887\) 15.2608i 0.512406i 0.966623 + 0.256203i \(0.0824716\pi\)
−0.966623 + 0.256203i \(0.917528\pi\)
\(888\) −19.1997 + 24.3359i −0.644299 + 0.816660i
\(889\) −7.11144 −0.238510
\(890\) −22.5402 11.1663i −0.755550 0.374296i
\(891\) −35.4633 10.6892i −1.18807 0.358100i
\(892\) −42.1784 + 28.9729i −1.41224 + 0.970084i
\(893\) −1.09337 −0.0365883
\(894\) −21.7351 + 6.74594i −0.726929 + 0.225618i
\(895\) −28.5361 27.1712i −0.953855 0.908232i
\(896\) −6.13827 10.3381i −0.205065 0.345370i
\(897\) 46.1732 1.54168
\(898\) 1.06093 + 3.41824i 0.0354035 + 0.114068i
\(899\) 65.0515 2.16959
\(900\) 7.35062 + 9.65160i 0.245021 + 0.321720i
\(901\) 2.82930i 0.0942577i
\(902\) −23.5010 + 0.192485i −0.782498 + 0.00640904i
\(903\) 11.0961 0.369255
\(904\) 21.9622 27.8375i 0.730453 0.925862i
\(905\) −0.356310 + 0.374209i −0.0118441 + 0.0124391i
\(906\) −18.0179 58.0527i −0.598604 1.92867i
\(907\) −12.1435 −0.403218 −0.201609 0.979466i \(-0.564617\pi\)
−0.201609 + 0.979466i \(0.564617\pi\)
\(908\) −10.6997 15.5765i −0.355081 0.516923i
\(909\) 13.4537i 0.446231i
\(910\) 7.11719 14.3667i 0.235933 0.476251i
\(911\) 30.3628i 1.00596i 0.864297 + 0.502982i \(0.167764\pi\)
−0.864297 + 0.502982i \(0.832236\pi\)
\(912\) −1.99461 + 5.18838i −0.0660480 + 0.171804i
\(913\) −11.5762 + 38.4062i −0.383116 + 1.27106i
\(914\) −3.49429 11.2584i −0.115581 0.372396i
\(915\) −44.1117 42.0018i −1.45829 1.38854i
\(916\) −38.3988 + 26.3767i −1.26873 + 0.871509i
\(917\) 14.7840i 0.488209i
\(918\) −0.507107 1.63387i −0.0167370 0.0539258i
\(919\) 30.5315 1.00714 0.503571 0.863954i \(-0.332019\pi\)
0.503571 + 0.863954i \(0.332019\pi\)
\(920\) 29.5203 4.21823i 0.973256 0.139071i
\(921\) 29.4156i 0.969277i
\(922\) 26.1346 8.11144i 0.860698 0.267136i
\(923\) 18.9646i 0.624229i
\(924\) −4.40200 13.7832i −0.144815 0.453435i
\(925\) −26.6642 + 1.30740i −0.876714 + 0.0429870i
\(926\) 1.50065 + 4.83501i 0.0493144 + 0.158888i
\(927\) −4.50067 −0.147821
\(928\) 2.68618 40.5948i 0.0881782 1.33259i
\(929\) 28.4854 0.934574 0.467287 0.884106i \(-0.345231\pi\)
0.467287 + 0.884106i \(0.345231\pi\)
\(930\) −26.0624 + 52.6092i −0.854619 + 1.72512i
\(931\) −3.97452 −0.130260
\(932\) −20.3575 + 13.9838i −0.666832 + 0.458055i
\(933\) 61.2135i 2.00404i
\(934\) −7.04571 22.7009i −0.230543 0.742796i
\(935\) 2.12623 1.20934i 0.0695352 0.0395496i
\(936\) 12.8528 + 10.1401i 0.420107 + 0.331441i
\(937\) −20.6417 −0.674335 −0.337168 0.941445i \(-0.609469\pi\)
−0.337168 + 0.941445i \(0.609469\pi\)
\(938\) −6.76759 + 2.10047i −0.220970 + 0.0685827i
\(939\) 36.6320i 1.19544i
\(940\) −1.14363 + 7.13136i −0.0373012 + 0.232599i
\(941\) 35.0294i 1.14193i 0.820976 + 0.570963i \(0.193430\pi\)
−0.820976 + 0.570963i \(0.806570\pi\)
\(942\) 51.4718 15.9754i 1.67704 0.520506i
\(943\) 23.6249i 0.769333i
\(944\) −1.25600 0.482852i −0.0408792 0.0157155i
\(945\) −6.31167 6.00978i −0.205319 0.195498i
\(946\) 23.8590 0.195417i 0.775722 0.00635354i
\(947\) −5.36691 −0.174401 −0.0872006 0.996191i \(-0.527792\pi\)
−0.0872006 + 0.996191i \(0.527792\pi\)
\(948\) 21.4906 14.7622i 0.697981 0.479453i
\(949\) −55.4329 −1.79943
\(950\) −4.49707 + 1.64124i −0.145904 + 0.0532489i
\(951\) 37.5512i 1.21768i
\(952\) 0.614057 0.778328i 0.0199017 0.0252257i
\(953\) −6.71404 −0.217489 −0.108745 0.994070i \(-0.534683\pi\)
−0.108745 + 0.994070i \(0.534683\pi\)
\(954\) −14.0561 + 4.36260i −0.455082 + 0.141244i
\(955\) −13.8656 13.2024i −0.448682 0.427221i
\(956\) 31.4097 21.5757i 1.01586 0.697808i
\(957\) 14.1295 46.8774i 0.456743 1.51533i
\(958\) −10.5652 34.0405i −0.341346 1.09980i
\(959\) −0.733796 −0.0236955
\(960\) 31.7541 + 18.4364i 1.02486 + 0.595032i
\(961\) −50.8138 −1.63916
\(962\) −34.4056 + 10.6785i −1.10928 + 0.344289i
\(963\) 16.0704i 0.517862i
\(964\) 29.5797 + 43.0618i 0.952699 + 1.38693i
\(965\) −8.26522 + 8.68041i −0.266067 + 0.279432i
\(966\) 13.8912 4.31143i 0.446942 0.138718i
\(967\) 26.5818i 0.854813i 0.904060 + 0.427406i \(0.140573\pi\)
−0.904060 + 0.427406i \(0.859427\pi\)
\(968\) −9.70798 29.5593i −0.312026 0.950073i
\(969\) −0.458347 −0.0147242
\(970\) 4.54650 9.17751i 0.145979 0.294672i
\(971\) 19.4034i 0.622685i −0.950298 0.311342i \(-0.899221\pi\)
0.950298 0.311342i \(-0.100779\pi\)
\(972\) 19.6509 13.4984i 0.630301 0.432962i
\(973\) 17.1561i 0.549999i
\(974\) 8.63768 + 27.8301i 0.276769 + 0.891736i
\(975\) 2.39794 + 48.9056i 0.0767955 + 1.56623i
\(976\) −49.5478 19.0480i −1.58599 0.609712i
\(977\) 27.6874i 0.885797i 0.896572 + 0.442899i \(0.146050\pi\)
−0.896572 + 0.442899i \(0.853950\pi\)
\(978\) −3.68052 11.8584i −0.117690 0.379191i
\(979\) −25.2598 7.61366i −0.807305 0.243334i
\(980\) −4.15723 + 25.9232i −0.132798 + 0.828087i
\(981\) 12.6676i 0.404444i
\(982\) −3.03049 9.76409i −0.0967070 0.311585i
\(983\) 52.2271 1.66579 0.832893 0.553434i \(-0.186683\pi\)
0.832893 + 0.553434i \(0.186683\pi\)
\(984\) 18.0179 22.8380i 0.574389 0.728048i
\(985\) 28.0086 29.4156i 0.892430 0.937259i
\(986\) 3.20390 0.994400i 0.102033 0.0316681i
\(987\) 3.52279i 0.112132i
\(988\) −5.32475 + 3.65764i −0.169403 + 0.116365i
\(989\) 23.9848i 0.762671i
\(990\) 9.28655 + 8.69847i 0.295146 + 0.276456i
\(991\) 15.7678i 0.500880i −0.968132 0.250440i \(-0.919425\pi\)
0.968132 0.250440i \(-0.0805753\pi\)
\(992\) −3.37835 + 51.0552i −0.107263 + 1.62100i
\(993\) 44.8662i 1.42379i
\(994\) 1.77083 + 5.70551i 0.0561672 + 0.180968i
\(995\) −3.23898 3.08406i −0.102683 0.0977711i
\(996\) −28.1121 40.9253i −0.890767 1.29677i
\(997\) 32.2179 1.02035 0.510176 0.860070i \(-0.329580\pi\)
0.510176 + 0.860070i \(0.329580\pi\)
\(998\) −42.4299 + 13.1690i −1.34309 + 0.416858i
\(999\) 19.5823i 0.619555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.g.b.219.16 yes 24
4.3 odd 2 inner 220.2.g.b.219.13 yes 24
5.4 even 2 inner 220.2.g.b.219.9 24
11.10 odd 2 inner 220.2.g.b.219.10 yes 24
20.19 odd 2 inner 220.2.g.b.219.12 yes 24
44.43 even 2 inner 220.2.g.b.219.11 yes 24
55.54 odd 2 inner 220.2.g.b.219.15 yes 24
220.219 even 2 inner 220.2.g.b.219.14 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.g.b.219.9 24 5.4 even 2 inner
220.2.g.b.219.10 yes 24 11.10 odd 2 inner
220.2.g.b.219.11 yes 24 44.43 even 2 inner
220.2.g.b.219.12 yes 24 20.19 odd 2 inner
220.2.g.b.219.13 yes 24 4.3 odd 2 inner
220.2.g.b.219.14 yes 24 220.219 even 2 inner
220.2.g.b.219.15 yes 24 55.54 odd 2 inner
220.2.g.b.219.16 yes 24 1.1 even 1 trivial