Properties

Label 220.2.g.b.219.13
Level $220$
Weight $2$
Character 220.219
Analytic conductor $1.757$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(219,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.219"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 219.13
Character \(\chi\) \(=\) 220.219
Dual form 220.2.g.b.219.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.419204 - 1.35065i) q^{2} -2.05261 q^{3} +(-1.64854 - 1.13240i) q^{4} +(1.54194 - 1.61939i) q^{5} +(-0.860462 + 2.77236i) q^{6} -1.06270i q^{7} +(-2.22056 + 1.75189i) q^{8} +1.21320 q^{9} +(-1.54085 - 2.76148i) q^{10} +(-3.17551 - 0.957146i) q^{11} +(3.38380 + 2.32437i) q^{12} -4.77094 q^{13} +(-1.43534 - 0.445487i) q^{14} +(-3.16499 + 3.32398i) q^{15} +(1.43534 + 3.73361i) q^{16} +0.329831 q^{17} +(0.508578 - 1.63861i) q^{18} +0.677013 q^{19} +(-4.37574 + 0.923536i) q^{20} +2.18130i q^{21} +(-2.62396 + 3.88778i) q^{22} +4.71498 q^{23} +(4.55793 - 3.59595i) q^{24} +(-0.244866 - 4.99400i) q^{25} +(-2.00000 + 6.44389i) q^{26} +3.66760 q^{27} +(-1.20340 + 1.75189i) q^{28} -7.19190i q^{29} +(3.16277 + 5.66823i) q^{30} -9.04510i q^{31} +(5.64451 - 0.373501i) q^{32} +(6.51808 + 1.96464i) q^{33} +(0.138267 - 0.445487i) q^{34} +(-1.72092 - 1.63861i) q^{35} +(-2.00000 - 1.37383i) q^{36} -5.33925i q^{37} +(0.283807 - 0.914411i) q^{38} +9.79287 q^{39} +(-0.586950 + 6.29726i) q^{40} +5.01060i q^{41} +(2.94618 + 0.914411i) q^{42} +5.08692i q^{43} +(4.15107 + 5.17384i) q^{44} +(1.87067 - 1.96464i) q^{45} +(1.97654 - 6.36832i) q^{46} -1.61500 q^{47} +(-2.94618 - 7.66363i) q^{48} +5.87067 q^{49} +(-6.84782 - 1.76278i) q^{50} -0.677013 q^{51} +(7.86507 + 5.40262i) q^{52} +8.57804i q^{53} +(1.53748 - 4.95366i) q^{54} +(-6.44643 + 3.66654i) q^{55} +(1.86173 + 2.35978i) q^{56} -1.38964 q^{57} +(-9.71378 - 3.01488i) q^{58} +0.336403i q^{59} +(8.98167 - 1.89566i) q^{60} -13.2708i q^{61} +(-12.2168 - 3.79175i) q^{62} -1.28926i q^{63} +(1.86173 - 7.78036i) q^{64} +(-7.35649 + 7.72603i) q^{65} +(5.38596 - 7.98009i) q^{66} -4.71498 q^{67} +(-0.543738 - 0.373501i) q^{68} -9.67801 q^{69} +(-2.93462 + 1.63746i) q^{70} +3.97503i q^{71} +(-2.69397 + 2.12539i) q^{72} +11.6189 q^{73} +(-7.21148 - 2.23824i) q^{74} +(0.502613 + 10.2507i) q^{75} +(-1.11608 - 0.766650i) q^{76} +(-1.01716 + 3.37461i) q^{77} +(4.10522 - 13.2268i) q^{78} +6.35102 q^{79} +(8.25937 + 3.43261i) q^{80} -11.1677 q^{81} +(6.76759 + 2.10047i) q^{82} -12.0945i q^{83} +(2.47011 - 3.59595i) q^{84} +(0.508578 - 0.534126i) q^{85} +(6.87067 + 2.13246i) q^{86} +14.7622i q^{87} +(8.72822 - 3.43777i) q^{88} -7.95455 q^{89} +(-1.86936 - 3.35022i) q^{90} +5.07007i q^{91} +(-7.77282 - 5.33925i) q^{92} +18.5660i q^{93} +(-0.677013 + 2.18130i) q^{94} +(1.04391 - 1.09635i) q^{95} +(-11.5860 + 0.766650i) q^{96} -3.23879i q^{97} +(2.46101 - 7.92925i) q^{98} +(-3.85252 - 1.16121i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{5} + 40 q^{9} + 12 q^{14} - 12 q^{16} - 20 q^{20} - 36 q^{25} - 48 q^{26} + 28 q^{34} - 48 q^{36} + 56 q^{44} - 48 q^{45} + 48 q^{49} + 20 q^{56} - 8 q^{60} + 20 q^{64} - 52 q^{66}+ \cdots - 16 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.419204 1.35065i 0.296422 0.955057i
\(3\) −2.05261 −1.18507 −0.592537 0.805543i \(-0.701874\pi\)
−0.592537 + 0.805543i \(0.701874\pi\)
\(4\) −1.64854 1.13240i −0.824268 0.566200i
\(5\) 1.54194 1.61939i 0.689575 0.724214i
\(6\) −0.860462 + 2.77236i −0.351282 + 1.13181i
\(7\) 1.06270i 0.401662i −0.979626 0.200831i \(-0.935636\pi\)
0.979626 0.200831i \(-0.0643642\pi\)
\(8\) −2.22056 + 1.75189i −0.785085 + 0.619388i
\(9\) 1.21320 0.404399
\(10\) −1.54085 2.76148i −0.487261 0.873257i
\(11\) −3.17551 0.957146i −0.957453 0.288590i
\(12\) 3.38380 + 2.32437i 0.976818 + 0.670989i
\(13\) −4.77094 −1.32322 −0.661611 0.749848i \(-0.730127\pi\)
−0.661611 + 0.749848i \(0.730127\pi\)
\(14\) −1.43534 0.445487i −0.383610 0.119062i
\(15\) −3.16499 + 3.32398i −0.817197 + 0.858247i
\(16\) 1.43534 + 3.73361i 0.358834 + 0.933401i
\(17\) 0.329831 0.0799957 0.0399979 0.999200i \(-0.487265\pi\)
0.0399979 + 0.999200i \(0.487265\pi\)
\(18\) 0.508578 1.63861i 0.119873 0.386224i
\(19\) 0.677013 0.155317 0.0776587 0.996980i \(-0.475256\pi\)
0.0776587 + 0.996980i \(0.475256\pi\)
\(20\) −4.37574 + 0.923536i −0.978445 + 0.206509i
\(21\) 2.18130i 0.475999i
\(22\) −2.62396 + 3.88778i −0.559430 + 0.828877i
\(23\) 4.71498 0.983142 0.491571 0.870837i \(-0.336423\pi\)
0.491571 + 0.870837i \(0.336423\pi\)
\(24\) 4.55793 3.59595i 0.930383 0.734021i
\(25\) −0.244866 4.99400i −0.0489731 0.998800i
\(26\) −2.00000 + 6.44389i −0.392232 + 1.26375i
\(27\) 3.66760 0.705831
\(28\) −1.20340 + 1.75189i −0.227421 + 0.331077i
\(29\) 7.19190i 1.33550i −0.744384 0.667751i \(-0.767257\pi\)
0.744384 0.667751i \(-0.232743\pi\)
\(30\) 3.16277 + 5.66823i 0.577440 + 1.03487i
\(31\) 9.04510i 1.62455i −0.583276 0.812274i \(-0.698230\pi\)
0.583276 0.812274i \(-0.301770\pi\)
\(32\) 5.64451 0.373501i 0.997818 0.0660262i
\(33\) 6.51808 + 1.96464i 1.13465 + 0.342001i
\(34\) 0.138267 0.445487i 0.0237125 0.0764005i
\(35\) −1.72092 1.63861i −0.290889 0.276976i
\(36\) −2.00000 1.37383i −0.333333 0.228971i
\(37\) 5.33925i 0.877768i −0.898544 0.438884i \(-0.855374\pi\)
0.898544 0.438884i \(-0.144626\pi\)
\(38\) 0.283807 0.914411i 0.0460396 0.148337i
\(39\) 9.79287 1.56811
\(40\) −0.586950 + 6.29726i −0.0928050 + 0.995684i
\(41\) 5.01060i 0.782525i 0.920279 + 0.391262i \(0.127961\pi\)
−0.920279 + 0.391262i \(0.872039\pi\)
\(42\) 2.94618 + 0.914411i 0.454606 + 0.141097i
\(43\) 5.08692i 0.775748i 0.921712 + 0.387874i \(0.126790\pi\)
−0.921712 + 0.387874i \(0.873210\pi\)
\(44\) 4.15107 + 5.17384i 0.625797 + 0.779986i
\(45\) 1.87067 1.96464i 0.278864 0.292872i
\(46\) 1.97654 6.36832i 0.291425 0.938957i
\(47\) −1.61500 −0.235571 −0.117786 0.993039i \(-0.537580\pi\)
−0.117786 + 0.993039i \(0.537580\pi\)
\(48\) −2.94618 7.66363i −0.425245 1.10615i
\(49\) 5.87067 0.838668
\(50\) −6.84782 1.76278i −0.968428 0.249294i
\(51\) −0.677013 −0.0948008
\(52\) 7.86507 + 5.40262i 1.09069 + 0.749208i
\(53\) 8.57804i 1.17828i 0.808029 + 0.589142i \(0.200534\pi\)
−0.808029 + 0.589142i \(0.799466\pi\)
\(54\) 1.53748 4.95366i 0.209224 0.674108i
\(55\) −6.44643 + 3.66654i −0.869237 + 0.494397i
\(56\) 1.86173 + 2.35978i 0.248785 + 0.315339i
\(57\) −1.38964 −0.184063
\(58\) −9.71378 3.01488i −1.27548 0.395873i
\(59\) 0.336403i 0.0437959i 0.999760 + 0.0218980i \(0.00697090\pi\)
−0.999760 + 0.0218980i \(0.993029\pi\)
\(60\) 8.98167 1.89566i 1.15953 0.244728i
\(61\) 13.2708i 1.69915i −0.527471 0.849573i \(-0.676860\pi\)
0.527471 0.849573i \(-0.323140\pi\)
\(62\) −12.2168 3.79175i −1.55154 0.481552i
\(63\) 1.28926i 0.162432i
\(64\) 1.86173 7.78036i 0.232717 0.972545i
\(65\) −7.35649 + 7.72603i −0.912460 + 0.958296i
\(66\) 5.38596 7.98009i 0.662966 0.982281i
\(67\) −4.71498 −0.576027 −0.288014 0.957626i \(-0.592995\pi\)
−0.288014 + 0.957626i \(0.592995\pi\)
\(68\) −0.543738 0.373501i −0.0659379 0.0452936i
\(69\) −9.67801 −1.16510
\(70\) −2.93462 + 1.63746i −0.350754 + 0.195714i
\(71\) 3.97503i 0.471749i 0.971783 + 0.235875i \(0.0757955\pi\)
−0.971783 + 0.235875i \(0.924205\pi\)
\(72\) −2.69397 + 2.12539i −0.317488 + 0.250480i
\(73\) 11.6189 1.35988 0.679942 0.733266i \(-0.262005\pi\)
0.679942 + 0.733266i \(0.262005\pi\)
\(74\) −7.21148 2.23824i −0.838318 0.260190i
\(75\) 0.502613 + 10.2507i 0.0580368 + 1.18365i
\(76\) −1.11608 0.766650i −0.128023 0.0879408i
\(77\) −1.01716 + 3.37461i −0.115916 + 0.384572i
\(78\) 4.10522 13.2268i 0.464824 1.49764i
\(79\) 6.35102 0.714546 0.357273 0.934000i \(-0.383707\pi\)
0.357273 + 0.934000i \(0.383707\pi\)
\(80\) 8.25937 + 3.43261i 0.923426 + 0.383777i
\(81\) −11.1677 −1.24086
\(82\) 6.76759 + 2.10047i 0.747356 + 0.231958i
\(83\) 12.0945i 1.32754i −0.747935 0.663772i \(-0.768955\pi\)
0.747935 0.663772i \(-0.231045\pi\)
\(84\) 2.47011 3.59595i 0.269511 0.392350i
\(85\) 0.508578 0.534126i 0.0551630 0.0579341i
\(86\) 6.87067 + 2.13246i 0.740884 + 0.229949i
\(87\) 14.7622i 1.58267i
\(88\) 8.72822 3.43777i 0.930431 0.366467i
\(89\) −7.95455 −0.843180 −0.421590 0.906787i \(-0.638528\pi\)
−0.421590 + 0.906787i \(0.638528\pi\)
\(90\) −1.86936 3.35022i −0.197048 0.353144i
\(91\) 5.07007i 0.531487i
\(92\) −7.77282 5.33925i −0.810372 0.556656i
\(93\) 18.5660i 1.92521i
\(94\) −0.677013 + 2.18130i −0.0698286 + 0.224984i
\(95\) 1.04391 1.09635i 0.107103 0.112483i
\(96\) −11.5860 + 0.766650i −1.18249 + 0.0782459i
\(97\) 3.23879i 0.328849i −0.986390 0.164424i \(-0.947423\pi\)
0.986390 0.164424i \(-0.0525767\pi\)
\(98\) 2.46101 7.92925i 0.248600 0.800975i
\(99\) −3.85252 1.16121i −0.387193 0.116706i
\(100\) −5.25154 + 8.51007i −0.525154 + 0.851007i
\(101\) 11.0895i 1.10344i 0.834029 + 0.551721i \(0.186029\pi\)
−0.834029 + 0.551721i \(0.813971\pi\)
\(102\) −0.283807 + 0.914411i −0.0281011 + 0.0905402i
\(103\) 3.70976 0.365533 0.182767 0.983156i \(-0.441495\pi\)
0.182767 + 0.983156i \(0.441495\pi\)
\(104\) 10.5941 8.35819i 1.03884 0.819587i
\(105\) 3.53238 + 3.36343i 0.344725 + 0.328237i
\(106\) 11.5860 + 3.59595i 1.12533 + 0.349270i
\(107\) 13.2463i 1.28057i −0.768137 0.640285i \(-0.778816\pi\)
0.768137 0.640285i \(-0.221184\pi\)
\(108\) −6.04617 4.15320i −0.581793 0.399642i
\(109\) 10.4415i 1.00011i 0.865994 + 0.500055i \(0.166687\pi\)
−0.865994 + 0.500055i \(0.833313\pi\)
\(110\) 2.24986 + 10.2439i 0.214516 + 0.976721i
\(111\) 10.9594i 1.04022i
\(112\) 3.96769 1.52533i 0.374912 0.144130i
\(113\) 12.5363i 1.17931i 0.807654 + 0.589657i \(0.200737\pi\)
−0.807654 + 0.589657i \(0.799263\pi\)
\(114\) −0.582544 + 1.87693i −0.0545603 + 0.175790i
\(115\) 7.27021 7.63541i 0.677950 0.712006i
\(116\) −8.14412 + 11.8561i −0.756162 + 1.10081i
\(117\) −5.78810 −0.535110
\(118\) 0.454364 + 0.141022i 0.0418276 + 0.0129821i
\(119\) 0.350510i 0.0321312i
\(120\) 1.20478 12.9258i 0.109981 1.17996i
\(121\) 9.16774 + 6.07885i 0.833431 + 0.552623i
\(122\) −17.9242 5.56316i −1.62278 0.503665i
\(123\) 10.2848i 0.927349i
\(124\) −10.2427 + 14.9112i −0.919819 + 1.33906i
\(125\) −8.46482 7.30390i −0.757116 0.653280i
\(126\) −1.74135 0.540465i −0.155132 0.0481484i
\(127\) 6.69188i 0.593808i −0.954907 0.296904i \(-0.904046\pi\)
0.954907 0.296904i \(-0.0959542\pi\)
\(128\) −9.72813 5.77612i −0.859853 0.510542i
\(129\) 10.4415i 0.919319i
\(130\) 7.35132 + 13.1749i 0.644754 + 1.15551i
\(131\) −13.9117 −1.21547 −0.607737 0.794138i \(-0.707922\pi\)
−0.607737 + 0.794138i \(0.707922\pi\)
\(132\) −8.52052 10.6199i −0.741616 0.924340i
\(133\) 0.719460i 0.0623851i
\(134\) −1.97654 + 6.36832i −0.170747 + 0.550139i
\(135\) 5.65521 5.93929i 0.486723 0.511173i
\(136\) −0.732408 + 0.577829i −0.0628034 + 0.0495484i
\(137\) 0.690503i 0.0589937i 0.999565 + 0.0294968i \(0.00939050\pi\)
−0.999565 + 0.0294968i \(0.990610\pi\)
\(138\) −4.05707 + 13.0717i −0.345360 + 1.11273i
\(139\) −16.1439 −1.36931 −0.684654 0.728869i \(-0.740047\pi\)
−0.684654 + 0.728869i \(0.740047\pi\)
\(140\) 0.981440 + 4.65009i 0.0829468 + 0.393004i
\(141\) 3.31495 0.279169
\(142\) 5.36889 + 1.66635i 0.450548 + 0.139837i
\(143\) 15.1502 + 4.56649i 1.26692 + 0.381869i
\(144\) 1.74135 + 4.52960i 0.145112 + 0.377467i
\(145\) −11.6465 11.0895i −0.967190 0.920929i
\(146\) 4.87067 15.6931i 0.403100 1.29877i
\(147\) −12.0502 −0.993883
\(148\) −6.04617 + 8.80195i −0.496992 + 0.723515i
\(149\) 7.83990i 0.642270i 0.947033 + 0.321135i \(0.104064\pi\)
−0.947033 + 0.321135i \(0.895936\pi\)
\(150\) 14.0559 + 3.61829i 1.14766 + 0.295432i
\(151\) 20.9398 1.70405 0.852027 0.523498i \(-0.175373\pi\)
0.852027 + 0.523498i \(0.175373\pi\)
\(152\) −1.50335 + 1.18606i −0.121937 + 0.0962018i
\(153\) 0.400150 0.0323502
\(154\) 4.13153 + 2.78848i 0.332928 + 0.224702i
\(155\) −14.6476 13.9470i −1.17652 1.12025i
\(156\) −16.1439 11.0895i −1.29255 0.887867i
\(157\) 18.5660i 1.48173i −0.671653 0.740866i \(-0.734416\pi\)
0.671653 0.740866i \(-0.265584\pi\)
\(158\) 2.66238 8.57804i 0.211807 0.682432i
\(159\) 17.6073i 1.39635i
\(160\) 8.09863 9.71659i 0.640253 0.768164i
\(161\) 5.01060i 0.394891i
\(162\) −4.68157 + 15.0838i −0.367819 + 1.18509i
\(163\) 4.27737 0.335030 0.167515 0.985870i \(-0.446426\pi\)
0.167515 + 0.985870i \(0.446426\pi\)
\(164\) 5.67401 8.26015i 0.443066 0.645010i
\(165\) 13.2320 7.52597i 1.03011 0.585896i
\(166\) −16.3355 5.07007i −1.26788 0.393514i
\(167\) 14.6247i 1.13169i 0.824510 + 0.565847i \(0.191451\pi\)
−0.824510 + 0.565847i \(0.808549\pi\)
\(168\) −3.82141 4.84370i −0.294828 0.373700i
\(169\) 9.76189 0.750914
\(170\) −0.508221 0.910821i −0.0389788 0.0698568i
\(171\) 0.821351 0.0628103
\(172\) 5.76043 8.38597i 0.439229 0.639424i
\(173\) −6.58840 −0.500907 −0.250453 0.968129i \(-0.580580\pi\)
−0.250453 + 0.968129i \(0.580580\pi\)
\(174\) 19.9386 + 6.18836i 1.51154 + 0.469138i
\(175\) −5.30711 + 0.260218i −0.401180 + 0.0196706i
\(176\) −0.984326 13.2299i −0.0741963 0.997244i
\(177\) 0.690503i 0.0519014i
\(178\) −3.33458 + 10.7438i −0.249937 + 0.805285i
\(179\) 17.6215i 1.31709i 0.752542 + 0.658545i \(0.228828\pi\)
−0.752542 + 0.658545i \(0.771172\pi\)
\(180\) −5.30864 + 1.12043i −0.395682 + 0.0835121i
\(181\) −0.231080 −0.0171760 −0.00858801 0.999963i \(-0.502734\pi\)
−0.00858801 + 0.999963i \(0.502734\pi\)
\(182\) 6.84791 + 2.12539i 0.507601 + 0.157545i
\(183\) 27.2397i 2.01361i
\(184\) −10.4699 + 8.26015i −0.771850 + 0.608947i
\(185\) −8.64635 8.23279i −0.635692 0.605286i
\(186\) 25.0763 + 7.78297i 1.83868 + 0.570675i
\(187\) −1.04738 0.315696i −0.0765921 0.0230860i
\(188\) 2.66238 + 1.82882i 0.194174 + 0.133381i
\(189\) 3.89755i 0.283505i
\(190\) −1.04318 1.86956i −0.0756801 0.135632i
\(191\) 8.56225i 0.619542i 0.950811 + 0.309771i \(0.100252\pi\)
−0.950811 + 0.309771i \(0.899748\pi\)
\(192\) −3.82141 + 15.9700i −0.275786 + 1.15254i
\(193\) −5.36028 −0.385842 −0.192921 0.981214i \(-0.561796\pi\)
−0.192921 + 0.981214i \(0.561796\pi\)
\(194\) −4.37448 1.35771i −0.314069 0.0974781i
\(195\) 15.1000 15.8585i 1.08133 1.13565i
\(196\) −9.67801 6.64796i −0.691287 0.474854i
\(197\) 18.1646 1.29417 0.647087 0.762416i \(-0.275987\pi\)
0.647087 + 0.762416i \(0.275987\pi\)
\(198\) −3.18339 + 4.71665i −0.226233 + 0.335197i
\(199\) 2.00012i 0.141785i 0.997484 + 0.0708923i \(0.0225847\pi\)
−0.997484 + 0.0708923i \(0.977415\pi\)
\(200\) 9.29270 + 10.6605i 0.657093 + 0.753810i
\(201\) 9.67801 0.682634
\(202\) 14.9780 + 4.64875i 1.05385 + 0.327085i
\(203\) −7.64282 −0.536421
\(204\) 1.11608 + 0.766650i 0.0781412 + 0.0536763i
\(205\) 8.11413 + 7.72603i 0.566716 + 0.539609i
\(206\) 1.55515 5.01060i 0.108352 0.349105i
\(207\) 5.72021 0.397582
\(208\) −6.84791 17.8128i −0.474817 1.23510i
\(209\) −2.14986 0.648000i −0.148709 0.0448231i
\(210\) 6.02362 3.36107i 0.415669 0.231936i
\(211\) 17.3536 1.19467 0.597335 0.801992i \(-0.296226\pi\)
0.597335 + 0.801992i \(0.296226\pi\)
\(212\) 9.71378 14.1412i 0.667145 0.971221i
\(213\) 8.15918i 0.559058i
\(214\) −17.8912 5.55292i −1.22302 0.379590i
\(215\) 8.23772 + 7.84371i 0.561808 + 0.534937i
\(216\) −8.14412 + 6.42525i −0.554137 + 0.437183i
\(217\) −9.61220 −0.652519
\(218\) 14.1028 + 4.37710i 0.955162 + 0.296455i
\(219\) −23.8489 −1.61156
\(220\) 14.7792 + 1.25552i 0.996411 + 0.0846470i
\(221\) −1.57360 −0.105852
\(222\) 14.8023 + 4.59422i 0.993469 + 0.308344i
\(223\) −25.5854 −1.71332 −0.856662 0.515879i \(-0.827466\pi\)
−0.856662 + 0.515879i \(0.827466\pi\)
\(224\) −0.396918 5.99841i −0.0265202 0.400785i
\(225\) −0.297071 6.05871i −0.0198047 0.403914i
\(226\) 16.9322 + 5.25527i 1.12631 + 0.349575i
\(227\) 9.44867i 0.627130i −0.949567 0.313565i \(-0.898477\pi\)
0.949567 0.313565i \(-0.101523\pi\)
\(228\) 2.29087 + 1.57363i 0.151717 + 0.104216i
\(229\) 23.2927 1.53922 0.769612 0.638512i \(-0.220450\pi\)
0.769612 + 0.638512i \(0.220450\pi\)
\(230\) −7.26510 13.0203i −0.479047 0.858535i
\(231\) 2.08782 6.92675i 0.137369 0.455746i
\(232\) 12.5995 + 15.9700i 0.827195 + 1.04848i
\(233\) 12.3488 0.808999 0.404499 0.914538i \(-0.367446\pi\)
0.404499 + 0.914538i \(0.367446\pi\)
\(234\) −2.42640 + 7.81772i −0.158618 + 0.511060i
\(235\) −2.49022 + 2.61531i −0.162444 + 0.170604i
\(236\) 0.380943 0.554572i 0.0247973 0.0360996i
\(237\) −13.0362 −0.846789
\(238\) −0.473418 0.146935i −0.0306872 0.00952441i
\(239\) 19.0531 1.23244 0.616220 0.787574i \(-0.288663\pi\)
0.616220 + 0.787574i \(0.288663\pi\)
\(240\) −16.9532 7.04579i −1.09433 0.454804i
\(241\) 26.1213i 1.68262i −0.540554 0.841309i \(-0.681785\pi\)
0.540554 0.841309i \(-0.318215\pi\)
\(242\) 12.0536 9.83417i 0.774834 0.632165i
\(243\) 11.9202 0.764680
\(244\) −15.0278 + 21.8773i −0.962057 + 1.40055i
\(245\) 9.05220 9.50693i 0.578324 0.607375i
\(246\) −13.8912 4.31143i −0.885671 0.274887i
\(247\) −3.22999 −0.205519
\(248\) 15.8461 + 20.0851i 1.00623 + 1.27541i
\(249\) 24.8253i 1.57324i
\(250\) −13.4135 + 8.37122i −0.848346 + 0.529442i
\(251\) 5.56703i 0.351388i 0.984445 + 0.175694i \(0.0562169\pi\)
−0.984445 + 0.175694i \(0.943783\pi\)
\(252\) −1.45996 + 2.12539i −0.0919690 + 0.133887i
\(253\) −14.9725 4.51293i −0.941312 0.283725i
\(254\) −9.03842 2.80527i −0.567121 0.176018i
\(255\) −1.04391 + 1.09635i −0.0653723 + 0.0686561i
\(256\) −11.8796 + 10.7180i −0.742476 + 0.669873i
\(257\) 6.74922i 0.421004i 0.977593 + 0.210502i \(0.0675099\pi\)
−0.977593 + 0.210502i \(0.932490\pi\)
\(258\) −14.1028 4.37710i −0.878002 0.272507i
\(259\) −5.67401 −0.352566
\(260\) 20.8764 4.40614i 1.29470 0.273257i
\(261\) 8.72520i 0.540077i
\(262\) −5.83186 + 18.7899i −0.360294 + 1.16085i
\(263\) 3.81948i 0.235520i 0.993042 + 0.117760i \(0.0375713\pi\)
−0.993042 + 0.117760i \(0.962429\pi\)
\(264\) −17.9156 + 7.05638i −1.10263 + 0.434290i
\(265\) 13.8912 + 13.2268i 0.853330 + 0.812515i
\(266\) −0.971742 0.301601i −0.0595813 0.0184923i
\(267\) 16.3276 0.999231
\(268\) 7.77282 + 5.33925i 0.474800 + 0.326147i
\(269\) 4.76189 0.290337 0.145169 0.989407i \(-0.453628\pi\)
0.145169 + 0.989407i \(0.453628\pi\)
\(270\) −5.65124 10.1280i −0.343923 0.616371i
\(271\) −14.7899 −0.898420 −0.449210 0.893426i \(-0.648295\pi\)
−0.449210 + 0.893426i \(0.648295\pi\)
\(272\) 0.473418 + 1.23146i 0.0287052 + 0.0746681i
\(273\) 10.4069i 0.629852i
\(274\) 0.932631 + 0.289462i 0.0563423 + 0.0174870i
\(275\) −4.00241 + 16.0929i −0.241355 + 0.970437i
\(276\) 15.9545 + 10.9594i 0.960351 + 0.659678i
\(277\) 29.6855 1.78363 0.891813 0.452404i \(-0.149433\pi\)
0.891813 + 0.452404i \(0.149433\pi\)
\(278\) −6.76759 + 21.8048i −0.405893 + 1.30777i
\(279\) 10.9735i 0.656966i
\(280\) 6.69208 + 0.623750i 0.399928 + 0.0372762i
\(281\) 18.2366i 1.08790i −0.839117 0.543951i \(-0.816928\pi\)
0.839117 0.543951i \(-0.183072\pi\)
\(282\) 1.38964 4.47735i 0.0827520 0.266623i
\(283\) 6.17144i 0.366854i −0.983033 0.183427i \(-0.941281\pi\)
0.983033 0.183427i \(-0.0587191\pi\)
\(284\) 4.50133 6.55298i 0.267105 0.388848i
\(285\) −2.14274 + 2.25038i −0.126925 + 0.133301i
\(286\) 12.5188 18.5484i 0.740250 1.09679i
\(287\) 5.32475 0.314310
\(288\) 6.84791 0.453130i 0.403517 0.0267010i
\(289\) −16.8912 −0.993601
\(290\) −19.8603 + 11.0817i −1.16624 + 0.650738i
\(291\) 6.64796i 0.389710i
\(292\) −19.1541 13.1572i −1.12091 0.769967i
\(293\) −2.21761 −0.129554 −0.0647770 0.997900i \(-0.520634\pi\)
−0.0647770 + 0.997900i \(0.520634\pi\)
\(294\) −5.05149 + 16.2756i −0.294609 + 0.949215i
\(295\) 0.544768 + 0.518712i 0.0317176 + 0.0302006i
\(296\) 9.35380 + 11.8561i 0.543679 + 0.689122i
\(297\) −11.6465 3.51043i −0.675799 0.203696i
\(298\) 10.5890 + 3.28652i 0.613404 + 0.190383i
\(299\) −22.4949 −1.30091
\(300\) 10.7794 17.4678i 0.622346 1.00851i
\(301\) 5.40586 0.311589
\(302\) 8.77804 28.2824i 0.505120 1.62747i
\(303\) 22.7623i 1.30766i
\(304\) 0.971742 + 2.52770i 0.0557332 + 0.144974i
\(305\) −21.4906 20.4627i −1.23055 1.17169i
\(306\) 0.167745 0.540465i 0.00958933 0.0308963i
\(307\) 14.3308i 0.817905i 0.912556 + 0.408952i \(0.134106\pi\)
−0.912556 + 0.408952i \(0.865894\pi\)
\(308\) 5.49823 4.41133i 0.313291 0.251359i
\(309\) −7.61468 −0.433184
\(310\) −24.9779 + 13.9372i −1.41865 + 0.791578i
\(311\) 29.8223i 1.69107i −0.533921 0.845535i \(-0.679282\pi\)
0.533921 0.845535i \(-0.320718\pi\)
\(312\) −21.7456 + 17.1561i −1.23110 + 0.971271i
\(313\) 17.8466i 1.00875i −0.863485 0.504374i \(-0.831723\pi\)
0.863485 0.504374i \(-0.168277\pi\)
\(314\) −25.0763 7.78297i −1.41514 0.439218i
\(315\) −2.08782 1.98796i −0.117635 0.112009i
\(316\) −10.4699 7.19190i −0.588977 0.404576i
\(317\) 18.2944i 1.02752i 0.857935 + 0.513758i \(0.171747\pi\)
−0.857935 + 0.513758i \(0.828253\pi\)
\(318\) −23.7814 7.38108i −1.33360 0.413910i
\(319\) −6.88370 + 22.8380i −0.385413 + 1.27868i
\(320\) −9.72878 15.0117i −0.543855 0.839179i
\(321\) 27.1895i 1.51757i
\(322\) −6.76759 2.10047i −0.377143 0.117054i
\(323\) 0.223300 0.0124247
\(324\) 18.4104 + 12.6464i 1.02280 + 0.702576i
\(325\) 1.16824 + 23.8261i 0.0648023 + 1.32163i
\(326\) 1.79309 5.77725i 0.0993103 0.319972i
\(327\) 21.4322i 1.18520i
\(328\) −8.77804 11.1263i −0.484686 0.614348i
\(329\) 1.71625i 0.0946200i
\(330\) −4.61808 21.0268i −0.254217 1.15749i
\(331\) 21.8582i 1.20143i −0.799462 0.600717i \(-0.794882\pi\)
0.799462 0.600717i \(-0.205118\pi\)
\(332\) −13.6958 + 19.9382i −0.751656 + 1.09425i
\(333\) 6.47757i 0.354969i
\(334\) 19.7529 + 6.13075i 1.08083 + 0.335460i
\(335\) −7.27021 + 7.63541i −0.397214 + 0.417167i
\(336\) −8.14412 + 3.13090i −0.444298 + 0.170805i
\(337\) −22.1076 −1.20428 −0.602138 0.798392i \(-0.705684\pi\)
−0.602138 + 0.798392i \(0.705684\pi\)
\(338\) 4.09223 13.1849i 0.222588 0.717166i
\(339\) 25.7321i 1.39757i
\(340\) −1.44325 + 0.304611i −0.0782714 + 0.0165198i
\(341\) −8.65748 + 28.7228i −0.468829 + 1.55543i
\(342\) 0.344314 1.10936i 0.0186184 0.0599874i
\(343\) 13.6776i 0.738523i
\(344\) −8.91175 11.2958i −0.480489 0.609028i
\(345\) −14.9229 + 15.6725i −0.803421 + 0.843779i
\(346\) −2.76189 + 8.89865i −0.148480 + 0.478394i
\(347\) 5.65101i 0.303362i −0.988429 0.151681i \(-0.951531\pi\)
0.988429 0.151681i \(-0.0484686\pi\)
\(348\) 16.7167 24.3359i 0.896108 1.30454i
\(349\) 1.06825i 0.0571822i −0.999591 0.0285911i \(-0.990898\pi\)
0.999591 0.0285911i \(-0.00910207\pi\)
\(350\) −1.87330 + 7.27716i −0.100132 + 0.388980i
\(351\) −17.4979 −0.933970
\(352\) −18.2817 4.21656i −0.974418 0.224744i
\(353\) 13.9173i 0.740743i −0.928884 0.370371i \(-0.879230\pi\)
0.928884 0.370371i \(-0.120770\pi\)
\(354\) −0.932631 0.289462i −0.0495688 0.0153847i
\(355\) 6.43714 + 6.12924i 0.341648 + 0.325306i
\(356\) 13.1134 + 9.00773i 0.695006 + 0.477409i
\(357\) 0.719460i 0.0380779i
\(358\) 23.8005 + 7.38699i 1.25790 + 0.390415i
\(359\) 21.1409 1.11577 0.557887 0.829917i \(-0.311612\pi\)
0.557887 + 0.829917i \(0.311612\pi\)
\(360\) −0.712087 + 7.63982i −0.0375303 + 0.402654i
\(361\) −18.5417 −0.975876
\(362\) −0.0968696 + 0.312109i −0.00509135 + 0.0164041i
\(363\) −18.8178 12.4775i −0.987677 0.654899i
\(364\) 5.74135 8.35819i 0.300928 0.438088i
\(365\) 17.9155 18.8155i 0.937742 0.984847i
\(366\) 36.7914 + 11.4190i 1.92312 + 0.596880i
\(367\) 19.3854 1.01191 0.505955 0.862560i \(-0.331140\pi\)
0.505955 + 0.862560i \(0.331140\pi\)
\(368\) 6.76759 + 17.6039i 0.352785 + 0.917666i
\(369\) 6.07885i 0.316452i
\(370\) −14.7442 + 8.22701i −0.766516 + 0.427702i
\(371\) 9.11586 0.473272
\(372\) 21.0242 30.6068i 1.09005 1.58689i
\(373\) −0.0979830 −0.00507337 −0.00253668 0.999997i \(-0.500807\pi\)
−0.00253668 + 0.999997i \(0.500807\pi\)
\(374\) −0.865463 + 1.28231i −0.0447520 + 0.0663066i
\(375\) 17.3749 + 14.9920i 0.897238 + 0.774185i
\(376\) 3.58619 2.82930i 0.184943 0.145910i
\(377\) 34.3122i 1.76717i
\(378\) −5.26425 1.63387i −0.270764 0.0840373i
\(379\) 35.5511i 1.82614i 0.407806 + 0.913069i \(0.366294\pi\)
−0.407806 + 0.913069i \(0.633706\pi\)
\(380\) −2.96243 + 0.625246i −0.151970 + 0.0320745i
\(381\) 13.7358i 0.703707i
\(382\) 11.5646 + 3.58933i 0.591698 + 0.183646i
\(383\) −13.2697 −0.678051 −0.339026 0.940777i \(-0.610097\pi\)
−0.339026 + 0.940777i \(0.610097\pi\)
\(384\) 19.9680 + 11.8561i 1.01899 + 0.605029i
\(385\) 3.89643 + 6.85061i 0.198580 + 0.349139i
\(386\) −2.24705 + 7.23989i −0.114372 + 0.368501i
\(387\) 6.17144i 0.313712i
\(388\) −3.66760 + 5.33925i −0.186194 + 0.271059i
\(389\) 24.0135 1.21753 0.608766 0.793349i \(-0.291665\pi\)
0.608766 + 0.793349i \(0.291665\pi\)
\(390\) −15.0894 27.0428i −0.764081 1.36937i
\(391\) 1.55515 0.0786472
\(392\) −13.0362 + 10.2848i −0.658425 + 0.519461i
\(393\) 28.5553 1.44043
\(394\) 7.61468 24.5341i 0.383622 1.23601i
\(395\) 9.79287 10.2848i 0.492733 0.517484i
\(396\) 5.03607 + 6.27689i 0.253072 + 0.315426i
\(397\) 4.20093i 0.210839i 0.994428 + 0.105419i \(0.0336185\pi\)
−0.994428 + 0.105419i \(0.966381\pi\)
\(398\) 2.70147 + 0.838459i 0.135412 + 0.0420281i
\(399\) 1.47677i 0.0739310i
\(400\) 18.2942 8.08231i 0.914708 0.404115i
\(401\) −11.5968 −0.579116 −0.289558 0.957160i \(-0.593508\pi\)
−0.289558 + 0.957160i \(0.593508\pi\)
\(402\) 4.05707 13.0717i 0.202348 0.651955i
\(403\) 43.1536i 2.14964i
\(404\) 12.5577 18.2814i 0.624769 0.909532i
\(405\) −17.2199 + 18.0850i −0.855666 + 0.898649i
\(406\) −3.20390 + 10.3228i −0.159007 + 0.512312i
\(407\) −5.11044 + 16.9549i −0.253315 + 0.840421i
\(408\) 1.50335 1.18606i 0.0744267 0.0587185i
\(409\) 24.8253i 1.22753i −0.789489 0.613765i \(-0.789654\pi\)
0.789489 0.613765i \(-0.210346\pi\)
\(410\) 13.8367 7.72060i 0.683345 0.381293i
\(411\) 1.41733i 0.0699118i
\(412\) −6.11567 4.20093i −0.301297 0.206965i
\(413\) 0.357495 0.0175912
\(414\) 2.39794 7.72603i 0.117852 0.379714i
\(415\) −19.5857 18.6489i −0.961426 0.915441i
\(416\) −26.9296 + 1.78195i −1.32033 + 0.0873673i
\(417\) 33.1371 1.62273
\(418\) −1.77646 + 2.63208i −0.0868893 + 0.128739i
\(419\) 19.5964i 0.957345i 0.877994 + 0.478673i \(0.158882\pi\)
−0.877994 + 0.478673i \(0.841118\pi\)
\(420\) −2.01451 9.54480i −0.0982981 0.465739i
\(421\) −8.59414 −0.418853 −0.209426 0.977824i \(-0.567160\pi\)
−0.209426 + 0.977824i \(0.567160\pi\)
\(422\) 7.27470 23.4387i 0.354127 1.14098i
\(423\) −1.95931 −0.0952649
\(424\) −15.0278 19.0480i −0.729815 0.925053i
\(425\) −0.0807642 1.64718i −0.00391764 0.0798997i
\(426\) −11.0202 3.42036i −0.533932 0.165717i
\(427\) −14.1028 −0.682482
\(428\) −15.0002 + 21.8370i −0.725060 + 1.05553i
\(429\) −31.0974 9.37320i −1.50140 0.452543i
\(430\) 14.0474 7.83820i 0.677427 0.377992i
\(431\) −16.9652 −0.817187 −0.408594 0.912716i \(-0.633981\pi\)
−0.408594 + 0.912716i \(0.633981\pi\)
\(432\) 5.26425 + 13.6934i 0.253276 + 0.658823i
\(433\) 3.78207i 0.181755i 0.995862 + 0.0908775i \(0.0289672\pi\)
−0.995862 + 0.0908775i \(0.971033\pi\)
\(434\) −4.02948 + 12.9828i −0.193421 + 0.623193i
\(435\) 23.9057 + 22.7623i 1.14619 + 1.09137i
\(436\) 11.8239 17.2131i 0.566263 0.824358i
\(437\) 3.19211 0.152699
\(438\) −9.99758 + 32.2117i −0.477703 + 1.53913i
\(439\) 18.2317 0.870152 0.435076 0.900394i \(-0.356721\pi\)
0.435076 + 0.900394i \(0.356721\pi\)
\(440\) 7.89126 19.4352i 0.376201 0.926538i
\(441\) 7.12229 0.339157
\(442\) −0.659662 + 2.12539i −0.0313769 + 0.101095i
\(443\) 27.5958 1.31112 0.655559 0.755144i \(-0.272433\pi\)
0.655559 + 0.755144i \(0.272433\pi\)
\(444\) 12.4104 18.0669i 0.588973 0.857419i
\(445\) −12.2654 + 12.8815i −0.581436 + 0.610643i
\(446\) −10.7255 + 34.5570i −0.507867 + 1.63632i
\(447\) 16.0922i 0.761137i
\(448\) −8.26816 1.97846i −0.390634 0.0934734i
\(449\) 2.53081 0.119436 0.0597181 0.998215i \(-0.480980\pi\)
0.0597181 + 0.998215i \(0.480980\pi\)
\(450\) −8.30776 2.13860i −0.391632 0.100815i
\(451\) 4.79588 15.9112i 0.225829 0.749230i
\(452\) 14.1961 20.6665i 0.667728 0.972071i
\(453\) −42.9811 −2.01943
\(454\) −12.7619 3.96092i −0.598945 0.185895i
\(455\) 8.21043 + 7.81772i 0.384911 + 0.366500i
\(456\) 3.08578 2.43451i 0.144505 0.114006i
\(457\) −8.33554 −0.389920 −0.194960 0.980811i \(-0.562458\pi\)
−0.194960 + 0.980811i \(0.562458\pi\)
\(458\) 9.76440 31.4604i 0.456260 1.47005i
\(459\) 1.20969 0.0564634
\(460\) −20.6315 + 4.35446i −0.961950 + 0.203028i
\(461\) 19.3496i 0.901201i −0.892726 0.450601i \(-0.851210\pi\)
0.892726 0.450601i \(-0.148790\pi\)
\(462\) −8.48042 5.72365i −0.394545 0.266288i
\(463\) −3.57976 −0.166365 −0.0831827 0.996534i \(-0.526509\pi\)
−0.0831827 + 0.996534i \(0.526509\pi\)
\(464\) 26.8517 10.3228i 1.24656 0.479224i
\(465\) 30.0657 + 28.6276i 1.39426 + 1.32758i
\(466\) 5.17669 16.6790i 0.239805 0.772640i
\(467\) 16.8073 0.777751 0.388875 0.921290i \(-0.372864\pi\)
0.388875 + 0.921290i \(0.372864\pi\)
\(468\) 9.54188 + 6.55445i 0.441074 + 0.302979i
\(469\) 5.01060i 0.231368i
\(470\) 2.48847 + 4.45978i 0.114785 + 0.205714i
\(471\) 38.1088i 1.75596i
\(472\) −0.589342 0.747001i −0.0271267 0.0343835i
\(473\) 4.86892 16.1536i 0.223873 0.742742i
\(474\) −5.46482 + 17.6073i −0.251007 + 0.808732i
\(475\) −0.165777 3.38100i −0.00760638 0.155131i
\(476\) −0.396918 + 0.577829i −0.0181927 + 0.0264847i
\(477\) 10.4069i 0.476497i
\(478\) 7.98713 25.7341i 0.365323 1.17705i
\(479\) 25.2030 1.15155 0.575777 0.817607i \(-0.304700\pi\)
0.575777 + 0.817607i \(0.304700\pi\)
\(480\) −16.6233 + 19.9444i −0.758747 + 0.910331i
\(481\) 25.4733i 1.16148i
\(482\) −35.2808 10.9501i −1.60700 0.498766i
\(483\) 10.2848i 0.467975i
\(484\) −8.22965 20.4028i −0.374075 0.927398i
\(485\) −5.24487 4.99400i −0.238157 0.226766i
\(486\) 4.99700 16.1001i 0.226668 0.730313i
\(487\) −20.6049 −0.933699 −0.466849 0.884337i \(-0.654611\pi\)
−0.466849 + 0.884337i \(0.654611\pi\)
\(488\) 23.2490 + 29.4685i 1.05243 + 1.33397i
\(489\) −8.77977 −0.397035
\(490\) −9.04585 16.2117i −0.408650 0.732372i
\(491\) 7.22916 0.326247 0.163124 0.986606i \(-0.447843\pi\)
0.163124 + 0.986606i \(0.447843\pi\)
\(492\) −11.6465 + 16.9549i −0.525065 + 0.764384i
\(493\) 2.37211i 0.106835i
\(494\) −1.35403 + 4.36260i −0.0609205 + 0.196283i
\(495\) −7.82080 + 4.44824i −0.351519 + 0.199934i
\(496\) 33.7708 12.9828i 1.51635 0.582943i
\(497\) 4.22426 0.189484
\(498\) 33.5304 + 10.4069i 1.50253 + 0.466343i
\(499\) 31.4143i 1.40630i −0.711042 0.703149i \(-0.751777\pi\)
0.711042 0.703149i \(-0.248223\pi\)
\(500\) 5.68361 + 21.6263i 0.254179 + 0.967157i
\(501\) 30.0188i 1.34114i
\(502\) 7.51913 + 2.33372i 0.335595 + 0.104159i
\(503\) 34.1581i 1.52303i 0.648145 + 0.761517i \(0.275545\pi\)
−0.648145 + 0.761517i \(0.724455\pi\)
\(504\) 2.25865 + 2.86288i 0.100608 + 0.127523i
\(505\) 17.9582 + 17.0992i 0.799129 + 0.760906i
\(506\) −12.3719 + 18.3308i −0.550000 + 0.814904i
\(507\) −20.0373 −0.889889
\(508\) −7.57789 + 11.0318i −0.336215 + 0.489457i
\(509\) −13.4604 −0.596623 −0.298312 0.954469i \(-0.596423\pi\)
−0.298312 + 0.954469i \(0.596423\pi\)
\(510\) 1.04318 + 1.86956i 0.0461927 + 0.0827854i
\(511\) 12.3473i 0.546213i
\(512\) 9.49628 + 20.5383i 0.419680 + 0.907672i
\(513\) 2.48302 0.109628
\(514\) 9.11586 + 2.82930i 0.402083 + 0.124795i
\(515\) 5.72021 6.00756i 0.252063 0.264725i
\(516\) −11.8239 + 17.2131i −0.520519 + 0.757765i
\(517\) 5.12844 + 1.54579i 0.225548 + 0.0679836i
\(518\) −2.37857 + 7.66363i −0.104508 + 0.336720i
\(519\) 13.5234 0.593611
\(520\) 2.80030 30.0439i 0.122801 1.31751i
\(521\) 7.25162 0.317699 0.158850 0.987303i \(-0.449222\pi\)
0.158850 + 0.987303i \(0.449222\pi\)
\(522\) −11.7847 3.65764i −0.515804 0.160091i
\(523\) 22.9670i 1.00428i −0.864787 0.502139i \(-0.832546\pi\)
0.864787 0.502139i \(-0.167454\pi\)
\(524\) 22.9340 + 15.7537i 1.00188 + 0.688202i
\(525\) 10.8934 0.534126i 0.475428 0.0233112i
\(526\) 5.15880 + 1.60114i 0.224935 + 0.0698132i
\(527\) 2.98335i 0.129957i
\(528\) 2.02043 + 27.1559i 0.0879281 + 1.18181i
\(529\) −0.768920 −0.0334313
\(530\) 23.6881 13.2175i 1.02894 0.574132i
\(531\) 0.408123i 0.0177110i
\(532\) −0.814717 + 1.18606i −0.0353225 + 0.0514220i
\(533\) 23.9053i 1.03545i
\(534\) 6.84459 22.0529i 0.296194 0.954322i
\(535\) −21.4510 20.4250i −0.927408 0.883049i
\(536\) 10.4699 8.26015i 0.452230 0.356784i
\(537\) 36.1699i 1.56085i
\(538\) 1.99620 6.43166i 0.0860625 0.277289i
\(539\) −18.6424 5.61909i −0.802985 0.242031i
\(540\) −16.0485 + 3.38716i −0.690616 + 0.145760i
\(541\) 0.465049i 0.0199940i −0.999950 0.00999702i \(-0.996818\pi\)
0.999950 0.00999702i \(-0.00318220\pi\)
\(542\) −6.19998 + 19.9760i −0.266312 + 0.858043i
\(543\) 0.474316 0.0203548
\(544\) 1.86173 0.123192i 0.0798212 0.00528181i
\(545\) 16.9088 + 16.1001i 0.724294 + 0.689651i
\(546\) −14.0561 4.36260i −0.601544 0.186702i
\(547\) 25.0251i 1.07000i 0.844853 + 0.534999i \(0.179688\pi\)
−0.844853 + 0.534999i \(0.820312\pi\)
\(548\) 0.781926 1.13832i 0.0334022 0.0486266i
\(549\) 16.1001i 0.687134i
\(550\) 20.0581 + 12.1521i 0.855280 + 0.518166i
\(551\) 4.86901i 0.207427i
\(552\) 21.4906 16.9549i 0.914699 0.721647i
\(553\) 6.74922i 0.287006i
\(554\) 12.4443 40.0948i 0.528707 1.70347i
\(555\) 17.7476 + 16.8987i 0.753342 + 0.717309i
\(556\) 26.6138 + 18.2814i 1.12868 + 0.775302i
\(557\) −9.49923 −0.402495 −0.201248 0.979540i \(-0.564500\pi\)
−0.201248 + 0.979540i \(0.564500\pi\)
\(558\) −14.8214 4.60014i −0.627440 0.194739i
\(559\) 24.2694i 1.02649i
\(560\) 3.64782 8.77721i 0.154149 0.370905i
\(561\) 2.14986 + 0.648000i 0.0907673 + 0.0273586i
\(562\) −24.6313 7.64485i −1.03901 0.322478i
\(563\) 6.75919i 0.284866i −0.989804 0.142433i \(-0.954507\pi\)
0.989804 0.142433i \(-0.0454925\pi\)
\(564\) −5.46482 3.75385i −0.230110 0.158066i
\(565\) 20.3012 + 19.3301i 0.854076 + 0.813225i
\(566\) −8.33549 2.58710i −0.350367 0.108744i
\(567\) 11.8679i 0.498406i
\(568\) −6.96383 8.82678i −0.292196 0.370363i
\(569\) 10.4415i 0.437729i 0.975755 + 0.218864i \(0.0702352\pi\)
−0.975755 + 0.218864i \(0.929765\pi\)
\(570\) 2.14124 + 3.83747i 0.0896865 + 0.160734i
\(571\) 9.93721 0.415859 0.207930 0.978144i \(-0.433327\pi\)
0.207930 + 0.978144i \(0.433327\pi\)
\(572\) −19.8045 24.6841i −0.828068 1.03209i
\(573\) 17.5749i 0.734203i
\(574\) 2.23216 7.19190i 0.0931686 0.300184i
\(575\) −1.15454 23.5466i −0.0481476 0.981963i
\(576\) 2.25865 9.43911i 0.0941105 0.393296i
\(577\) 27.4157i 1.14133i −0.821182 0.570666i \(-0.806685\pi\)
0.821182 0.570666i \(-0.193315\pi\)
\(578\) −7.08087 + 22.8142i −0.294525 + 0.948945i
\(579\) 11.0026 0.457251
\(580\) 6.64198 + 31.4699i 0.275793 + 1.30672i
\(581\) −12.8528 −0.533224
\(582\) 8.97909 + 2.78685i 0.372195 + 0.115519i
\(583\) 8.21043 27.2397i 0.340041 1.12815i
\(584\) −25.8003 + 20.3550i −1.06762 + 0.842296i
\(585\) −8.92488 + 9.37320i −0.368998 + 0.387534i
\(586\) −0.929631 + 2.99522i −0.0384027 + 0.123731i
\(587\) 9.60213 0.396322 0.198161 0.980169i \(-0.436503\pi\)
0.198161 + 0.980169i \(0.436503\pi\)
\(588\) 19.8652 + 13.6456i 0.819226 + 0.562737i
\(589\) 6.12365i 0.252321i
\(590\) 0.928970 0.518348i 0.0382451 0.0213400i
\(591\) −37.2848 −1.53369
\(592\) 19.9347 7.66363i 0.819309 0.314973i
\(593\) −18.8243 −0.773020 −0.386510 0.922285i \(-0.626319\pi\)
−0.386510 + 0.922285i \(0.626319\pi\)
\(594\) −9.62365 + 14.2588i −0.394863 + 0.585047i
\(595\) −0.567614 0.540465i −0.0232699 0.0221569i
\(596\) 8.87791 12.9244i 0.363653 0.529402i
\(597\) 4.10546i 0.168025i
\(598\) −9.42997 + 30.3829i −0.385620 + 1.24245i
\(599\) 28.5808i 1.16778i −0.811832 0.583891i \(-0.801530\pi\)
0.811832 0.583891i \(-0.198470\pi\)
\(600\) −19.0743 21.8818i −0.778704 0.893320i
\(601\) 13.7358i 0.560295i −0.959957 0.280148i \(-0.909617\pi\)
0.959957 0.280148i \(-0.0903834\pi\)
\(602\) 2.26616 7.30145i 0.0923618 0.297585i
\(603\) −5.72021 −0.232945
\(604\) −34.5199 23.7122i −1.40460 0.964836i
\(605\) 23.9801 5.47298i 0.974931 0.222508i
\(606\) −30.7440 9.54206i −1.24889 0.387620i
\(607\) 17.9019i 0.726617i −0.931669 0.363309i \(-0.881647\pi\)
0.931669 0.363309i \(-0.118353\pi\)
\(608\) 3.82141 0.252865i 0.154979 0.0102550i
\(609\) 15.6877 0.635698
\(610\) −36.6469 + 20.4483i −1.48379 + 0.827927i
\(611\) 7.70505 0.311713
\(612\) −0.659662 0.453130i −0.0266652 0.0183167i
\(613\) −23.6932 −0.956959 −0.478479 0.878099i \(-0.658812\pi\)
−0.478479 + 0.878099i \(0.658812\pi\)
\(614\) 19.3560 + 6.00756i 0.781146 + 0.242445i
\(615\) −16.6551 15.8585i −0.671600 0.639477i
\(616\) −3.65330 9.27545i −0.147196 0.373719i
\(617\) 20.8137i 0.837929i 0.908003 + 0.418964i \(0.137607\pi\)
−0.908003 + 0.418964i \(0.862393\pi\)
\(618\) −3.19211 + 10.2848i −0.128405 + 0.413715i
\(619\) 16.6557i 0.669451i 0.942316 + 0.334726i \(0.108644\pi\)
−0.942316 + 0.334726i \(0.891356\pi\)
\(620\) 8.35348 + 39.5790i 0.335484 + 1.58953i
\(621\) 17.2927 0.693932
\(622\) −40.2797 12.5017i −1.61507 0.501271i
\(623\) 8.45328i 0.338673i
\(624\) 14.0561 + 36.5627i 0.562693 + 1.46368i
\(625\) −24.8801 + 2.44572i −0.995203 + 0.0978287i
\(626\) −24.1046 7.48136i −0.963412 0.299015i
\(627\) 4.41283 + 1.33009i 0.176231 + 0.0531187i
\(628\) −21.0242 + 30.6068i −0.838957 + 1.22134i
\(629\) 1.76105i 0.0702177i
\(630\) −3.56027 + 1.98656i −0.141845 + 0.0791466i
\(631\) 9.20565i 0.366471i 0.983069 + 0.183236i \(0.0586571\pi\)
−0.983069 + 0.183236i \(0.941343\pi\)
\(632\) −14.1028 + 11.1263i −0.560979 + 0.442581i
\(633\) −35.6201 −1.41577
\(634\) 24.7094 + 7.66909i 0.981336 + 0.304579i
\(635\) −10.8368 10.3185i −0.430045 0.409475i
\(636\) −19.9386 + 29.0263i −0.790616 + 1.15097i
\(637\) −28.0086 −1.10974
\(638\) 27.9605 + 18.8713i 1.10697 + 0.747121i
\(639\) 4.82250i 0.190775i
\(640\) −24.3540 + 6.84725i −0.962675 + 0.270661i
\(641\) 39.7780 1.57114 0.785569 0.618774i \(-0.212370\pi\)
0.785569 + 0.618774i \(0.212370\pi\)
\(642\) 36.7236 + 11.3980i 1.44937 + 0.449842i
\(643\) −15.5035 −0.611398 −0.305699 0.952128i \(-0.598890\pi\)
−0.305699 + 0.952128i \(0.598890\pi\)
\(644\) −5.67401 + 8.26015i −0.223587 + 0.325496i
\(645\) −16.9088 16.1001i −0.665784 0.633939i
\(646\) 0.0936083 0.301601i 0.00368297 0.0118663i
\(647\) 1.82931 0.0719175 0.0359588 0.999353i \(-0.488552\pi\)
0.0359588 + 0.999353i \(0.488552\pi\)
\(648\) 24.7986 19.5647i 0.974181 0.768574i
\(649\) 0.321987 1.06825i 0.0126391 0.0419325i
\(650\) 32.6705 + 8.41011i 1.28144 + 0.329872i
\(651\) 19.7301 0.773283
\(652\) −7.05140 4.84370i −0.276154 0.189694i
\(653\) 7.88753i 0.308663i 0.988019 + 0.154332i \(0.0493224\pi\)
−0.988019 + 0.154332i \(0.950678\pi\)
\(654\) −28.9475 8.98448i −1.13194 0.351321i
\(655\) −21.4510 + 22.5286i −0.838160 + 0.880264i
\(656\) −18.7076 + 7.19190i −0.730409 + 0.280797i
\(657\) 14.0960 0.549936
\(658\) 2.31806 + 0.719460i 0.0903675 + 0.0280475i
\(659\) 20.0616 0.781490 0.390745 0.920499i \(-0.372217\pi\)
0.390745 + 0.920499i \(0.372217\pi\)
\(660\) −30.3358 2.57709i −1.18082 0.100313i
\(661\) 13.9367 0.542073 0.271037 0.962569i \(-0.412634\pi\)
0.271037 + 0.962569i \(0.412634\pi\)
\(662\) −29.5228 9.16304i −1.14744 0.356132i
\(663\) 3.22999 0.125442
\(664\) 21.1883 + 26.8565i 0.822265 + 1.04223i
\(665\) −1.16509 1.10936i −0.0451802 0.0430192i
\(666\) −8.74896 2.71543i −0.339015 0.105221i
\(667\) 33.9097i 1.31299i
\(668\) 16.5610 24.1094i 0.640766 0.932819i
\(669\) 52.5167 2.03041
\(670\) 7.26510 + 13.0203i 0.280675 + 0.503019i
\(671\) −12.7020 + 42.1414i −0.490357 + 1.62685i
\(672\) 0.814717 + 12.3124i 0.0314284 + 0.474960i
\(673\) 21.1457 0.815109 0.407554 0.913181i \(-0.366382\pi\)
0.407554 + 0.913181i \(0.366382\pi\)
\(674\) −9.26759 + 29.8597i −0.356974 + 1.15015i
\(675\) −0.898070 18.3160i −0.0345667 0.704984i
\(676\) −16.0928 11.0544i −0.618954 0.425168i
\(677\) 23.2804 0.894737 0.447368 0.894350i \(-0.352361\pi\)
0.447368 + 0.894350i \(0.352361\pi\)
\(678\) −34.7551 10.7870i −1.33476 0.414272i
\(679\) −3.44185 −0.132086
\(680\) −0.193594 + 2.07703i −0.00742400 + 0.0796505i
\(681\) 19.3944i 0.743195i
\(682\) 35.1653 + 23.7340i 1.34655 + 0.908821i
\(683\) −37.8077 −1.44667 −0.723336 0.690496i \(-0.757392\pi\)
−0.723336 + 0.690496i \(0.757392\pi\)
\(684\) −1.35403 0.930099i −0.0517725 0.0355632i
\(685\) 1.11820 + 1.06471i 0.0427241 + 0.0406805i
\(686\) −18.4738 5.73372i −0.705331 0.218915i
\(687\) −47.8108 −1.82409
\(688\) −18.9926 + 7.30145i −0.724084 + 0.278365i
\(689\) 40.9253i 1.55913i
\(690\) 14.9124 + 26.7256i 0.567705 + 1.01743i
\(691\) 28.9749i 1.10226i 0.834421 + 0.551128i \(0.185802\pi\)
−0.834421 + 0.551128i \(0.814198\pi\)
\(692\) 10.8612 + 7.46071i 0.412881 + 0.283614i
\(693\) −1.23401 + 4.09407i −0.0468762 + 0.155521i
\(694\) −7.63256 2.36893i −0.289728 0.0899233i
\(695\) −24.8929 + 26.1433i −0.944240 + 0.991672i
\(696\) −25.8617 32.7802i −0.980286 1.24253i
\(697\) 1.65265i 0.0625986i
\(698\) −1.44284 0.447816i −0.0546122 0.0169501i
\(699\) −25.3473 −0.958723
\(700\) 9.04363 + 5.58080i 0.341817 + 0.210934i
\(701\) 23.0642i 0.871123i 0.900159 + 0.435562i \(0.143450\pi\)
−0.900159 + 0.435562i \(0.856550\pi\)
\(702\) −7.33521 + 23.6336i −0.276850 + 0.891994i
\(703\) 3.61474i 0.136333i
\(704\) −13.3589 + 22.9247i −0.503482 + 0.864006i
\(705\) 5.11144 5.36821i 0.192508 0.202178i
\(706\) −18.7975 5.83419i −0.707451 0.219573i
\(707\) 11.7847 0.443211
\(708\) −0.781926 + 1.13832i −0.0293866 + 0.0427806i
\(709\) −28.0135 −1.05207 −0.526035 0.850463i \(-0.676322\pi\)
−0.526035 + 0.850463i \(0.676322\pi\)
\(710\) 10.9770 6.12494i 0.411958 0.229865i
\(711\) 7.70505 0.288962
\(712\) 17.6635 13.9355i 0.661968 0.522256i
\(713\) 42.6475i 1.59716i
\(714\) 0.971742 + 0.301601i 0.0363665 + 0.0112871i
\(715\) 30.7555 17.4929i 1.15019 0.654196i
\(716\) 19.9545 29.0496i 0.745736 1.08563i
\(717\) −39.1085 −1.46053
\(718\) 8.86236 28.5540i 0.330740 1.06563i
\(719\) 2.99823i 0.111815i −0.998436 0.0559075i \(-0.982195\pi\)
0.998436 0.0559075i \(-0.0178052\pi\)
\(720\) 10.0203 + 4.16443i 0.373433 + 0.155199i
\(721\) 3.94235i 0.146821i
\(722\) −7.77274 + 25.0434i −0.289272 + 0.932018i
\(723\) 53.6167i 1.99403i
\(724\) 0.380943 + 0.261675i 0.0141576 + 0.00972506i
\(725\) −35.9164 + 1.76105i −1.33390 + 0.0654038i
\(726\) −24.7413 + 20.1857i −0.918235 + 0.749162i
\(727\) 45.5805 1.69049 0.845244 0.534380i \(-0.179455\pi\)
0.845244 + 0.534380i \(0.179455\pi\)
\(728\) −8.88222 11.2584i −0.329197 0.417263i
\(729\) 9.03576 0.334658
\(730\) −17.9029 32.0852i −0.662618 1.18753i
\(731\) 1.67782i 0.0620565i
\(732\) 30.8462 44.9055i 1.14011 1.65976i
\(733\) 45.9346 1.69663 0.848317 0.529489i \(-0.177616\pi\)
0.848317 + 0.529489i \(0.177616\pi\)
\(734\) 8.12644 26.1830i 0.299953 0.966431i
\(735\) −18.5806 + 19.5140i −0.685357 + 0.719784i
\(736\) 26.6138 1.76105i 0.980997 0.0649132i
\(737\) 14.9725 + 4.51293i 0.551519 + 0.166236i
\(738\) 8.21043 + 2.54828i 0.302230 + 0.0938036i
\(739\) 5.52967 0.203412 0.101706 0.994814i \(-0.467570\pi\)
0.101706 + 0.994814i \(0.467570\pi\)
\(740\) 4.93099 + 23.3632i 0.181267 + 0.858847i
\(741\) 6.62990 0.243556
\(742\) 3.82141 12.3124i 0.140288 0.452002i
\(743\) 34.4520i 1.26392i −0.775001 0.631960i \(-0.782251\pi\)
0.775001 0.631960i \(-0.217749\pi\)
\(744\) −32.5257 41.2269i −1.19245 1.51145i
\(745\) 12.6959 + 12.0886i 0.465141 + 0.442893i
\(746\) −0.0410749 + 0.132341i −0.00150386 + 0.00484536i
\(747\) 14.6730i 0.536858i
\(748\) 1.36915 + 1.70649i 0.0500611 + 0.0623955i
\(749\) −14.0768 −0.514356
\(750\) 27.5327 17.1828i 1.00535 0.627428i
\(751\) 19.1741i 0.699674i 0.936811 + 0.349837i \(0.113763\pi\)
−0.936811 + 0.349837i \(0.886237\pi\)
\(752\) −2.31806 6.02976i −0.0845311 0.219883i
\(753\) 11.4269i 0.416420i
\(754\) 46.3439 + 14.3838i 1.68774 + 0.523827i
\(755\) 32.2878 33.9097i 1.17507 1.23410i
\(756\) −4.41359 + 6.42525i −0.160521 + 0.233684i
\(757\) 14.3941i 0.523161i 0.965182 + 0.261581i \(0.0842437\pi\)
−0.965182 + 0.261581i \(0.915756\pi\)
\(758\) 48.0172 + 14.9032i 1.74406 + 0.541308i
\(759\) 30.7326 + 9.26327i 1.11552 + 0.336235i
\(760\) −0.397373 + 4.26333i −0.0144142 + 0.154647i
\(761\) 9.79345i 0.355012i 0.984120 + 0.177506i \(0.0568030\pi\)
−0.984120 + 0.177506i \(0.943197\pi\)
\(762\) 18.5523 + 5.75811i 0.672080 + 0.208594i
\(763\) 11.0961 0.401706
\(764\) 9.69589 14.1152i 0.350785 0.510669i
\(765\) 0.617006 0.648000i 0.0223079 0.0234285i
\(766\) −5.56273 + 17.9228i −0.200990 + 0.647578i
\(767\) 1.60496i 0.0579517i
\(768\) 24.3842 21.9998i 0.879889 0.793848i
\(769\) 35.4945i 1.27996i 0.768390 + 0.639982i \(0.221058\pi\)
−0.768390 + 0.639982i \(0.778942\pi\)
\(770\) 10.8862 2.39092i 0.392311 0.0861628i
\(771\) 13.8535i 0.498921i
\(772\) 8.83662 + 6.06999i 0.318037 + 0.218464i
\(773\) 35.9272i 1.29221i −0.763247 0.646107i \(-0.776396\pi\)
0.763247 0.646107i \(-0.223604\pi\)
\(774\) 8.33549 + 2.58710i 0.299613 + 0.0929913i
\(775\) −45.1712 + 2.21483i −1.62260 + 0.0795592i
\(776\) 5.67401 + 7.19190i 0.203685 + 0.258174i
\(777\) 11.6465 0.417816
\(778\) 10.0666 32.4339i 0.360904 1.16281i
\(779\) 3.39224i 0.121540i
\(780\) −42.8510 + 9.04407i −1.53431 + 0.323830i
\(781\) 3.80468 12.6228i 0.136142 0.451678i
\(782\) 0.651925 2.10047i 0.0233128 0.0751125i
\(783\) 26.3770i 0.942639i
\(784\) 8.42640 + 21.9188i 0.300943 + 0.782814i
\(785\) −30.0657 28.6276i −1.07309 1.02176i
\(786\) 11.9705 38.5684i 0.426974 1.37569i
\(787\) 53.0554i 1.89122i 0.325299 + 0.945611i \(0.394535\pi\)
−0.325299 + 0.945611i \(0.605465\pi\)
\(788\) −29.9450 20.5696i −1.06675 0.732762i
\(789\) 7.83990i 0.279108i
\(790\) −9.78600 17.5382i −0.348170 0.623982i
\(791\) 13.3223 0.473686
\(792\) 10.5891 4.17069i 0.376266 0.148199i
\(793\) 63.3140i 2.24835i
\(794\) 5.67401 + 1.76105i 0.201363 + 0.0624973i
\(795\) −28.5132 27.1494i −1.01126 0.962890i
\(796\) 2.26494 3.29727i 0.0802785 0.116869i
\(797\) 41.4802i 1.46930i 0.678444 + 0.734652i \(0.262655\pi\)
−0.678444 + 0.734652i \(0.737345\pi\)
\(798\) 1.99461 + 0.619068i 0.0706083 + 0.0219148i
\(799\) −0.532675 −0.0188447
\(800\) −3.24741 28.0972i −0.114813 0.993387i
\(801\) −9.65044 −0.340982
\(802\) −4.86143 + 15.6633i −0.171663 + 0.553089i
\(803\) −36.8958 11.1209i −1.30202 0.392449i
\(804\) −15.9545 10.9594i −0.562673 0.386508i
\(805\) −8.11413 7.72603i −0.285986 0.272307i
\(806\) 58.2857 + 18.0902i 2.05302 + 0.637200i
\(807\) −9.77428 −0.344071
\(808\) −19.4276 24.6248i −0.683459 0.866296i
\(809\) 1.06825i 0.0375577i −0.999824 0.0187789i \(-0.994022\pi\)
0.999824 0.0187789i \(-0.00597785\pi\)
\(810\) 17.2079 + 30.8395i 0.604623 + 1.08359i
\(811\) 14.1129 0.495569 0.247785 0.968815i \(-0.420297\pi\)
0.247785 + 0.968815i \(0.420297\pi\)
\(812\) 12.5995 + 8.65473i 0.442154 + 0.303722i
\(813\) 30.3578 1.06469
\(814\) 20.7578 + 14.0100i 0.727562 + 0.491050i
\(815\) 6.59544 6.92675i 0.231028 0.242633i
\(816\) −0.971742 2.52770i −0.0340178 0.0884872i
\(817\) 3.44391i 0.120487i
\(818\) −33.5304 10.4069i −1.17236 0.363867i
\(819\) 6.15100i 0.214933i
\(820\) −4.62747 21.9251i −0.161598 0.765657i
\(821\) 29.1879i 1.01866i −0.860570 0.509332i \(-0.829893\pi\)
0.860570 0.509332i \(-0.170107\pi\)
\(822\) −1.91433 0.594152i −0.0667698 0.0207234i
\(823\) 20.2606 0.706241 0.353120 0.935578i \(-0.385121\pi\)
0.353120 + 0.935578i \(0.385121\pi\)
\(824\) −8.23772 + 6.49910i −0.286975 + 0.226407i
\(825\) 8.21538 33.0324i 0.286023 1.15004i
\(826\) 0.149863 0.482852i 0.00521441 0.0168006i
\(827\) 18.5380i 0.644629i 0.946633 + 0.322315i \(0.104461\pi\)
−0.946633 + 0.322315i \(0.895539\pi\)
\(828\) −9.42997 6.47757i −0.327714 0.225111i
\(829\) 2.86630 0.0995506 0.0497753 0.998760i \(-0.484149\pi\)
0.0497753 + 0.998760i \(0.484149\pi\)
\(830\) −33.3987 + 18.6359i −1.15929 + 0.646860i
\(831\) −60.9326 −2.11373
\(832\) −8.88222 + 37.1196i −0.307936 + 1.28689i
\(833\) 1.93633 0.0670898
\(834\) 13.8912 44.7567i 0.481013 1.54980i
\(835\) 23.6832 + 22.5504i 0.819590 + 0.780388i
\(836\) 2.81033 + 3.50276i 0.0971973 + 0.121145i
\(837\) 33.1738i 1.14666i
\(838\) 26.4679 + 8.21488i 0.914319 + 0.283778i
\(839\) 8.40169i 0.290059i −0.989427 0.145029i \(-0.953672\pi\)
0.989427 0.145029i \(-0.0463276\pi\)
\(840\) −13.7362 1.28031i −0.473945 0.0441751i
\(841\) −22.7235 −0.783568
\(842\) −3.60270 + 11.6077i −0.124157 + 0.400028i
\(843\) 37.4325i 1.28924i
\(844\) −28.6080 19.6512i −0.984728 0.676423i
\(845\) 15.0522 15.8083i 0.517812 0.543823i
\(846\) −0.821351 + 2.64635i −0.0282386 + 0.0909834i
\(847\) 6.45998 9.74254i 0.221968 0.334758i
\(848\) −32.0270 + 12.3124i −1.09981 + 0.422809i
\(849\) 12.6676i 0.434749i
\(850\) −2.25862 0.581419i −0.0774701 0.0199425i
\(851\) 25.1745i 0.862970i
\(852\) −9.23946 + 13.4507i −0.316539 + 0.460813i
\(853\) 21.1398 0.723815 0.361907 0.932214i \(-0.382126\pi\)
0.361907 + 0.932214i \(0.382126\pi\)
\(854\) −5.91196 + 19.0480i −0.202303 + 0.651809i
\(855\) 1.26647 1.33009i 0.0433124 0.0454881i
\(856\) 23.2062 + 29.4142i 0.793170 + 1.00536i
\(857\) −43.1494 −1.47396 −0.736978 0.675916i \(-0.763748\pi\)
−0.736978 + 0.675916i \(0.763748\pi\)
\(858\) −25.6961 + 38.0725i −0.877251 + 1.29977i
\(859\) 36.5279i 1.24632i −0.782096 0.623158i \(-0.785849\pi\)
0.782096 0.623158i \(-0.214151\pi\)
\(860\) −4.69796 22.2590i −0.160199 0.759027i
\(861\) −10.9296 −0.372481
\(862\) −7.11191 + 22.9142i −0.242232 + 0.780460i
\(863\) 39.7815 1.35418 0.677089 0.735902i \(-0.263241\pi\)
0.677089 + 0.735902i \(0.263241\pi\)
\(864\) 20.7018 1.36985i 0.704290 0.0466033i
\(865\) −10.1589 + 10.6692i −0.345413 + 0.362764i
\(866\) 5.10828 + 1.58546i 0.173586 + 0.0538762i
\(867\) 34.6710 1.17749
\(868\) 15.8461 + 10.8849i 0.537850 + 0.369456i
\(869\) −20.1677 6.07885i −0.684144 0.206211i
\(870\) 40.7654 22.7463i 1.38208 0.771172i
\(871\) 22.4949 0.762211
\(872\) −18.2923 23.1858i −0.619456 0.785171i
\(873\) 3.92929i 0.132986i
\(874\) 1.33815 4.31143i 0.0452634 0.145836i
\(875\) −7.76183 + 8.99554i −0.262398 + 0.304105i
\(876\) 39.3158 + 27.0066i 1.32836 + 0.912467i
\(877\) 8.83957 0.298491 0.149245 0.988800i \(-0.452316\pi\)
0.149245 + 0.988800i \(0.452316\pi\)
\(878\) 7.64282 24.6248i 0.257933 0.831045i
\(879\) 4.55188 0.153531
\(880\) −22.9422 18.8057i −0.773382 0.633940i
\(881\) 7.37829 0.248581 0.124290 0.992246i \(-0.460335\pi\)
0.124290 + 0.992246i \(0.460335\pi\)
\(882\) 2.98570 9.61975i 0.100534 0.323914i
\(883\) 51.9581 1.74853 0.874265 0.485449i \(-0.161344\pi\)
0.874265 + 0.485449i \(0.161344\pi\)
\(884\) 2.59414 + 1.78195i 0.0872504 + 0.0599335i
\(885\) −1.11820 1.06471i −0.0375877 0.0357899i
\(886\) 11.5683 37.2724i 0.388644 1.25219i
\(887\) 15.2608i 0.512406i −0.966623 0.256203i \(-0.917528\pi\)
0.966623 0.256203i \(-0.0824716\pi\)
\(888\) −19.1997 24.3359i −0.644299 0.816660i
\(889\) −7.11144 −0.238510
\(890\) 12.2568 + 21.9663i 0.410849 + 0.736313i
\(891\) 35.4633 + 10.6892i 1.18807 + 0.358100i
\(892\) 42.1784 + 28.9729i 1.41224 + 0.970084i
\(893\) −1.09337 −0.0365883
\(894\) −21.7351 6.74594i −0.726929 0.225618i
\(895\) 28.5361 + 27.1712i 0.953855 + 0.908232i
\(896\) −6.13827 + 10.3381i −0.205065 + 0.345370i
\(897\) 46.1732 1.54168
\(898\) 1.06093 3.41824i 0.0354035 0.114068i
\(899\) −65.0515 −2.16959
\(900\) −6.37116 + 10.3244i −0.212372 + 0.344147i
\(901\) 2.82930i 0.0942577i
\(902\) −19.4801 13.1476i −0.648617 0.437768i
\(903\) −11.0961 −0.369255
\(904\) −21.9622 27.8375i −0.730453 0.925862i
\(905\) −0.356310 + 0.374209i −0.0118441 + 0.0124391i
\(906\) −18.0179 + 58.0527i −0.598604 + 1.92867i
\(907\) 12.1435 0.403218 0.201609 0.979466i \(-0.435383\pi\)
0.201609 + 0.979466i \(0.435383\pi\)
\(908\) −10.6997 + 15.5765i −0.355081 + 0.516923i
\(909\) 13.4537i 0.446231i
\(910\) 14.0009 7.81223i 0.464125 0.258973i
\(911\) 30.3628i 1.00596i −0.864297 0.502982i \(-0.832236\pi\)
0.864297 0.502982i \(-0.167764\pi\)
\(912\) −1.99461 5.18838i −0.0660480 0.171804i
\(913\) −11.5762 + 38.4062i −0.383116 + 1.27106i
\(914\) −3.49429 + 11.2584i −0.115581 + 0.372396i
\(915\) 44.1117 + 42.0018i 1.45829 + 1.38854i
\(916\) −38.3988 26.3767i −1.26873 0.871509i
\(917\) 14.7840i 0.488209i
\(918\) 0.507107 1.63387i 0.0167370 0.0539258i
\(919\) −30.5315 −1.00714 −0.503571 0.863954i \(-0.667981\pi\)
−0.503571 + 0.863954i \(0.667981\pi\)
\(920\) −2.76746 + 29.6915i −0.0912405 + 0.978899i
\(921\) 29.4156i 0.969277i
\(922\) −26.1346 8.11144i −0.860698 0.267136i
\(923\) 18.9646i 0.624229i
\(924\) −11.2857 + 9.05473i −0.371272 + 0.297879i
\(925\) −26.6642 + 1.30740i −0.876714 + 0.0429870i
\(926\) −1.50065 + 4.83501i −0.0493144 + 0.158888i
\(927\) 4.50067 0.147821
\(928\) −2.68618 40.5948i −0.0881782 1.33259i
\(929\) 28.4854 0.934574 0.467287 0.884106i \(-0.345231\pi\)
0.467287 + 0.884106i \(0.345231\pi\)
\(930\) 51.2697 28.6075i 1.68120 0.938078i
\(931\) 3.97452 0.130260
\(932\) −20.3575 13.9838i −0.666832 0.458055i
\(933\) 61.2135i 2.00404i
\(934\) 7.04571 22.7009i 0.230543 0.742796i
\(935\) −2.12623 + 1.20934i −0.0695352 + 0.0395496i
\(936\) 12.8528 10.1401i 0.420107 0.331441i
\(937\) −20.6417 −0.674335 −0.337168 0.941445i \(-0.609469\pi\)
−0.337168 + 0.941445i \(0.609469\pi\)
\(938\) 6.76759 + 2.10047i 0.220970 + 0.0685827i
\(939\) 36.6320i 1.19544i
\(940\) 7.06680 1.49151i 0.230493 0.0486476i
\(941\) 35.0294i 1.14193i 0.820976 + 0.570963i \(0.193430\pi\)
−0.820976 + 0.570963i \(0.806570\pi\)
\(942\) 51.4718 + 15.9754i 1.67704 + 0.520506i
\(943\) 23.6249i 0.769333i
\(944\) −1.25600 + 0.482852i −0.0408792 + 0.0157155i
\(945\) −6.31167 6.00978i −0.205319 0.195498i
\(946\) −19.7768 13.3479i −0.643000 0.433977i
\(947\) 5.36691 0.174401 0.0872006 0.996191i \(-0.472208\pi\)
0.0872006 + 0.996191i \(0.472208\pi\)
\(948\) 21.4906 + 14.7622i 0.697981 + 0.479453i
\(949\) −55.4329 −1.79943
\(950\) −4.63606 1.19342i −0.150414 0.0387198i
\(951\) 37.5512i 1.21768i
\(952\) 0.614057 + 0.778328i 0.0199017 + 0.0252257i
\(953\) −6.71404 −0.217489 −0.108745 0.994070i \(-0.534683\pi\)
−0.108745 + 0.994070i \(0.534683\pi\)
\(954\) 14.0561 + 4.36260i 0.455082 + 0.141244i
\(955\) 13.8656 + 13.2024i 0.448682 + 0.427221i
\(956\) −31.4097 21.5757i −1.01586 0.697808i
\(957\) 14.1295 46.8774i 0.456743 1.51533i
\(958\) 10.5652 34.0405i 0.341346 1.09980i
\(959\) 0.733796 0.0236955
\(960\) 19.9694 + 30.8131i 0.644509 + 0.994489i
\(961\) −50.8138 −1.63916
\(962\) 34.4056 + 10.6785i 1.10928 + 0.344289i
\(963\) 16.0704i 0.517862i
\(964\) −29.5797 + 43.0618i −0.952699 + 1.38693i
\(965\) −8.26522 + 8.68041i −0.266067 + 0.279432i
\(966\) 13.8912 + 4.31143i 0.446942 + 0.138718i
\(967\) 26.5818i 0.854813i −0.904060 0.427406i \(-0.859427\pi\)
0.904060 0.427406i \(-0.140573\pi\)
\(968\) −31.0070 + 2.56249i −0.996603 + 0.0823615i
\(969\) −0.458347 −0.0147242
\(970\) −8.94384 + 4.99049i −0.287169 + 0.160235i
\(971\) 19.4034i 0.622685i 0.950298 + 0.311342i \(0.100779\pi\)
−0.950298 + 0.311342i \(0.899221\pi\)
\(972\) −19.6509 13.4984i −0.630301 0.432962i
\(973\) 17.1561i 0.549999i
\(974\) −8.63768 + 27.8301i −0.276769 + 0.891736i
\(975\) −2.39794 48.9056i −0.0767955 1.56623i
\(976\) 49.5478 19.0480i 1.58599 0.609712i
\(977\) 27.6874i 0.885797i 0.896572 + 0.442899i \(0.146050\pi\)
−0.896572 + 0.442899i \(0.853950\pi\)
\(978\) −3.68052 + 11.8584i −0.117690 + 0.379191i
\(979\) 25.2598 + 7.61366i 0.807305 + 0.243334i
\(980\) −25.6885 + 5.42178i −0.820590 + 0.173192i
\(981\) 12.6676i 0.404444i
\(982\) 3.03049 9.76409i 0.0967070 0.311585i
\(983\) −52.2271 −1.66579 −0.832893 0.553434i \(-0.813317\pi\)
−0.832893 + 0.553434i \(0.813317\pi\)
\(984\) 18.0179 + 22.8380i 0.574389 + 0.728048i
\(985\) 28.0086 29.4156i 0.892430 0.937259i
\(986\) −3.20390 0.994400i −0.102033 0.0316681i
\(987\) 3.52279i 0.112132i
\(988\) 5.32475 + 3.65764i 0.169403 + 0.116365i
\(989\) 23.9848i 0.762671i
\(990\) 2.72953 + 12.4279i 0.0867500 + 0.394985i
\(991\) 15.7678i 0.500880i 0.968132 + 0.250440i \(0.0805753\pi\)
−0.968132 + 0.250440i \(0.919425\pi\)
\(992\) −3.37835 51.0552i −0.107263 1.62100i
\(993\) 44.8662i 1.42379i
\(994\) 1.77083 5.70551i 0.0561672 0.180968i
\(995\) 3.23898 + 3.08406i 0.102683 + 0.0977711i
\(996\) 28.1121 40.9253i 0.890767 1.29677i
\(997\) 32.2179 1.02035 0.510176 0.860070i \(-0.329580\pi\)
0.510176 + 0.860070i \(0.329580\pi\)
\(998\) −42.4299 13.1690i −1.34309 0.416858i
\(999\) 19.5823i 0.619555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.g.b.219.13 yes 24
4.3 odd 2 inner 220.2.g.b.219.16 yes 24
5.4 even 2 inner 220.2.g.b.219.12 yes 24
11.10 odd 2 inner 220.2.g.b.219.11 yes 24
20.19 odd 2 inner 220.2.g.b.219.9 24
44.43 even 2 inner 220.2.g.b.219.10 yes 24
55.54 odd 2 inner 220.2.g.b.219.14 yes 24
220.219 even 2 inner 220.2.g.b.219.15 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.g.b.219.9 24 20.19 odd 2 inner
220.2.g.b.219.10 yes 24 44.43 even 2 inner
220.2.g.b.219.11 yes 24 11.10 odd 2 inner
220.2.g.b.219.12 yes 24 5.4 even 2 inner
220.2.g.b.219.13 yes 24 1.1 even 1 trivial
220.2.g.b.219.14 yes 24 55.54 odd 2 inner
220.2.g.b.219.15 yes 24 220.219 even 2 inner
220.2.g.b.219.16 yes 24 4.3 odd 2 inner