Properties

Label 220.2.d.c.131.3
Level $220$
Weight $2$
Character 220.131
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [220,2,Mod(131,220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("220.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,12,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31116960000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{5} + 53x^{4} - 134x^{3} - 218x^{2} + 288x + 904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.3
Root \(-1.43649 - 1.82288i\) of defining polynomial
Character \(\chi\) \(=\) 220.131
Dual form 220.2.d.c.131.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 + 0.500000i) q^{2} -0.613616i q^{3} +(1.50000 - 1.32288i) q^{4} -1.00000 q^{5} +(0.306808 + 0.811738i) q^{6} +0.613616 q^{7} +(-1.32288 + 2.50000i) q^{8} +2.62348 q^{9} +(1.32288 - 0.500000i) q^{10} +(-0.613616 - 3.25937i) q^{11} +(-0.811738 - 0.920424i) q^{12} -2.00000i q^{13} +(-0.811738 + 0.306808i) q^{14} +0.613616i q^{15} +(0.500000 - 3.96863i) q^{16} -5.62348i q^{17} +(-3.47053 + 1.31174i) q^{18} +7.13235 q^{19} +(-1.50000 + 1.32288i) q^{20} -0.376525i q^{21} +(2.44142 + 4.00493i) q^{22} +6.51873i q^{23} +(1.53404 + 0.811738i) q^{24} +1.00000 q^{25} +(1.00000 + 2.64575i) q^{26} -3.45065i q^{27} +(0.920424 - 0.811738i) q^{28} -7.62348i q^{29} +(-0.306808 - 0.811738i) q^{30} -0.613616i q^{31} +(1.32288 + 5.50000i) q^{32} +(-2.00000 + 0.376525i) q^{33} +(2.81174 + 7.43916i) q^{34} -0.613616 q^{35} +(3.93521 - 3.47053i) q^{36} +5.62348 q^{37} +(-9.43521 + 3.56618i) q^{38} -1.22723 q^{39} +(1.32288 - 2.50000i) q^{40} +8.00000i q^{41} +(0.188262 + 0.498095i) q^{42} -6.51873 q^{43} +(-5.23216 - 4.07731i) q^{44} -2.62348 q^{45} +(-3.25937 - 8.62348i) q^{46} +6.51873i q^{47} +(-2.43521 - 0.306808i) q^{48} -6.62348 q^{49} +(-1.32288 + 0.500000i) q^{50} -3.45065 q^{51} +(-2.64575 - 3.00000i) q^{52} -9.62348 q^{53} +(1.72533 + 4.56479i) q^{54} +(0.613616 + 3.25937i) q^{55} +(-0.811738 + 1.53404i) q^{56} -4.37652i q^{57} +(3.81174 + 10.0849i) q^{58} +4.06427i q^{59} +(0.811738 + 0.920424i) q^{60} +11.6235i q^{61} +(0.306808 + 0.811738i) q^{62} +1.60981 q^{63} +(-4.50000 - 6.61438i) q^{64} +2.00000i q^{65} +(2.45749 - 1.49810i) q^{66} -7.74597i q^{67} +(-7.43916 - 8.43521i) q^{68} +4.00000 q^{69} +(0.811738 - 0.306808i) q^{70} -1.84085i q^{71} +(-3.47053 + 6.55869i) q^{72} +2.00000i q^{73} +(-7.43916 + 2.81174i) q^{74} -0.613616i q^{75} +(10.6985 - 9.43521i) q^{76} +(-0.376525 - 2.00000i) q^{77} +(1.62348 - 0.613616i) q^{78} -2.45446 q^{79} +(-0.500000 + 3.96863i) q^{80} +5.75305 q^{81} +(-4.00000 - 10.5830i) q^{82} +7.74597 q^{83} +(-0.498095 - 0.564787i) q^{84} +5.62348i q^{85} +(8.62348 - 3.25937i) q^{86} -4.67789 q^{87} +(8.96016 + 2.77770i) q^{88} +1.62348 q^{89} +(3.47053 - 1.31174i) q^{90} -1.22723i q^{91} +(8.62348 + 9.77810i) q^{92} -0.376525 q^{93} +(-3.25937 - 8.62348i) q^{94} -7.13235 q^{95} +(3.37489 - 0.811738i) q^{96} +2.00000 q^{97} +(8.76203 - 3.31174i) q^{98} +(-1.60981 - 8.55087i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{4} - 8 q^{5} - 20 q^{9} + 14 q^{12} + 14 q^{14} + 4 q^{16} - 12 q^{20} - 14 q^{22} + 8 q^{25} + 8 q^{26} - 16 q^{33} + 2 q^{34} - 30 q^{36} + 4 q^{37} - 14 q^{38} + 22 q^{42} - 14 q^{44} + 20 q^{45}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32288 + 0.500000i −0.935414 + 0.353553i
\(3\) 0.613616i 0.354271i −0.984186 0.177136i \(-0.943317\pi\)
0.984186 0.177136i \(-0.0566831\pi\)
\(4\) 1.50000 1.32288i 0.750000 0.661438i
\(5\) −1.00000 −0.447214
\(6\) 0.306808 + 0.811738i 0.125254 + 0.331391i
\(7\) 0.613616 0.231925 0.115963 0.993254i \(-0.463005\pi\)
0.115963 + 0.993254i \(0.463005\pi\)
\(8\) −1.32288 + 2.50000i −0.467707 + 0.883883i
\(9\) 2.62348 0.874492
\(10\) 1.32288 0.500000i 0.418330 0.158114i
\(11\) −0.613616 3.25937i −0.185012 0.982736i
\(12\) −0.811738 0.920424i −0.234328 0.265704i
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −0.811738 + 0.306808i −0.216946 + 0.0819979i
\(15\) 0.613616i 0.158435i
\(16\) 0.500000 3.96863i 0.125000 0.992157i
\(17\) 5.62348i 1.36389i −0.731402 0.681947i \(-0.761134\pi\)
0.731402 0.681947i \(-0.238866\pi\)
\(18\) −3.47053 + 1.31174i −0.818012 + 0.309180i
\(19\) 7.13235 1.63627 0.818137 0.575024i \(-0.195007\pi\)
0.818137 + 0.575024i \(0.195007\pi\)
\(20\) −1.50000 + 1.32288i −0.335410 + 0.295804i
\(21\) 0.376525i 0.0821644i
\(22\) 2.44142 + 4.00493i 0.520513 + 0.853854i
\(23\) 6.51873i 1.35925i 0.733560 + 0.679625i \(0.237858\pi\)
−0.733560 + 0.679625i \(0.762142\pi\)
\(24\) 1.53404 + 0.811738i 0.313135 + 0.165695i
\(25\) 1.00000 0.200000
\(26\) 1.00000 + 2.64575i 0.196116 + 0.518875i
\(27\) 3.45065i 0.664079i
\(28\) 0.920424 0.811738i 0.173944 0.153404i
\(29\) 7.62348i 1.41564i −0.706391 0.707822i \(-0.749678\pi\)
0.706391 0.707822i \(-0.250322\pi\)
\(30\) −0.306808 0.811738i −0.0560152 0.148202i
\(31\) 0.613616i 0.110209i −0.998481 0.0551043i \(-0.982451\pi\)
0.998481 0.0551043i \(-0.0175491\pi\)
\(32\) 1.32288 + 5.50000i 0.233854 + 0.972272i
\(33\) −2.00000 + 0.376525i −0.348155 + 0.0655445i
\(34\) 2.81174 + 7.43916i 0.482209 + 1.27581i
\(35\) −0.613616 −0.103720
\(36\) 3.93521 3.47053i 0.655869 0.578422i
\(37\) 5.62348 0.924494 0.462247 0.886751i \(-0.347043\pi\)
0.462247 + 0.886751i \(0.347043\pi\)
\(38\) −9.43521 + 3.56618i −1.53059 + 0.578510i
\(39\) −1.22723 −0.196514
\(40\) 1.32288 2.50000i 0.209165 0.395285i
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0.188262 + 0.498095i 0.0290495 + 0.0768578i
\(43\) −6.51873 −0.994098 −0.497049 0.867723i \(-0.665583\pi\)
−0.497049 + 0.867723i \(0.665583\pi\)
\(44\) −5.23216 4.07731i −0.788778 0.614678i
\(45\) −2.62348 −0.391085
\(46\) −3.25937 8.62348i −0.480567 1.27146i
\(47\) 6.51873i 0.950855i 0.879755 + 0.475428i \(0.157707\pi\)
−0.879755 + 0.475428i \(0.842293\pi\)
\(48\) −2.43521 0.306808i −0.351493 0.0442839i
\(49\) −6.62348 −0.946211
\(50\) −1.32288 + 0.500000i −0.187083 + 0.0707107i
\(51\) −3.45065 −0.483188
\(52\) −2.64575 3.00000i −0.366900 0.416025i
\(53\) −9.62348 −1.32189 −0.660943 0.750436i \(-0.729844\pi\)
−0.660943 + 0.750436i \(0.729844\pi\)
\(54\) 1.72533 + 4.56479i 0.234787 + 0.621189i
\(55\) 0.613616 + 3.25937i 0.0827400 + 0.439493i
\(56\) −0.811738 + 1.53404i −0.108473 + 0.204995i
\(57\) 4.37652i 0.579685i
\(58\) 3.81174 + 10.0849i 0.500506 + 1.32421i
\(59\) 4.06427i 0.529123i 0.964369 + 0.264561i \(0.0852272\pi\)
−0.964369 + 0.264561i \(0.914773\pi\)
\(60\) 0.811738 + 0.920424i 0.104795 + 0.118826i
\(61\) 11.6235i 1.48823i 0.668050 + 0.744117i \(0.267129\pi\)
−0.668050 + 0.744117i \(0.732871\pi\)
\(62\) 0.306808 + 0.811738i 0.0389647 + 0.103091i
\(63\) 1.60981 0.202817
\(64\) −4.50000 6.61438i −0.562500 0.826797i
\(65\) 2.00000i 0.248069i
\(66\) 2.45749 1.49810i 0.302496 0.184403i
\(67\) 7.74597i 0.946320i −0.880976 0.473160i \(-0.843113\pi\)
0.880976 0.473160i \(-0.156887\pi\)
\(68\) −7.43916 8.43521i −0.902131 1.02292i
\(69\) 4.00000 0.481543
\(70\) 0.811738 0.306808i 0.0970212 0.0366706i
\(71\) 1.84085i 0.218468i −0.994016 0.109234i \(-0.965160\pi\)
0.994016 0.109234i \(-0.0348399\pi\)
\(72\) −3.47053 + 6.55869i −0.409006 + 0.772949i
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) −7.43916 + 2.81174i −0.864785 + 0.326858i
\(75\) 0.613616i 0.0708543i
\(76\) 10.6985 9.43521i 1.22721 1.08229i
\(77\) −0.376525 2.00000i −0.0429090 0.227921i
\(78\) 1.62348 0.613616i 0.183822 0.0694783i
\(79\) −2.45446 −0.276149 −0.138074 0.990422i \(-0.544091\pi\)
−0.138074 + 0.990422i \(0.544091\pi\)
\(80\) −0.500000 + 3.96863i −0.0559017 + 0.443706i
\(81\) 5.75305 0.639228
\(82\) −4.00000 10.5830i −0.441726 1.16870i
\(83\) 7.74597 0.850230 0.425115 0.905139i \(-0.360234\pi\)
0.425115 + 0.905139i \(0.360234\pi\)
\(84\) −0.498095 0.564787i −0.0543466 0.0616233i
\(85\) 5.62348i 0.609952i
\(86\) 8.62348 3.25937i 0.929893 0.351467i
\(87\) −4.67789 −0.501522
\(88\) 8.96016 + 2.77770i 0.955156 + 0.296104i
\(89\) 1.62348 0.172088 0.0860440 0.996291i \(-0.472577\pi\)
0.0860440 + 0.996291i \(0.472577\pi\)
\(90\) 3.47053 1.31174i 0.365826 0.138269i
\(91\) 1.22723i 0.128649i
\(92\) 8.62348 + 9.77810i 0.899059 + 1.01944i
\(93\) −0.376525 −0.0390438
\(94\) −3.25937 8.62348i −0.336178 0.889444i
\(95\) −7.13235 −0.731764
\(96\) 3.37489 0.811738i 0.344448 0.0828476i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 8.76203 3.31174i 0.885099 0.334536i
\(99\) −1.60981 8.55087i −0.161792 0.859395i
\(100\) 1.50000 1.32288i 0.150000 0.132288i
\(101\) 7.24695i 0.721099i 0.932740 + 0.360549i \(0.117411\pi\)
−0.932740 + 0.360549i \(0.882589\pi\)
\(102\) 4.56479 1.72533i 0.451981 0.170833i
\(103\) 6.51873i 0.642310i 0.947027 + 0.321155i \(0.104071\pi\)
−0.947027 + 0.321155i \(0.895929\pi\)
\(104\) 5.00000 + 2.64575i 0.490290 + 0.259437i
\(105\) 0.376525i 0.0367450i
\(106\) 12.7307 4.81174i 1.23651 0.467357i
\(107\) 15.8745 1.53465 0.767323 0.641260i \(-0.221588\pi\)
0.767323 + 0.641260i \(0.221588\pi\)
\(108\) −4.56479 5.17598i −0.439247 0.498059i
\(109\) 11.2470i 1.07726i 0.842542 + 0.538631i \(0.181058\pi\)
−0.842542 + 0.538631i \(0.818942\pi\)
\(110\) −2.44142 4.00493i −0.232780 0.381855i
\(111\) 3.45065i 0.327522i
\(112\) 0.306808 2.43521i 0.0289906 0.230106i
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 2.18826 + 5.78960i 0.204950 + 0.542246i
\(115\) 6.51873i 0.607875i
\(116\) −10.0849 11.4352i −0.936360 1.06173i
\(117\) 5.24695i 0.485081i
\(118\) −2.03214 5.37652i −0.187073 0.494949i
\(119\) 3.45065i 0.316321i
\(120\) −1.53404 0.811738i −0.140038 0.0741012i
\(121\) −10.2470 + 4.00000i −0.931541 + 0.363636i
\(122\) −5.81174 15.3764i −0.526170 1.39211i
\(123\) 4.90893 0.442623
\(124\) −0.811738 0.920424i −0.0728962 0.0826565i
\(125\) −1.00000 −0.0894427
\(126\) −2.12957 + 0.804903i −0.189718 + 0.0717065i
\(127\) 7.74597 0.687343 0.343672 0.939090i \(-0.388329\pi\)
0.343672 + 0.939090i \(0.388329\pi\)
\(128\) 9.26013 + 6.50000i 0.818488 + 0.574524i
\(129\) 4.00000i 0.352180i
\(130\) −1.00000 2.64575i −0.0877058 0.232048i
\(131\) −17.7154 −1.54780 −0.773899 0.633309i \(-0.781696\pi\)
−0.773899 + 0.633309i \(0.781696\pi\)
\(132\) −2.50190 + 3.21054i −0.217763 + 0.279441i
\(133\) 4.37652 0.379493
\(134\) 3.87298 + 10.2470i 0.334575 + 0.885202i
\(135\) 3.45065i 0.296985i
\(136\) 14.0587 + 7.43916i 1.20552 + 0.637903i
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −5.29150 + 2.00000i −0.450443 + 0.170251i
\(139\) −14.2647 −1.20992 −0.604958 0.796257i \(-0.706810\pi\)
−0.604958 + 0.796257i \(0.706810\pi\)
\(140\) −0.920424 + 0.811738i −0.0777900 + 0.0686044i
\(141\) 4.00000 0.336861
\(142\) 0.920424 + 2.43521i 0.0772403 + 0.204359i
\(143\) −6.51873 + 1.22723i −0.545124 + 0.102626i
\(144\) 1.31174 10.4116i 0.109311 0.867633i
\(145\) 7.62348i 0.633095i
\(146\) −1.00000 2.64575i −0.0827606 0.218964i
\(147\) 4.06427i 0.335215i
\(148\) 8.43521 7.43916i 0.693370 0.611495i
\(149\) 8.37652i 0.686232i −0.939293 0.343116i \(-0.888518\pi\)
0.939293 0.343116i \(-0.111482\pi\)
\(150\) 0.306808 + 0.811738i 0.0250508 + 0.0662781i
\(151\) −1.22723 −0.0998707 −0.0499354 0.998752i \(-0.515902\pi\)
−0.0499354 + 0.998752i \(0.515902\pi\)
\(152\) −9.43521 + 17.8309i −0.765297 + 1.44628i
\(153\) 14.7530i 1.19271i
\(154\) 1.49810 + 2.45749i 0.120720 + 0.198030i
\(155\) 0.613616i 0.0492868i
\(156\) −1.84085 + 1.62348i −0.147386 + 0.129982i
\(157\) −1.62348 −0.129567 −0.0647837 0.997899i \(-0.520636\pi\)
−0.0647837 + 0.997899i \(0.520636\pi\)
\(158\) 3.24695 1.22723i 0.258314 0.0976333i
\(159\) 5.90512i 0.468306i
\(160\) −1.32288 5.50000i −0.104583 0.434813i
\(161\) 4.00000i 0.315244i
\(162\) −7.61057 + 2.87652i −0.597943 + 0.226001i
\(163\) 21.7796i 1.70591i −0.521983 0.852956i \(-0.674807\pi\)
0.521983 0.852956i \(-0.325193\pi\)
\(164\) 10.5830 + 12.0000i 0.826394 + 0.937043i
\(165\) 2.00000 0.376525i 0.155700 0.0293124i
\(166\) −10.2470 + 3.87298i −0.795318 + 0.300602i
\(167\) −1.84085 −0.142449 −0.0712245 0.997460i \(-0.522691\pi\)
−0.0712245 + 0.997460i \(0.522691\pi\)
\(168\) 0.941312 + 0.498095i 0.0726238 + 0.0384289i
\(169\) 9.00000 0.692308
\(170\) −2.81174 7.43916i −0.215650 0.570557i
\(171\) 18.7115 1.43091
\(172\) −9.77810 + 8.62348i −0.745573 + 0.657534i
\(173\) 1.24695i 0.0948039i −0.998876 0.0474020i \(-0.984906\pi\)
0.998876 0.0474020i \(-0.0150942\pi\)
\(174\) 6.18826 2.33894i 0.469131 0.177315i
\(175\) 0.613616 0.0463850
\(176\) −13.2420 + 0.805529i −0.998155 + 0.0607191i
\(177\) 2.49390 0.187453
\(178\) −2.14766 + 0.811738i −0.160974 + 0.0608423i
\(179\) 1.60981i 0.120323i −0.998189 0.0601613i \(-0.980838\pi\)
0.998189 0.0601613i \(-0.0191615\pi\)
\(180\) −3.93521 + 3.47053i −0.293313 + 0.258678i
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0.613616 + 1.62348i 0.0454842 + 0.120340i
\(183\) 7.13235 0.527239
\(184\) −16.2968 8.62348i −1.20142 0.635731i
\(185\) −5.62348 −0.413446
\(186\) 0.498095 0.188262i 0.0365221 0.0138041i
\(187\) −18.3290 + 3.45065i −1.34035 + 0.252337i
\(188\) 8.62348 + 9.77810i 0.628932 + 0.713141i
\(189\) 2.11738i 0.154017i
\(190\) 9.43521 3.56618i 0.684502 0.258718i
\(191\) 15.8745i 1.14864i 0.818631 + 0.574320i \(0.194733\pi\)
−0.818631 + 0.574320i \(0.805267\pi\)
\(192\) −4.05869 + 2.76127i −0.292911 + 0.199278i
\(193\) 13.6235i 0.980639i 0.871543 + 0.490320i \(0.163120\pi\)
−0.871543 + 0.490320i \(0.836880\pi\)
\(194\) −2.64575 + 1.00000i −0.189954 + 0.0717958i
\(195\) 1.22723 0.0878839
\(196\) −9.93521 + 8.76203i −0.709658 + 0.625860i
\(197\) 20.4939i 1.46013i −0.683378 0.730065i \(-0.739490\pi\)
0.683378 0.730065i \(-0.260510\pi\)
\(198\) 6.40501 + 10.5068i 0.455184 + 0.746688i
\(199\) 9.96939i 0.706711i 0.935489 + 0.353356i \(0.114959\pi\)
−0.935489 + 0.353356i \(0.885041\pi\)
\(200\) −1.32288 + 2.50000i −0.0935414 + 0.176777i
\(201\) −4.75305 −0.335254
\(202\) −3.62348 9.58681i −0.254947 0.674526i
\(203\) 4.67789i 0.328323i
\(204\) −5.17598 + 4.56479i −0.362391 + 0.319599i
\(205\) 8.00000i 0.558744i
\(206\) −3.25937 8.62348i −0.227091 0.600826i
\(207\) 17.1017i 1.18865i
\(208\) −7.93725 1.00000i −0.550350 0.0693375i
\(209\) −4.37652 23.2470i −0.302731 1.60803i
\(210\) −0.188262 0.498095i −0.0129913 0.0343718i
\(211\) 5.90512 0.406525 0.203263 0.979124i \(-0.434845\pi\)
0.203263 + 0.979124i \(0.434845\pi\)
\(212\) −14.4352 + 12.7307i −0.991415 + 0.874345i
\(213\) −1.12957 −0.0773971
\(214\) −21.0000 + 7.93725i −1.43553 + 0.542580i
\(215\) 6.51873 0.444574
\(216\) 8.62664 + 4.56479i 0.586968 + 0.310594i
\(217\) 0.376525i 0.0255602i
\(218\) −5.62348 14.8783i −0.380870 1.00769i
\(219\) 1.22723 0.0829287
\(220\) 5.23216 + 4.07731i 0.352752 + 0.274892i
\(221\) −11.2470 −0.756552
\(222\) 1.72533 + 4.56479i 0.115796 + 0.306368i
\(223\) 18.3290i 1.22740i 0.789540 + 0.613699i \(0.210319\pi\)
−0.789540 + 0.613699i \(0.789681\pi\)
\(224\) 0.811738 + 3.37489i 0.0542365 + 0.225494i
\(225\) 2.62348 0.174898
\(226\) −13.2288 + 5.00000i −0.879964 + 0.332595i
\(227\) 18.3290 1.21654 0.608268 0.793731i \(-0.291864\pi\)
0.608268 + 0.793731i \(0.291864\pi\)
\(228\) −5.78960 6.56479i −0.383425 0.434764i
\(229\) −16.4939 −1.08995 −0.544974 0.838453i \(-0.683460\pi\)
−0.544974 + 0.838453i \(0.683460\pi\)
\(230\) 3.25937 + 8.62348i 0.214916 + 0.568615i
\(231\) −1.22723 + 0.231042i −0.0807459 + 0.0152014i
\(232\) 19.0587 + 10.0849i 1.25126 + 0.662107i
\(233\) 9.62348i 0.630455i −0.949016 0.315227i \(-0.897919\pi\)
0.949016 0.315227i \(-0.102081\pi\)
\(234\) 2.62348 + 6.94106i 0.171502 + 0.453752i
\(235\) 6.51873i 0.425235i
\(236\) 5.37652 + 6.09641i 0.349982 + 0.396842i
\(237\) 1.50610i 0.0978316i
\(238\) 1.72533 + 4.56479i 0.111836 + 0.295891i
\(239\) 26.0749 1.68665 0.843324 0.537406i \(-0.180596\pi\)
0.843324 + 0.537406i \(0.180596\pi\)
\(240\) 2.43521 + 0.306808i 0.157192 + 0.0198044i
\(241\) 7.24695i 0.466817i −0.972379 0.233409i \(-0.925012\pi\)
0.972379 0.233409i \(-0.0749880\pi\)
\(242\) 11.5554 10.4150i 0.742812 0.669500i
\(243\) 13.8821i 0.890539i
\(244\) 15.3764 + 17.4352i 0.984374 + 1.11618i
\(245\) 6.62348 0.423158
\(246\) −6.49390 + 2.45446i −0.414036 + 0.156491i
\(247\) 14.2647i 0.907641i
\(248\) 1.53404 + 0.811738i 0.0974116 + 0.0515454i
\(249\) 4.75305i 0.301212i
\(250\) 1.32288 0.500000i 0.0836660 0.0316228i
\(251\) 18.3290i 1.15691i 0.815713 + 0.578457i \(0.196345\pi\)
−0.815713 + 0.578457i \(0.803655\pi\)
\(252\) 2.41471 2.12957i 0.152112 0.134151i
\(253\) 21.2470 4.00000i 1.33578 0.251478i
\(254\) −10.2470 + 3.87298i −0.642951 + 0.243013i
\(255\) 3.45065 0.216088
\(256\) −15.5000 3.96863i −0.968750 0.248039i
\(257\) 2.75305 0.171730 0.0858652 0.996307i \(-0.472635\pi\)
0.0858652 + 0.996307i \(0.472635\pi\)
\(258\) −2.00000 5.29150i −0.124515 0.329435i
\(259\) 3.45065 0.214413
\(260\) 2.64575 + 3.00000i 0.164083 + 0.186052i
\(261\) 20.0000i 1.23797i
\(262\) 23.4352 8.85768i 1.44783 0.547229i
\(263\) −21.7796 −1.34299 −0.671495 0.741009i \(-0.734347\pi\)
−0.671495 + 0.741009i \(0.734347\pi\)
\(264\) 1.70444 5.49810i 0.104901 0.338384i
\(265\) 9.62348 0.591165
\(266\) −5.78960 + 2.18826i −0.354983 + 0.134171i
\(267\) 0.996190i 0.0609659i
\(268\) −10.2470 11.6190i −0.625932 0.709740i
\(269\) 20.4939 1.24954 0.624768 0.780811i \(-0.285194\pi\)
0.624768 + 0.780811i \(0.285194\pi\)
\(270\) −1.72533 4.56479i −0.105000 0.277804i
\(271\) −22.3932 −1.36029 −0.680146 0.733076i \(-0.738084\pi\)
−0.680146 + 0.733076i \(0.738084\pi\)
\(272\) −22.3175 2.81174i −1.35320 0.170487i
\(273\) −0.753049 −0.0455766
\(274\) 7.93725 3.00000i 0.479507 0.181237i
\(275\) −0.613616 3.25937i −0.0370024 0.196547i
\(276\) 6.00000 5.29150i 0.361158 0.318511i
\(277\) 16.4939i 0.991022i 0.868602 + 0.495511i \(0.165019\pi\)
−0.868602 + 0.495511i \(0.834981\pi\)
\(278\) 18.8704 7.13235i 1.13177 0.427770i
\(279\) 1.60981i 0.0963766i
\(280\) 0.811738 1.53404i 0.0485106 0.0916764i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −5.29150 + 2.00000i −0.315104 + 0.119098i
\(283\) 10.2004 0.606353 0.303176 0.952934i \(-0.401953\pi\)
0.303176 + 0.952934i \(0.401953\pi\)
\(284\) −2.43521 2.76127i −0.144503 0.163851i
\(285\) 4.37652i 0.259243i
\(286\) 8.00986 4.88284i 0.473633 0.288729i
\(287\) 4.90893i 0.289765i
\(288\) 3.47053 + 14.4291i 0.204503 + 0.850244i
\(289\) −14.6235 −0.860204
\(290\) −3.81174 10.0849i −0.223833 0.592206i
\(291\) 1.22723i 0.0719416i
\(292\) 2.64575 + 3.00000i 0.154831 + 0.175562i
\(293\) 28.4939i 1.66463i 0.554302 + 0.832316i \(0.312985\pi\)
−0.554302 + 0.832316i \(0.687015\pi\)
\(294\) −2.03214 5.37652i −0.118517 0.313565i
\(295\) 4.06427i 0.236631i
\(296\) −7.43916 + 14.0587i −0.432392 + 0.817145i
\(297\) −11.2470 + 2.11738i −0.652614 + 0.122863i
\(298\) 4.18826 + 11.0811i 0.242620 + 0.641911i
\(299\) 13.0375 0.753976
\(300\) −0.811738 0.920424i −0.0468657 0.0531407i
\(301\) −4.00000 −0.230556
\(302\) 1.62348 0.613616i 0.0934205 0.0353096i
\(303\) 4.44685 0.255465
\(304\) 3.56618 28.3056i 0.204534 1.62344i
\(305\) 11.6235i 0.665558i
\(306\) 7.37652 + 19.5164i 0.421688 + 1.11568i
\(307\) −2.83704 −0.161918 −0.0809592 0.996717i \(-0.525798\pi\)
−0.0809592 + 0.996717i \(0.525798\pi\)
\(308\) −3.21054 2.50190i −0.182937 0.142559i
\(309\) 4.00000 0.227552
\(310\) −0.306808 0.811738i −0.0174255 0.0461036i
\(311\) 30.3703i 1.72214i −0.508487 0.861069i \(-0.669795\pi\)
0.508487 0.861069i \(-0.330205\pi\)
\(312\) 1.62348 3.06808i 0.0919112 0.173696i
\(313\) −13.2470 −0.748762 −0.374381 0.927275i \(-0.622145\pi\)
−0.374381 + 0.927275i \(0.622145\pi\)
\(314\) 2.14766 0.811738i 0.121199 0.0458090i
\(315\) −1.60981 −0.0907023
\(316\) −3.68170 + 3.24695i −0.207112 + 0.182655i
\(317\) 12.8704 0.722875 0.361438 0.932396i \(-0.382286\pi\)
0.361438 + 0.932396i \(0.382286\pi\)
\(318\) −2.95256 7.81174i −0.165571 0.438060i
\(319\) −24.8477 + 4.67789i −1.39120 + 0.261911i
\(320\) 4.50000 + 6.61438i 0.251558 + 0.369755i
\(321\) 9.74085i 0.543681i
\(322\) −2.00000 5.29150i −0.111456 0.294884i
\(323\) 40.1086i 2.23170i
\(324\) 8.62957 7.61057i 0.479421 0.422809i
\(325\) 2.00000i 0.110940i
\(326\) 10.8898 + 28.8117i 0.603131 + 1.59573i
\(327\) 6.90131 0.381643
\(328\) −20.0000 10.5830i −1.10432 0.584349i
\(329\) 4.00000i 0.220527i
\(330\) −2.45749 + 1.49810i −0.135280 + 0.0824674i
\(331\) 22.0107i 1.20982i 0.796295 + 0.604908i \(0.206790\pi\)
−0.796295 + 0.604908i \(0.793210\pi\)
\(332\) 11.6190 10.2470i 0.637673 0.562374i
\(333\) 14.7530 0.808462
\(334\) 2.43521 0.920424i 0.133249 0.0503634i
\(335\) 7.74597i 0.423207i
\(336\) −1.49429 0.188262i −0.0815200 0.0102706i
\(337\) 16.8704i 0.918991i 0.888180 + 0.459495i \(0.151970\pi\)
−0.888180 + 0.459495i \(0.848030\pi\)
\(338\) −11.9059 + 4.50000i −0.647595 + 0.244768i
\(339\) 6.13616i 0.333270i
\(340\) 7.43916 + 8.43521i 0.403445 + 0.457464i
\(341\) −2.00000 + 0.376525i −0.108306 + 0.0203900i
\(342\) −24.7530 + 9.35577i −1.33849 + 0.505902i
\(343\) −8.35958 −0.451375
\(344\) 8.62348 16.2968i 0.464947 0.878667i
\(345\) −4.00000 −0.215353
\(346\) 0.623475 + 1.64956i 0.0335182 + 0.0886809i
\(347\) −28.9120 −1.55208 −0.776038 0.630686i \(-0.782774\pi\)
−0.776038 + 0.630686i \(0.782774\pi\)
\(348\) −7.01683 + 6.18826i −0.376142 + 0.331726i
\(349\) 12.7530i 0.682655i 0.939944 + 0.341328i \(0.110877\pi\)
−0.939944 + 0.341328i \(0.889123\pi\)
\(350\) −0.811738 + 0.306808i −0.0433892 + 0.0163996i
\(351\) −6.90131 −0.368365
\(352\) 17.1148 7.68663i 0.912221 0.409699i
\(353\) 2.75305 0.146530 0.0732650 0.997313i \(-0.476658\pi\)
0.0732650 + 0.997313i \(0.476658\pi\)
\(354\) −3.29912 + 1.24695i −0.175346 + 0.0662747i
\(355\) 1.84085i 0.0977021i
\(356\) 2.43521 2.14766i 0.129066 0.113826i
\(357\) −2.11738 −0.112063
\(358\) 0.804903 + 2.12957i 0.0425405 + 0.112551i
\(359\) 14.2647 0.752862 0.376431 0.926445i \(-0.377151\pi\)
0.376431 + 0.926445i \(0.377151\pi\)
\(360\) 3.47053 6.55869i 0.182913 0.345673i
\(361\) 31.8704 1.67739
\(362\) 7.93725 3.00000i 0.417173 0.157676i
\(363\) 2.45446 + 6.28769i 0.128826 + 0.330018i
\(364\) −1.62348 1.84085i −0.0850932 0.0964867i
\(365\) 2.00000i 0.104685i
\(366\) −9.43521 + 3.56618i −0.493186 + 0.186407i
\(367\) 5.29150i 0.276214i −0.990417 0.138107i \(-0.955898\pi\)
0.990417 0.138107i \(-0.0441018\pi\)
\(368\) 25.8704 + 3.25937i 1.34859 + 0.169906i
\(369\) 20.9878i 1.09258i
\(370\) 7.43916 2.81174i 0.386743 0.146175i
\(371\) −5.90512 −0.306578
\(372\) −0.564787 + 0.498095i −0.0292828 + 0.0258250i
\(373\) 16.4939i 0.854022i −0.904246 0.427011i \(-0.859567\pi\)
0.904246 0.427011i \(-0.140433\pi\)
\(374\) 22.5216 13.7293i 1.16457 0.709924i
\(375\) 0.613616i 0.0316870i
\(376\) −16.2968 8.62348i −0.840445 0.444722i
\(377\) −15.2470 −0.785258
\(378\) 1.05869 + 2.80103i 0.0544531 + 0.144069i
\(379\) 8.97320i 0.460922i 0.973082 + 0.230461i \(0.0740235\pi\)
−0.973082 + 0.230461i \(0.925977\pi\)
\(380\) −10.6985 + 9.43521i −0.548823 + 0.484016i
\(381\) 4.75305i 0.243506i
\(382\) −7.93725 21.0000i −0.406105 1.07445i
\(383\) 4.06427i 0.207675i 0.994594 + 0.103837i \(0.0331121\pi\)
−0.994594 + 0.103837i \(0.966888\pi\)
\(384\) 3.98850 5.68216i 0.203537 0.289967i
\(385\) 0.376525 + 2.00000i 0.0191895 + 0.101929i
\(386\) −6.81174 18.0222i −0.346708 0.917304i
\(387\) −17.1017 −0.869330
\(388\) 3.00000 2.64575i 0.152302 0.134318i
\(389\) −10.7530 −0.545201 −0.272601 0.962127i \(-0.587884\pi\)
−0.272601 + 0.962127i \(0.587884\pi\)
\(390\) −1.62348 + 0.613616i −0.0822079 + 0.0310717i
\(391\) 36.6579 1.85387
\(392\) 8.76203 16.5587i 0.442550 0.836340i
\(393\) 10.8704i 0.548340i
\(394\) 10.2470 + 27.1109i 0.516234 + 1.36583i
\(395\) 2.45446 0.123497
\(396\) −13.7264 10.6967i −0.689780 0.537531i
\(397\) −4.49390 −0.225542 −0.112771 0.993621i \(-0.535973\pi\)
−0.112771 + 0.993621i \(0.535973\pi\)
\(398\) −4.98469 13.1883i −0.249860 0.661068i
\(399\) 2.68551i 0.134443i
\(400\) 0.500000 3.96863i 0.0250000 0.198431i
\(401\) 17.6235 0.880074 0.440037 0.897980i \(-0.354965\pi\)
0.440037 + 0.897980i \(0.354965\pi\)
\(402\) 6.28769 2.37652i 0.313602 0.118530i
\(403\) −1.22723 −0.0611328
\(404\) 9.58681 + 10.8704i 0.476962 + 0.540824i
\(405\) −5.75305 −0.285871
\(406\) 2.33894 + 6.18826i 0.116080 + 0.307118i
\(407\) −3.45065 18.3290i −0.171043 0.908533i
\(408\) 4.56479 8.62664i 0.225991 0.427082i
\(409\) 28.0000i 1.38451i 0.721653 + 0.692255i \(0.243383\pi\)
−0.721653 + 0.692255i \(0.756617\pi\)
\(410\) 4.00000 + 10.5830i 0.197546 + 0.522657i
\(411\) 3.68170i 0.181605i
\(412\) 8.62348 + 9.77810i 0.424848 + 0.481733i
\(413\) 2.49390i 0.122717i
\(414\) −8.55087 22.6235i −0.420252 1.11188i
\(415\) −7.74597 −0.380235
\(416\) 11.0000 2.64575i 0.539319 0.129719i
\(417\) 8.75305i 0.428639i
\(418\) 17.4131 + 28.5646i 0.851701 + 1.39714i
\(419\) 20.7834i 1.01534i −0.861552 0.507669i \(-0.830507\pi\)
0.861552 0.507669i \(-0.169493\pi\)
\(420\) 0.498095 + 0.564787i 0.0243046 + 0.0275588i
\(421\) −14.7530 −0.719020 −0.359510 0.933141i \(-0.617056\pi\)
−0.359510 + 0.933141i \(0.617056\pi\)
\(422\) −7.81174 + 2.95256i −0.380269 + 0.143728i
\(423\) 17.1017i 0.831515i
\(424\) 12.7307 24.0587i 0.618256 1.16839i
\(425\) 5.62348i 0.272779i
\(426\) 1.49429 0.564787i 0.0723984 0.0273640i
\(427\) 7.13235i 0.345159i
\(428\) 23.8118 21.0000i 1.15098 1.01507i
\(429\) 0.753049 + 4.00000i 0.0363576 + 0.193122i
\(430\) −8.62348 + 3.25937i −0.415861 + 0.157181i
\(431\) 24.8477 1.19687 0.598436 0.801171i \(-0.295789\pi\)
0.598436 + 0.801171i \(0.295789\pi\)
\(432\) −13.6944 1.72533i −0.658870 0.0830098i
\(433\) −21.2470 −1.02106 −0.510532 0.859859i \(-0.670551\pi\)
−0.510532 + 0.859859i \(0.670551\pi\)
\(434\) 0.188262 + 0.498095i 0.00903688 + 0.0239093i
\(435\) 4.67789 0.224287
\(436\) 14.8783 + 16.8704i 0.712542 + 0.807947i
\(437\) 46.4939i 2.22410i
\(438\) −1.62348 + 0.613616i −0.0775727 + 0.0293197i
\(439\) −4.90893 −0.234290 −0.117145 0.993115i \(-0.537374\pi\)
−0.117145 + 0.993115i \(0.537374\pi\)
\(440\) −8.96016 2.77770i −0.427159 0.132422i
\(441\) −17.3765 −0.827454
\(442\) 14.8783 5.62348i 0.707689 0.267481i
\(443\) 15.8745i 0.754221i 0.926168 + 0.377110i \(0.123082\pi\)
−0.926168 + 0.377110i \(0.876918\pi\)
\(444\) −4.56479 5.17598i −0.216635 0.245641i
\(445\) −1.62348 −0.0769601
\(446\) −9.16449 24.2470i −0.433951 1.14813i
\(447\) −5.13997 −0.243112
\(448\) −2.76127 4.05869i −0.130458 0.191755i
\(449\) 28.4939 1.34471 0.672355 0.740229i \(-0.265283\pi\)
0.672355 + 0.740229i \(0.265283\pi\)
\(450\) −3.47053 + 1.31174i −0.163602 + 0.0618359i
\(451\) 26.0749 4.90893i 1.22782 0.231152i
\(452\) 15.0000 13.2288i 0.705541 0.622228i
\(453\) 0.753049i 0.0353813i
\(454\) −24.2470 + 9.16449i −1.13797 + 0.430111i
\(455\) 1.22723i 0.0575335i
\(456\) 10.9413 + 5.78960i 0.512374 + 0.271123i
\(457\) 4.87043i 0.227829i −0.993491 0.113914i \(-0.963661\pi\)
0.993491 0.113914i \(-0.0363390\pi\)
\(458\) 21.8194 8.24695i 1.01955 0.385355i
\(459\) −19.4047 −0.905732
\(460\) −8.62348 9.77810i −0.402072 0.455906i
\(461\) 20.3765i 0.949029i −0.880248 0.474515i \(-0.842624\pi\)
0.880248 0.474515i \(-0.157376\pi\)
\(462\) 1.50795 0.919255i 0.0701564 0.0427676i
\(463\) 25.6924i 1.19403i 0.802232 + 0.597013i \(0.203646\pi\)
−0.802232 + 0.597013i \(0.796354\pi\)
\(464\) −30.2547 3.81174i −1.40454 0.176955i
\(465\) 0.376525 0.0174609
\(466\) 4.81174 + 12.7307i 0.222899 + 0.589736i
\(467\) 39.7260i 1.83830i 0.393906 + 0.919151i \(0.371123\pi\)
−0.393906 + 0.919151i \(0.628877\pi\)
\(468\) −6.94106 7.87043i −0.320851 0.363811i
\(469\) 4.75305i 0.219475i
\(470\) 3.25937 + 8.62348i 0.150343 + 0.397771i
\(471\) 0.996190i 0.0459020i
\(472\) −10.1607 5.37652i −0.467683 0.247475i
\(473\) 4.00000 + 21.2470i 0.183920 + 0.976936i
\(474\) −0.753049 1.99238i −0.0345887 0.0915131i
\(475\) 7.13235 0.327255
\(476\) −4.56479 5.17598i −0.209227 0.237241i
\(477\) −25.2470 −1.15598
\(478\) −34.4939 + 13.0375i −1.57771 + 0.596320i
\(479\) −30.5218 −1.39458 −0.697288 0.716791i \(-0.745610\pi\)
−0.697288 + 0.716791i \(0.745610\pi\)
\(480\) −3.37489 + 0.811738i −0.154042 + 0.0370506i
\(481\) 11.2470i 0.512817i
\(482\) 3.62348 + 9.58681i 0.165045 + 0.436667i
\(483\) 2.45446 0.111682
\(484\) −10.0789 + 19.5554i −0.458133 + 0.888884i
\(485\) −2.00000 −0.0908153
\(486\) 6.94106 + 18.3643i 0.314853 + 0.833023i
\(487\) 43.1767i 1.95652i −0.207377 0.978261i \(-0.566493\pi\)
0.207377 0.978261i \(-0.433507\pi\)
\(488\) −29.0587 15.3764i −1.31543 0.696057i
\(489\) −13.3643 −0.604356
\(490\) −8.76203 + 3.31174i −0.395828 + 0.149609i
\(491\) −36.8890 −1.66478 −0.832388 0.554193i \(-0.813027\pi\)
−0.832388 + 0.554193i \(0.813027\pi\)
\(492\) 7.36339 6.49390i 0.331967 0.292768i
\(493\) −42.8704 −1.93079
\(494\) 7.13235 + 18.8704i 0.320900 + 0.849021i
\(495\) 1.60981 + 8.55087i 0.0723554 + 0.384333i
\(496\) −2.43521 0.306808i −0.109344 0.0137761i
\(497\) 1.12957i 0.0506683i
\(498\) 2.37652 + 6.28769i 0.106495 + 0.281758i
\(499\) 1.60981i 0.0720648i 0.999351 + 0.0360324i \(0.0114720\pi\)
−0.999351 + 0.0360324i \(0.988528\pi\)
\(500\) −1.50000 + 1.32288i −0.0670820 + 0.0591608i
\(501\) 1.12957i 0.0504656i
\(502\) −9.16449 24.2470i −0.409031 1.08219i
\(503\) 20.7834 0.926688 0.463344 0.886179i \(-0.346650\pi\)
0.463344 + 0.886179i \(0.346650\pi\)
\(504\) −2.12957 + 4.02452i −0.0948588 + 0.179266i
\(505\) 7.24695i 0.322485i
\(506\) −26.1071 + 15.9150i −1.16060 + 0.707507i
\(507\) 5.52254i 0.245265i
\(508\) 11.6190 10.2470i 0.515508 0.454635i
\(509\) −1.24695 −0.0552701 −0.0276351 0.999618i \(-0.508798\pi\)
−0.0276351 + 0.999618i \(0.508798\pi\)
\(510\) −4.56479 + 1.72533i −0.202132 + 0.0763988i
\(511\) 1.22723i 0.0542895i
\(512\) 22.4889 2.50000i 0.993878 0.110485i
\(513\) 24.6113i 1.08661i
\(514\) −3.64194 + 1.37652i −0.160639 + 0.0607159i
\(515\) 6.51873i 0.287250i
\(516\) 5.29150 + 6.00000i 0.232945 + 0.264135i
\(517\) 21.2470 4.00000i 0.934440 0.175920i
\(518\) −4.56479 + 1.72533i −0.200565 + 0.0758065i
\(519\) −0.765149 −0.0335863
\(520\) −5.00000 2.64575i −0.219265 0.116024i
\(521\) 28.4939 1.24834 0.624170 0.781288i \(-0.285437\pi\)
0.624170 + 0.781288i \(0.285437\pi\)
\(522\) 10.0000 + 26.4575i 0.437688 + 1.15801i
\(523\) −8.97320 −0.392371 −0.196185 0.980567i \(-0.562855\pi\)
−0.196185 + 0.980567i \(0.562855\pi\)
\(524\) −26.5730 + 23.4352i −1.16085 + 1.02377i
\(525\) 0.376525i 0.0164329i
\(526\) 28.8117 10.8898i 1.25625 0.474818i
\(527\) −3.45065 −0.150313
\(528\) 0.494286 + 8.12552i 0.0215110 + 0.353618i
\(529\) −19.4939 −0.847561
\(530\) −12.7307 + 4.81174i −0.552985 + 0.209009i
\(531\) 10.6625i 0.462714i
\(532\) 6.56479 5.78960i 0.284620 0.251011i
\(533\) 16.0000 0.693037
\(534\) 0.498095 + 1.31784i 0.0215547 + 0.0570283i
\(535\) −15.8745 −0.686315
\(536\) 19.3649 + 10.2470i 0.836437 + 0.442601i
\(537\) −0.987803 −0.0426268
\(538\) −27.1109 + 10.2470i −1.16883 + 0.441777i
\(539\) 4.06427 + 21.5883i 0.175061 + 0.929876i
\(540\) 4.56479 + 5.17598i 0.196437 + 0.222739i
\(541\) 28.3765i 1.22000i −0.792401 0.610001i \(-0.791169\pi\)
0.792401 0.610001i \(-0.208831\pi\)
\(542\) 29.6235 11.1966i 1.27244 0.480936i
\(543\) 3.68170i 0.157997i
\(544\) 30.9291 7.43916i 1.32607 0.318951i
\(545\) 11.2470i 0.481766i
\(546\) 0.996190 0.376525i 0.0426330 0.0161138i
\(547\) 18.3290 0.783690 0.391845 0.920031i \(-0.371837\pi\)
0.391845 + 0.920031i \(0.371837\pi\)
\(548\) −9.00000 + 7.93725i −0.384461 + 0.339063i
\(549\) 30.4939i 1.30145i
\(550\) 2.44142 + 4.00493i 0.104103 + 0.170771i
\(551\) 54.3733i 2.31638i
\(552\) −5.29150 + 10.0000i −0.225221 + 0.425628i
\(553\) −1.50610 −0.0640458
\(554\) −8.24695 21.8194i −0.350379 0.927017i
\(555\) 3.45065i 0.146472i
\(556\) −21.3971 + 18.8704i −0.907437 + 0.800284i
\(557\) 25.2470i 1.06975i 0.844932 + 0.534874i \(0.179641\pi\)
−0.844932 + 0.534874i \(0.820359\pi\)
\(558\) 0.804903 + 2.12957i 0.0340743 + 0.0901520i
\(559\) 13.0375i 0.551426i
\(560\) −0.306808 + 2.43521i −0.0129650 + 0.102907i
\(561\) 2.11738 + 11.2470i 0.0893957 + 0.474847i
\(562\) 0 0
\(563\) −11.4277 −0.481619 −0.240809 0.970572i \(-0.577413\pi\)
−0.240809 + 0.970572i \(0.577413\pi\)
\(564\) 6.00000 5.29150i 0.252646 0.222812i
\(565\) −10.0000 −0.420703
\(566\) −13.4939 + 5.10022i −0.567191 + 0.214378i
\(567\) 3.53016 0.148253
\(568\) 4.60212 + 2.43521i 0.193101 + 0.102179i
\(569\) 17.7409i 0.743735i −0.928286 0.371868i \(-0.878718\pi\)
0.928286 0.371868i \(-0.121282\pi\)
\(570\) −2.18826 5.78960i −0.0916562 0.242500i
\(571\) 12.8064 0.535932 0.267966 0.963428i \(-0.413648\pi\)
0.267966 + 0.963428i \(0.413648\pi\)
\(572\) −8.15463 + 10.4643i −0.340962 + 0.437535i
\(573\) 9.74085 0.406930
\(574\) −2.45446 6.49390i −0.102447 0.271050i
\(575\) 6.51873i 0.271850i
\(576\) −11.8056 17.3527i −0.491902 0.723027i
\(577\) 38.9878 1.62308 0.811542 0.584294i \(-0.198629\pi\)
0.811542 + 0.584294i \(0.198629\pi\)
\(578\) 19.3450 7.31174i 0.804648 0.304128i
\(579\) 8.35958 0.347412
\(580\) 10.0849 + 11.4352i 0.418753 + 0.474821i
\(581\) 4.75305 0.197190
\(582\) 0.613616 + 1.62348i 0.0254352 + 0.0672952i
\(583\) 5.90512 + 31.3664i 0.244565 + 1.29907i
\(584\) −5.00000 2.64575i −0.206901 0.109482i
\(585\) 5.24695i 0.216935i
\(586\) −14.2470 37.6939i −0.588536 1.55712i
\(587\) 18.0979i 0.746982i 0.927634 + 0.373491i \(0.121839\pi\)
−0.927634 + 0.373491i \(0.878161\pi\)
\(588\) 5.37652 + 6.09641i 0.221724 + 0.251412i
\(589\) 4.37652i 0.180332i
\(590\) 2.03214 + 5.37652i 0.0836617 + 0.221348i
\(591\) −12.5754 −0.517282
\(592\) 2.81174 22.3175i 0.115562 0.917243i
\(593\) 24.4939i 1.00584i 0.864332 + 0.502922i \(0.167742\pi\)
−0.864332 + 0.502922i \(0.832258\pi\)
\(594\) 13.8196 8.42450i 0.567026 0.345661i
\(595\) 3.45065i 0.141463i
\(596\) −11.0811 12.5648i −0.453900 0.514674i
\(597\) 6.11738 0.250368
\(598\) −17.2470 + 6.51873i −0.705280 + 0.266571i
\(599\) 31.5975i 1.29104i −0.763744 0.645519i \(-0.776641\pi\)
0.763744 0.645519i \(-0.223359\pi\)
\(600\) 1.53404 + 0.811738i 0.0626269 + 0.0331391i
\(601\) 47.2470i 1.92724i −0.267270 0.963622i \(-0.586122\pi\)
0.267270 0.963622i \(-0.413878\pi\)
\(602\) 5.29150 2.00000i 0.215666 0.0815139i
\(603\) 20.3214i 0.827549i
\(604\) −1.84085 + 1.62348i −0.0749030 + 0.0660583i
\(605\) 10.2470 4.00000i 0.416598 0.162623i
\(606\) −5.88262 + 2.22342i −0.238965 + 0.0903204i
\(607\) −11.1966 −0.454457 −0.227228 0.973841i \(-0.572966\pi\)
−0.227228 + 0.973841i \(0.572966\pi\)
\(608\) 9.43521 + 39.2279i 0.382648 + 1.59090i
\(609\) −2.87043 −0.116316
\(610\) 5.81174 + 15.3764i 0.235310 + 0.622573i
\(611\) 13.0375 0.527440
\(612\) −19.5164 22.1296i −0.788906 0.894535i
\(613\) 24.4939i 0.989299i −0.869092 0.494650i \(-0.835296\pi\)
0.869092 0.494650i \(-0.164704\pi\)
\(614\) 3.75305 1.41852i 0.151461 0.0572468i
\(615\) −4.90893 −0.197947
\(616\) 5.49810 + 1.70444i 0.221525 + 0.0686738i
\(617\) −13.2470 −0.533302 −0.266651 0.963793i \(-0.585917\pi\)
−0.266651 + 0.963793i \(0.585917\pi\)
\(618\) −5.29150 + 2.00000i −0.212855 + 0.0804518i
\(619\) 0.844658i 0.0339497i 0.999856 + 0.0169748i \(0.00540351\pi\)
−0.999856 + 0.0169748i \(0.994596\pi\)
\(620\) 0.811738 + 0.920424i 0.0326002 + 0.0369651i
\(621\) 22.4939 0.902649
\(622\) 15.1851 + 40.1761i 0.608868 + 1.61091i
\(623\) 0.996190 0.0399115
\(624\) −0.613616 + 4.87043i −0.0245643 + 0.194973i
\(625\) 1.00000 0.0400000
\(626\) 17.5241 6.62348i 0.700403 0.264727i
\(627\) −14.2647 + 2.68551i −0.569677 + 0.107249i
\(628\) −2.43521 + 2.14766i −0.0971756 + 0.0857008i
\(629\) 31.6235i 1.26091i
\(630\) 2.12957 0.804903i 0.0848443 0.0320681i
\(631\) 25.4613i 1.01360i −0.862064 0.506800i \(-0.830828\pi\)
0.862064 0.506800i \(-0.169172\pi\)
\(632\) 3.24695 6.13616i 0.129157 0.244083i
\(633\) 3.62348i 0.144020i
\(634\) −17.0260 + 6.43521i −0.676188 + 0.255575i
\(635\) −7.74597 −0.307389
\(636\) 7.81174 + 8.85768i 0.309756 + 0.351230i
\(637\) 13.2470i 0.524863i
\(638\) 30.5315 18.6121i 1.20875 0.736861i
\(639\) 4.82942i 0.191049i
\(640\) −9.26013 6.50000i −0.366039 0.256935i
\(641\) −28.8704 −1.14031 −0.570157 0.821536i \(-0.693117\pi\)
−0.570157 + 0.821536i \(0.693117\pi\)
\(642\) 4.87043 + 12.8859i 0.192220 + 0.508567i
\(643\) 21.7796i 0.858905i −0.903090 0.429452i \(-0.858707\pi\)
0.903090 0.429452i \(-0.141293\pi\)
\(644\) 5.29150 + 6.00000i 0.208514 + 0.236433i
\(645\) 4.00000i 0.157500i
\(646\) 20.0543 + 53.0587i 0.789026 + 2.08757i
\(647\) 36.2754i 1.42613i −0.701097 0.713066i \(-0.747306\pi\)
0.701097 0.713066i \(-0.252694\pi\)
\(648\) −7.61057 + 14.3826i −0.298971 + 0.565003i
\(649\) 13.2470 2.49390i 0.519988 0.0978942i
\(650\) 1.00000 + 2.64575i 0.0392232 + 0.103775i
\(651\) −0.231042 −0.00905523
\(652\) −28.8117 32.6694i −1.12835 1.27943i
\(653\) −47.3643 −1.85351 −0.926755 0.375667i \(-0.877414\pi\)
−0.926755 + 0.375667i \(0.877414\pi\)
\(654\) −9.12957 + 3.45065i −0.356995 + 0.134931i
\(655\) 17.7154 0.692196
\(656\) 31.7490 + 4.00000i 1.23959 + 0.156174i
\(657\) 5.24695i 0.204703i
\(658\) −2.00000 5.29150i −0.0779681 0.206284i
\(659\) 2.22342 0.0866122 0.0433061 0.999062i \(-0.486211\pi\)
0.0433061 + 0.999062i \(0.486211\pi\)
\(660\) 2.50190 3.21054i 0.0973865 0.124970i
\(661\) 43.7409 1.70132 0.850661 0.525715i \(-0.176202\pi\)
0.850661 + 0.525715i \(0.176202\pi\)
\(662\) −11.0053 29.1174i −0.427734 1.13168i
\(663\) 6.90131i 0.268025i
\(664\) −10.2470 + 19.3649i −0.397659 + 0.751505i
\(665\) −4.37652 −0.169714
\(666\) −19.5164 + 7.37652i −0.756247 + 0.285835i
\(667\) 49.6954 1.92421
\(668\) −2.76127 + 2.43521i −0.106837 + 0.0942212i
\(669\) 11.2470 0.434832
\(670\) −3.87298 10.2470i −0.149626 0.395874i
\(671\) 37.8852 7.13235i 1.46254 0.275341i
\(672\) 2.07089 0.498095i 0.0798861 0.0192144i
\(673\) 32.8704i 1.26706i −0.773717 0.633531i \(-0.781605\pi\)
0.773717 0.633531i \(-0.218395\pi\)
\(674\) −8.43521 22.3175i −0.324912 0.859637i
\(675\) 3.45065i 0.132816i
\(676\) 13.5000 11.9059i 0.519231 0.457918i
\(677\) 30.0000i 1.15299i −0.817099 0.576497i \(-0.804419\pi\)
0.817099 0.576497i \(-0.195581\pi\)
\(678\) 3.06808 + 8.11738i 0.117829 + 0.311746i
\(679\) 1.22723 0.0470968
\(680\) −14.0587 7.43916i −0.539126 0.285279i
\(681\) 11.2470i 0.430984i
\(682\) 2.45749 1.49810i 0.0941021 0.0573650i
\(683\) 13.6511i 0.522344i 0.965292 + 0.261172i \(0.0841090\pi\)
−0.965292 + 0.261172i \(0.915891\pi\)
\(684\) 28.0673 24.7530i 1.07318 0.946456i
\(685\) 6.00000 0.229248
\(686\) 11.0587 4.17979i 0.422223 0.159585i
\(687\) 10.1209i 0.386137i
\(688\) −3.25937 + 25.8704i −0.124262 + 0.986301i
\(689\) 19.2470i 0.733250i
\(690\) 5.29150 2.00000i 0.201444 0.0761387i
\(691\) 39.4950i 1.50246i 0.660041 + 0.751230i \(0.270539\pi\)
−0.660041 + 0.751230i \(0.729461\pi\)
\(692\) −1.64956 1.87043i −0.0627069 0.0711029i
\(693\) −0.987803 5.24695i −0.0375235 0.199315i
\(694\) 38.2470 14.4560i 1.45183 0.548742i
\(695\) 14.2647 0.541091
\(696\) 6.18826 11.6947i 0.234565 0.443287i
\(697\) 44.9878 1.70403
\(698\) −6.37652 16.8707i −0.241355 0.638565i
\(699\) −5.90512 −0.223352
\(700\) 0.920424 0.811738i 0.0347888 0.0306808i
\(701\) 3.62348i 0.136857i 0.997656 + 0.0684284i \(0.0217985\pi\)
−0.997656 + 0.0684284i \(0.978202\pi\)
\(702\) 9.12957 3.45065i 0.344574 0.130237i
\(703\) 40.1086 1.51272
\(704\) −18.7974 + 18.7258i −0.708454 + 0.705757i
\(705\) −4.00000 −0.150649
\(706\) −3.64194 + 1.37652i −0.137066 + 0.0518062i
\(707\) 4.44685i 0.167241i
\(708\) 3.74085 3.29912i 0.140590 0.123989i
\(709\) −14.7530 −0.554062 −0.277031 0.960861i \(-0.589351\pi\)
−0.277031 + 0.960861i \(0.589351\pi\)
\(710\) −0.920424 2.43521i −0.0345429 0.0913919i
\(711\) −6.43923 −0.241490
\(712\) −2.14766 + 4.05869i −0.0804868 + 0.152106i
\(713\) 4.00000 0.149801
\(714\) 2.80103 1.05869i 0.104826 0.0396204i
\(715\) 6.51873 1.22723i 0.243787 0.0458959i
\(716\) −2.12957 2.41471i −0.0795859 0.0902419i
\(717\) 16.0000i 0.597531i
\(718\) −18.8704 + 7.13235i −0.704238 + 0.266177i
\(719\) 33.5899i 1.25269i −0.779546 0.626345i \(-0.784550\pi\)
0.779546 0.626345i \(-0.215450\pi\)
\(720\) −1.31174 + 10.4116i −0.0488856 + 0.388017i
\(721\) 4.00000i 0.148968i
\(722\) −42.1606 + 15.9352i −1.56906 + 0.593047i
\(723\) −4.44685 −0.165380
\(724\) −9.00000 + 7.93725i −0.334482 + 0.294986i
\(725\) 7.62348i 0.283129i
\(726\) −6.39080 7.09060i −0.237185 0.263157i
\(727\) 1.60981i 0.0597044i 0.999554 + 0.0298522i \(0.00950367\pi\)
−0.999554 + 0.0298522i \(0.990496\pi\)
\(728\) 3.06808 + 1.62348i 0.113711 + 0.0601700i
\(729\) 8.74085 0.323735
\(730\) 1.00000 + 2.64575i 0.0370117 + 0.0979236i
\(731\) 36.6579i 1.35584i
\(732\) 10.6985 9.43521i 0.395429 0.348736i
\(733\) 10.7530i 0.397173i −0.980083 0.198586i \(-0.936365\pi\)
0.980083 0.198586i \(-0.0636351\pi\)
\(734\) 2.64575 + 7.00000i 0.0976565 + 0.258375i
\(735\) 4.06427i 0.149913i
\(736\) −35.8530 + 8.62348i −1.32156 + 0.317866i
\(737\) −25.2470 + 4.75305i −0.929983 + 0.175081i
\(738\) −10.4939 27.7643i −0.386286 1.02202i
\(739\) −4.44685 −0.163580 −0.0817899 0.996650i \(-0.526064\pi\)
−0.0817899 + 0.996650i \(0.526064\pi\)
\(740\) −8.43521 + 7.43916i −0.310085 + 0.273469i
\(741\) −8.75305 −0.321551
\(742\) 7.81174 2.95256i 0.286778 0.108392i
\(743\) −47.8546 −1.75561 −0.877807 0.479015i \(-0.840994\pi\)
−0.877807 + 0.479015i \(0.840994\pi\)
\(744\) 0.498095 0.941312i 0.0182611 0.0345102i
\(745\) 8.37652i 0.306892i
\(746\) 8.24695 + 21.8194i 0.301942 + 0.798864i
\(747\) 20.3214 0.743519
\(748\) −22.9287 + 29.4229i −0.838355 + 1.07581i
\(749\) 9.74085 0.355923
\(750\) −0.306808 0.811738i −0.0112030 0.0296405i
\(751\) 32.3626i 1.18093i −0.807064 0.590465i \(-0.798945\pi\)
0.807064 0.590465i \(-0.201055\pi\)
\(752\) 25.8704 + 3.25937i 0.943397 + 0.118857i
\(753\) 11.2470 0.409862
\(754\) 20.1698 7.62348i 0.734542 0.277631i
\(755\) 1.22723 0.0446635
\(756\) −2.80103 3.17607i −0.101872 0.115512i
\(757\) 0.493902 0.0179512 0.00897558 0.999960i \(-0.497143\pi\)
0.00897558 + 0.999960i \(0.497143\pi\)
\(758\) −4.48660 11.8704i −0.162961 0.431153i
\(759\) −2.45446 13.0375i −0.0890914 0.473230i
\(760\) 9.43521 17.8309i 0.342251 0.646794i
\(761\) 38.4939i 1.39540i 0.716389 + 0.697701i \(0.245794\pi\)
−0.716389 + 0.697701i \(0.754206\pi\)
\(762\) 2.37652 + 6.28769i 0.0860924 + 0.227779i
\(763\) 6.90131i 0.249844i
\(764\) 21.0000 + 23.8118i 0.759753 + 0.861479i
\(765\) 14.7530i 0.533398i
\(766\) −2.03214 5.37652i −0.0734240 0.194262i
\(767\) 8.12854 0.293505
\(768\) −2.43521 + 9.51105i −0.0878732 + 0.343200i
\(769\) 12.0000i 0.432731i −0.976312 0.216366i \(-0.930580\pi\)
0.976312 0.216366i \(-0.0694203\pi\)
\(770\) −1.49810 2.45749i −0.0539876 0.0885618i
\(771\) 1.68932i 0.0608392i
\(772\) 18.0222 + 20.4352i 0.648632 + 0.735479i
\(773\) 22.3765 0.804828 0.402414 0.915458i \(-0.368171\pi\)
0.402414 + 0.915458i \(0.368171\pi\)
\(774\) 22.6235 8.55087i 0.813184 0.307355i
\(775\) 0.613616i 0.0220417i
\(776\) −2.64575 + 5.00000i −0.0949769 + 0.179490i
\(777\) 2.11738i 0.0759605i
\(778\) 14.2249 5.37652i 0.509989 0.192758i
\(779\) 57.0588i 2.04434i
\(780\) 1.84085 1.62348i 0.0659129 0.0581297i
\(781\) −6.00000 + 1.12957i −0.214697 + 0.0404193i
\(782\) −48.4939 + 18.3290i −1.73414 + 0.655443i
\(783\) −26.3060 −0.940099
\(784\) −3.31174 + 26.2861i −0.118276 + 0.938789i
\(785\) 1.62348 0.0579443
\(786\) −5.43521 14.3802i −0.193868 0.512926i
\(787\) −48.0856 −1.71407 −0.857033 0.515261i \(-0.827695\pi\)
−0.857033 + 0.515261i \(0.827695\pi\)
\(788\) −27.1109 30.7409i −0.965785 1.09510i
\(789\) 13.3643i 0.475783i
\(790\) −3.24695 + 1.22723i −0.115521 + 0.0436630i
\(791\) 6.13616 0.218177
\(792\) 23.5067 + 7.28722i 0.835276 + 0.258940i
\(793\) 23.2470 0.825523
\(794\) 5.94487 2.24695i 0.210976 0.0797413i
\(795\) 5.90512i 0.209433i
\(796\) 13.1883 + 14.9541i 0.467446 + 0.530033i
\(797\) −28.4939 −1.00931 −0.504653 0.863322i \(-0.668380\pi\)
−0.504653 + 0.863322i \(0.668380\pi\)
\(798\) 1.34275 + 3.55259i 0.0475329 + 0.125760i
\(799\) 36.6579 1.29686
\(800\) 1.32288 + 5.50000i 0.0467707 + 0.194454i
\(801\) 4.25915 0.150490
\(802\) −23.3137 + 8.81174i −0.823234 + 0.311153i
\(803\) 6.51873 1.22723i 0.230041 0.0433081i
\(804\) −7.12957 + 6.28769i −0.251441 + 0.221750i
\(805\) 4.00000i 0.140981i
\(806\) 1.62348 0.613616i 0.0571845 0.0216137i
\(807\) 12.5754i 0.442675i
\(808\) −18.1174 9.58681i −0.637367 0.337263i
\(809\) 33.7409i 1.18627i −0.805105 0.593133i \(-0.797891\pi\)
0.805105 0.593133i \(-0.202109\pi\)
\(810\) 7.61057 2.87652i 0.267408 0.101071i
\(811\) −50.6916 −1.78002 −0.890011 0.455938i \(-0.849304\pi\)
−0.890011 + 0.455938i \(0.849304\pi\)
\(812\) −6.18826 7.01683i −0.217165 0.246242i
\(813\) 13.7409i 0.481913i
\(814\) 13.7293 + 22.5216i 0.481211 + 0.789382i
\(815\) 21.7796i 0.762907i
\(816\) −1.72533 + 13.6944i −0.0603985 + 0.479399i
\(817\) −46.4939 −1.62662
\(818\) −14.0000 37.0405i −0.489499 1.29509i
\(819\) 3.21961i 0.112502i
\(820\) −10.5830 12.0000i −0.369575 0.419058i
\(821\) 5.74085i 0.200357i −0.994969 0.100179i \(-0.968059\pi\)
0.994969 0.100179i \(-0.0319414\pi\)
\(822\) −1.84085 4.87043i −0.0642069 0.169876i
\(823\) 7.74597i 0.270007i −0.990845 0.135004i \(-0.956895\pi\)
0.990845 0.135004i \(-0.0431046\pi\)
\(824\) −16.2968 8.62348i −0.567727 0.300413i
\(825\) −2.00000 + 0.376525i −0.0696311 + 0.0131089i
\(826\) −1.24695 3.29912i −0.0433870 0.114791i
\(827\) −26.9196 −0.936086 −0.468043 0.883706i \(-0.655041\pi\)
−0.468043 + 0.883706i \(0.655041\pi\)
\(828\) 22.6235 + 25.6526i 0.786220 + 0.891490i
\(829\) −12.4939 −0.433931 −0.216966 0.976179i \(-0.569616\pi\)
−0.216966 + 0.976179i \(0.569616\pi\)
\(830\) 10.2470 3.87298i 0.355677 0.134433i
\(831\) 10.1209 0.351091
\(832\) −13.2288 + 9.00000i −0.458625 + 0.312019i
\(833\) 37.2470i 1.29053i
\(834\) −4.37652 11.5792i −0.151547 0.400955i
\(835\) 1.84085 0.0637052
\(836\) −37.3176 29.0808i −1.29066 1.00578i
\(837\) −2.11738 −0.0731873
\(838\) 10.3917 + 27.4939i 0.358976 + 0.949761i
\(839\) 7.74597i 0.267420i 0.991020 + 0.133710i \(0.0426891\pi\)
−0.991020 + 0.133710i \(0.957311\pi\)
\(840\) −0.941312 0.498095i −0.0324783 0.0171859i
\(841\) −29.1174 −1.00405
\(842\) 19.5164 7.37652i 0.672581 0.254212i
\(843\) 0 0
\(844\) 8.85768 7.81174i 0.304894 0.268891i
\(845\) −9.00000 −0.309609
\(846\) −8.55087 22.6235i −0.293985 0.777811i
\(847\) −6.28769 + 2.45446i −0.216048 + 0.0843364i
\(848\) −4.81174 + 38.1920i −0.165236 + 1.31152i
\(849\) 6.25915i 0.214813i
\(850\) 2.81174 + 7.43916i 0.0964418 + 0.255161i
\(851\) 36.6579i 1.25662i
\(852\) −1.69436 + 1.49429i −0.0580478 + 0.0511934i
\(853\) 1.24695i 0.0426948i −0.999772 0.0213474i \(-0.993204\pi\)
0.999772 0.0213474i \(-0.00679560\pi\)
\(854\) −3.56618 9.43521i −0.122032 0.322866i
\(855\) −18.7115 −0.639921
\(856\) −21.0000 + 39.6863i −0.717765 + 1.35645i
\(857\) 25.6235i 0.875281i 0.899150 + 0.437641i \(0.144186\pi\)
−0.899150 + 0.437641i \(0.855814\pi\)
\(858\) −2.99619 4.91498i −0.102288 0.167795i
\(859\) 14.6473i 0.499759i 0.968277 + 0.249879i \(0.0803909\pi\)
−0.968277 + 0.249879i \(0.919609\pi\)
\(860\) 9.77810 8.62348i 0.333431 0.294058i
\(861\) 3.01220 0.102655
\(862\) −32.8704 + 12.4239i −1.11957 + 0.423158i
\(863\) 12.6549i 0.430778i −0.976528 0.215389i \(-0.930898\pi\)
0.976528 0.215389i \(-0.0691019\pi\)
\(864\) 18.9786 4.56479i 0.645665 0.155297i
\(865\) 1.24695i 0.0423976i
\(866\) 28.1071 10.6235i 0.955117 0.361000i
\(867\) 8.97320i 0.304746i
\(868\) −0.498095 0.564787i −0.0169065 0.0191701i
\(869\) 1.50610 + 8.00000i 0.0510909 + 0.271381i
\(870\) −6.18826 + 2.33894i −0.209802 + 0.0792976i
\(871\) −15.4919 −0.524924
\(872\) −28.1174 14.8783i −0.952175 0.503843i
\(873\) 5.24695 0.177582
\(874\) −23.2470 61.5057i −0.786340 2.08046i
\(875\) −0.613616 −0.0207440
\(876\) 1.84085 1.62348i 0.0621965 0.0548521i
\(877\) 53.2470i 1.79802i −0.437926 0.899011i \(-0.644287\pi\)
0.437926 0.899011i \(-0.355713\pi\)
\(878\) 6.49390 2.45446i 0.219159 0.0828342i
\(879\) 17.4843 0.589731
\(880\) 13.2420 0.805529i 0.446388 0.0271544i
\(881\) −44.4939 −1.49904 −0.749519 0.661983i \(-0.769715\pi\)
−0.749519 + 0.661983i \(0.769715\pi\)
\(882\) 22.9870 8.68826i 0.774012 0.292549i
\(883\) 24.2341i 0.815542i −0.913084 0.407771i \(-0.866306\pi\)
0.913084 0.407771i \(-0.133694\pi\)
\(884\) −16.8704 + 14.8783i −0.567414 + 0.500412i
\(885\) −2.49390 −0.0838316
\(886\) −7.93725 21.0000i −0.266657 0.705509i
\(887\) 36.2754 1.21801 0.609004 0.793167i \(-0.291569\pi\)
0.609004 + 0.793167i \(0.291569\pi\)
\(888\) 8.62664 + 4.56479i 0.289491 + 0.153184i
\(889\) 4.75305 0.159412
\(890\) 2.14766 0.811738i 0.0719896 0.0272095i
\(891\) −3.53016 18.7513i −0.118265 0.628192i
\(892\) 24.2470 + 27.4935i 0.811848 + 0.920549i
\(893\) 46.4939i 1.55586i
\(894\) 6.79954 2.56998i 0.227411 0.0859532i
\(895\) 1.60981i 0.0538099i
\(896\) 5.68216 + 3.98850i 0.189828 + 0.133247i
\(897\) 8.00000i 0.267112i
\(898\) −37.6939 + 14.2470i −1.25786 + 0.475427i
\(899\) −4.67789 −0.156016
\(900\) 3.93521 3.47053i 0.131174 0.115684i
\(901\) 54.1174i 1.80291i
\(902\) −32.0394 + 19.5314i −1.06680 + 0.650324i
\(903\) 2.45446i 0.0816794i
\(904\) −13.2288 + 25.0000i −0.439982 + 0.831488i
\(905\) 6.00000 0.199447
\(906\) −0.376525 0.996190i −0.0125092 0.0330962i
\(907\) 4.29531i 0.142623i 0.997454 + 0.0713117i \(0.0227185\pi\)
−0.997454 + 0.0713117i \(0.977281\pi\)
\(908\) 27.4935 24.2470i 0.912402 0.804663i
\(909\) 19.0122i 0.630595i
\(910\) −0.613616 1.62348i −0.0203412 0.0538177i
\(911\) 19.3252i 0.640271i −0.947372 0.320136i \(-0.896272\pi\)
0.947372 0.320136i \(-0.103728\pi\)
\(912\) −17.3688 2.18826i −0.575138 0.0724606i
\(913\) −4.75305 25.2470i −0.157303 0.835552i
\(914\) 2.43521 + 6.44297i 0.0805497 + 0.213114i
\(915\) −7.13235 −0.235788
\(916\) −24.7409 + 21.8194i −0.817461 + 0.720933i
\(917\) −10.8704 −0.358973
\(918\) 25.6700 9.70234i 0.847235 0.320225i
\(919\) −2.45446 −0.0809653 −0.0404826 0.999180i \(-0.512890\pi\)
−0.0404826 + 0.999180i \(0.512890\pi\)
\(920\) 16.2968 + 8.62348i 0.537291 + 0.284308i
\(921\) 1.74085i 0.0573630i
\(922\) 10.1883 + 26.9556i 0.335533 + 0.887736i
\(923\) −3.68170 −0.121185
\(924\) −1.53521 + 1.97004i −0.0505047 + 0.0648095i
\(925\) 5.62348 0.184899
\(926\) −12.8462 33.9878i −0.422152 1.11691i
\(927\) 17.1017i 0.561695i
\(928\) 41.9291 10.0849i 1.37639 0.331053i
\(929\) 20.8704 0.684736 0.342368 0.939566i \(-0.388771\pi\)
0.342368 + 0.939566i \(0.388771\pi\)
\(930\) −0.498095 + 0.188262i −0.0163332 + 0.00617336i
\(931\) −47.2409 −1.54826
\(932\) −12.7307 14.4352i −0.417007 0.472841i
\(933\) −18.6357 −0.610105
\(934\) −19.8630 52.5526i −0.649938 1.71957i
\(935\) 18.3290 3.45065i 0.599421 0.112848i
\(936\) 13.1174 + 6.94106i 0.428755 + 0.226876i
\(937\) 2.00000i 0.0653372i −0.999466 0.0326686i \(-0.989599\pi\)
0.999466 0.0326686i \(-0.0104006\pi\)
\(938\) 2.37652 + 6.28769i 0.0775963 + 0.205300i
\(939\) 8.12854i 0.265265i
\(940\) −8.62348 9.77810i −0.281267 0.318927i
\(941\) 34.1174i 1.11219i 0.831117 + 0.556097i \(0.187702\pi\)
−0.831117 + 0.556097i \(0.812298\pi\)
\(942\) −0.498095 1.31784i −0.0162288 0.0429374i
\(943\) −52.1499 −1.69823
\(944\) 16.1296 + 2.03214i 0.524973 + 0.0661404i
\(945\) 2.11738i 0.0688783i
\(946\) −15.9150 26.1071i −0.517441 0.848814i
\(947\) 18.5600i 0.603119i 0.953447 + 0.301560i \(0.0975073\pi\)
−0.953447 + 0.301560i \(0.902493\pi\)
\(948\) 1.99238 + 2.25915i 0.0647095 + 0.0733737i
\(949\) 4.00000 0.129845
\(950\) −9.43521 + 3.56618i −0.306119 + 0.115702i
\(951\) 7.89750i 0.256094i
\(952\) 8.62664 + 4.56479i 0.279591 + 0.147946i
\(953\) 27.3643i 0.886418i 0.896418 + 0.443209i \(0.146160\pi\)
−0.896418 + 0.443209i \(0.853840\pi\)
\(954\) 33.3986 12.6235i 1.08132 0.408700i
\(955\) 15.8745i 0.513687i
\(956\) 39.1124 34.4939i 1.26499 1.11561i
\(957\) 2.87043 + 15.2470i 0.0927877 + 0.492864i
\(958\) 40.3765 15.2609i 1.30451 0.493057i
\(959\) −3.68170 −0.118888
\(960\) 4.05869 2.76127i 0.130994 0.0891197i
\(961\) 30.6235 0.987854
\(962\) 5.62348 + 14.8783i 0.181308 + 0.479696i
\(963\) 41.6464 1.34204
\(964\) −9.58681 10.8704i −0.308771 0.350113i
\(965\) 13.6235i 0.438555i
\(966\) −3.24695 + 1.22723i −0.104469 + 0.0394855i
\(967\) 50.3090 1.61783 0.808915 0.587926i \(-0.200055\pi\)
0.808915 + 0.587926i \(0.200055\pi\)
\(968\) 3.55544 30.9089i 0.114276 0.993449i
\(969\) −24.6113 −0.790628
\(970\) 2.64575 1.00000i 0.0849500 0.0321081i
\(971\) 50.5401i 1.62191i 0.585110 + 0.810954i \(0.301051\pi\)
−0.585110 + 0.810954i \(0.698949\pi\)
\(972\) −18.3643 20.8232i −0.589036 0.667904i
\(973\) −8.75305 −0.280610
\(974\) 21.5883 + 57.1174i 0.691735 + 1.83016i
\(975\) −1.22723 −0.0393029
\(976\) 46.1292 + 5.81174i 1.47656 + 0.186029i
\(977\) 3.50610 0.112170 0.0560850 0.998426i \(-0.482138\pi\)
0.0560850 + 0.998426i \(0.482138\pi\)
\(978\) 17.6793 6.68216i 0.565323 0.213672i
\(979\) −0.996190 5.29150i −0.0318384 0.169117i
\(980\) 9.93521 8.76203i 0.317369 0.279893i
\(981\) 29.5061i 0.942057i
\(982\) 48.7995 18.4445i 1.55726 0.588587i
\(983\) 24.0030i 0.765578i −0.923836 0.382789i \(-0.874964\pi\)
0.923836 0.382789i \(-0.125036\pi\)
\(984\) −6.49390 + 12.2723i −0.207018 + 0.391227i
\(985\) 20.4939i 0.652990i
\(986\) 56.7122 21.4352i 1.80609 0.682636i
\(987\) 2.45446 0.0781265
\(988\) −18.8704 21.3971i −0.600348 0.680731i
\(989\) 42.4939i 1.35123i
\(990\) −6.40501 10.5068i −0.203565 0.333929i
\(991\) 10.9656i 0.348333i 0.984716 + 0.174167i \(0.0557231\pi\)
−0.984716 + 0.174167i \(0.944277\pi\)
\(992\) 3.37489 0.811738i 0.107153 0.0257727i
\(993\) 13.5061 0.428603
\(994\) 0.564787 + 1.49429i 0.0179140 + 0.0473959i
\(995\) 9.96939i 0.316051i
\(996\) −6.28769 7.12957i −0.199233 0.225909i
\(997\) 3.74085i 0.118474i −0.998244 0.0592370i \(-0.981133\pi\)
0.998244 0.0592370i \(-0.0188668\pi\)
\(998\) −0.804903 2.12957i −0.0254788 0.0674105i
\(999\) 19.4047i 0.613937i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.d.c.131.3 yes 8
4.3 odd 2 inner 220.2.d.c.131.8 yes 8
8.3 odd 2 3520.2.f.i.2111.3 8
8.5 even 2 3520.2.f.i.2111.6 8
11.10 odd 2 inner 220.2.d.c.131.5 yes 8
44.43 even 2 inner 220.2.d.c.131.2 8
88.21 odd 2 3520.2.f.i.2111.5 8
88.43 even 2 3520.2.f.i.2111.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.d.c.131.2 8 44.43 even 2 inner
220.2.d.c.131.3 yes 8 1.1 even 1 trivial
220.2.d.c.131.5 yes 8 11.10 odd 2 inner
220.2.d.c.131.8 yes 8 4.3 odd 2 inner
3520.2.f.i.2111.3 8 8.3 odd 2
3520.2.f.i.2111.4 8 88.43 even 2
3520.2.f.i.2111.5 8 88.21 odd 2
3520.2.f.i.2111.6 8 8.5 even 2