Properties

Label 220.2.d.d
Level $220$
Weight $2$
Character orbit 220.d
Analytic conductor $1.757$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(131,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.78003431400411136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{8} - 4x^{6} - 4x^{4} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{8} q^{2} - \beta_{4} q^{3} + \beta_{10} q^{4} + q^{5} + (\beta_{6} - \beta_{3}) q^{6} + ( - \beta_{8} - \beta_{7}) q^{7} + ( - \beta_{9} + \beta_{7}) q^{8} + (\beta_{11} + \beta_{10} - \beta_1 - 1) q^{9}+ \cdots + ( - 3 \beta_{11} - 2 \beta_{10} + \cdots - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{5} - 16 q^{9} - 14 q^{12} - 14 q^{14} + 4 q^{16} - 10 q^{22} + 12 q^{25} + 4 q^{26} + 38 q^{34} + 14 q^{36} + 4 q^{37} + 14 q^{38} - 14 q^{42} + 10 q^{44} - 16 q^{45} + 14 q^{48} - 8 q^{49}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - x^{8} - 4x^{6} - 4x^{4} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} + \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{11} + 7\nu^{7} + 12\nu^{5} + 20\nu^{3} + 64\nu^{2} - 48\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{11} - 9\nu^{7} + 12\nu^{5} + 4\nu^{3} + 64\nu^{2} - 16\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{10} + 7\nu^{6} - 4\nu^{4} + 4\nu^{2} - 16 ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} - 9\nu^{7} + 12\nu^{5} + 4\nu^{3} - 64\nu^{2} - 16\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{9} - 2\nu^{7} - 3\nu^{5} + 6\nu^{3} + 16\nu^{2} - 8\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{11} - 4\nu^{9} - \nu^{7} + 44\nu^{3} + 48\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{11} + \nu^{7} + 4\nu^{5} + 4\nu^{3} ) / 32 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{11} + 4\nu^{9} - \nu^{7} - 8\nu^{5} + 12\nu^{3} + 16\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -\nu^{10} + \nu^{6} + 4\nu^{4} + 4\nu^{2} ) / 16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{10} + 4\nu^{8} - \nu^{6} - 8\nu^{4} + 12\nu^{2} - 16 ) / 32 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{6} - \beta_{5} + \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{9} + 2\beta_{8} + \beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} - \beta_{3} + 4\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -2\beta_{9} + 2\beta_{8} + \beta_{7} - 3\beta_{6} + \beta_{5} + 3\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 4\beta_{10} + \beta_{5} + 8\beta_{4} - \beta_{3} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -2\beta_{9} - 2\beta_{8} + \beta_{7} - 3\beta_{6} - 3\beta_{5} - 5\beta_{3} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 16\beta_{11} + 8\beta_{10} + 5\beta_{5} - 5\beta_{3} + 4\beta _1 + 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 22\beta_{9} + 10\beta_{8} - 7\beta_{7} - 3\beta_{6} + \beta_{5} + 3\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -28\beta_{10} + \beta_{5} + 8\beta_{4} - \beta_{3} + 16\beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -2\beta_{9} - 50\beta_{8} + 9\beta_{7} - 11\beta_{6} + 5\beta_{5} + 3\beta_{3} + 13\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
131.1
−1.39199 + 0.249732i
−1.39199 0.249732i
−0.960471 + 1.03802i
−0.960471 1.03802i
−0.373981 + 1.36387i
−0.373981 1.36387i
0.373981 + 1.36387i
0.373981 1.36387i
0.960471 + 1.03802i
0.960471 1.03802i
1.39199 + 0.249732i
1.39199 0.249732i
−1.39199 0.249732i 2.27112i 1.87527 + 0.695249i 1.00000 0.567172 3.16138i 3.82872 −2.43673 1.43609i −2.15799 −1.39199 0.249732i
131.2 −1.39199 + 0.249732i 2.27112i 1.87527 0.695249i 1.00000 0.567172 + 3.16138i 3.82872 −2.43673 + 1.43609i −2.15799 −1.39199 + 0.249732i
131.3 −0.960471 1.03802i 0.450596i −0.154992 + 1.99399i 1.00000 −0.467730 + 0.432784i −1.25820 2.21867 1.75428i 2.79696 −0.960471 1.03802i
131.4 −0.960471 + 1.03802i 0.450596i −0.154992 1.99399i 1.00000 −0.467730 0.432784i −1.25820 2.21867 + 1.75428i 2.79696 −0.960471 + 1.03802i
131.5 −0.373981 1.36387i 2.76387i −1.72028 + 1.02012i 1.00000 3.76955 1.03364i −1.66068 2.03467 + 1.96472i −4.63897 −0.373981 1.36387i
131.6 −0.373981 + 1.36387i 2.76387i −1.72028 1.02012i 1.00000 3.76955 + 1.03364i −1.66068 2.03467 1.96472i −4.63897 −0.373981 + 1.36387i
131.7 0.373981 1.36387i 2.76387i −1.72028 1.02012i 1.00000 −3.76955 1.03364i 1.66068 −2.03467 + 1.96472i −4.63897 0.373981 1.36387i
131.8 0.373981 + 1.36387i 2.76387i −1.72028 + 1.02012i 1.00000 −3.76955 + 1.03364i 1.66068 −2.03467 1.96472i −4.63897 0.373981 + 1.36387i
131.9 0.960471 1.03802i 0.450596i −0.154992 1.99399i 1.00000 0.467730 + 0.432784i 1.25820 −2.21867 1.75428i 2.79696 0.960471 1.03802i
131.10 0.960471 + 1.03802i 0.450596i −0.154992 + 1.99399i 1.00000 0.467730 0.432784i 1.25820 −2.21867 + 1.75428i 2.79696 0.960471 + 1.03802i
131.11 1.39199 0.249732i 2.27112i 1.87527 0.695249i 1.00000 −0.567172 3.16138i −3.82872 2.43673 1.43609i −2.15799 1.39199 0.249732i
131.12 1.39199 + 0.249732i 2.27112i 1.87527 + 0.695249i 1.00000 −0.567172 + 3.16138i −3.82872 2.43673 + 1.43609i −2.15799 1.39199 + 0.249732i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 131.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.d.d 12
4.b odd 2 1 inner 220.2.d.d 12
8.b even 2 1 3520.2.f.k 12
8.d odd 2 1 3520.2.f.k 12
11.b odd 2 1 inner 220.2.d.d 12
44.c even 2 1 inner 220.2.d.d 12
88.b odd 2 1 3520.2.f.k 12
88.g even 2 1 3520.2.f.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.d.d 12 1.a even 1 1 trivial
220.2.d.d 12 4.b odd 2 1 inner
220.2.d.d 12 11.b odd 2 1 inner
220.2.d.d 12 44.c even 2 1 inner
3520.2.f.k 12 8.b even 2 1
3520.2.f.k 12 8.d odd 2 1
3520.2.f.k 12 88.b odd 2 1
3520.2.f.k 12 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\):

\( T_{3}^{6} + 13T_{3}^{4} + 42T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{7}^{6} - 19T_{7}^{4} + 68T_{7}^{2} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - T^{8} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( (T^{6} + 13 T^{4} + 42 T^{2} + 8)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{12} \) Copy content Toggle raw display
$7$ \( (T^{6} - 19 T^{4} + \cdots - 64)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + 10 T^{10} + \cdots + 1771561 \) Copy content Toggle raw display
$13$ \( (T^{6} + 42 T^{4} + \cdots + 2048)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 39 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 19 T^{4} + \cdots - 64)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} + 30 T^{4} + \cdots + 512)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 97 T^{4} + \cdots + 6272)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 51 T^{4} + \cdots + 128)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - T^{2} - 80 T - 212)^{4} \) Copy content Toggle raw display
$41$ \( (T^{6} + 176 T^{4} + \cdots + 32768)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} - 140 T^{4} + \cdots - 16384)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + 270 T^{4} + \cdots + 373248)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + T^{2} - 52 T + 124)^{4} \) Copy content Toggle raw display
$59$ \( (T^{6} + 84 T^{4} + \cdots + 512)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} + 65 T^{4} + \cdots + 8192)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} + 298 T^{4} + \cdots + 339488)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 187 T^{4} + \cdots + 6272)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 538 T^{4} + \cdots + 4767872)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 620 T^{4} + \cdots - 7929856)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 264 T^{4} + \cdots - 200704)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} - 9 T^{2} + \cdots + 664)^{4} \) Copy content Toggle raw display
$97$ \( (T^{3} + 2 T^{2} + \cdots - 392)^{4} \) Copy content Toggle raw display
show more
show less