Properties

Label 220.2.d.c
Level $220$
Weight $2$
Character orbit 220.d
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(131,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31116960000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{5} + 53x^{4} - 134x^{3} - 218x^{2} + 288x + 904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + ( - \beta_{5} - \beta_1) q^{3} + (\beta_{5} + 1) q^{4} - q^{5} + ( - \beta_{6} + \beta_{2}) q^{6} + ( - \beta_{4} - \beta_{3}) q^{7} + (\beta_{6} - 2 \beta_{4}) q^{8} + (2 \beta_{7} - \beta_{5} + \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{4} q^{2} + ( - \beta_{5} - \beta_1) q^{3} + (\beta_{5} + 1) q^{4} - q^{5} + ( - \beta_{6} + \beta_{2}) q^{6} + ( - \beta_{4} - \beta_{3}) q^{7} + (\beta_{6} - 2 \beta_{4}) q^{8} + (2 \beta_{7} - \beta_{5} + \beta_1 - 1) q^{9} + \beta_{4} q^{10} + (\beta_{5} + \beta_{4} + \beta_{3} + \cdots - 1) q^{11}+ \cdots + ( - \beta_{6} + 5 \beta_{5} - 9 \beta_{4} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{4} - 8 q^{5} - 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 12 q^{4} - 8 q^{5} - 20 q^{9} + 14 q^{12} + 14 q^{14} + 4 q^{16} - 12 q^{20} - 14 q^{22} + 8 q^{25} + 8 q^{26} - 16 q^{33} + 2 q^{34} - 30 q^{36} + 4 q^{37} - 14 q^{38} + 22 q^{42} - 14 q^{44} + 20 q^{45} + 42 q^{48} - 12 q^{49} - 36 q^{53} + 14 q^{56} + 10 q^{58} - 14 q^{60} - 36 q^{64} - 22 q^{66} + 32 q^{69} - 14 q^{70} - 44 q^{77} - 28 q^{78} - 4 q^{80} + 128 q^{81} - 32 q^{82} + 28 q^{86} - 14 q^{88} - 28 q^{89} + 28 q^{92} - 44 q^{93} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 14x^{5} + 53x^{4} - 134x^{3} - 218x^{2} + 288x + 904 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 3\nu^{5} - 2\nu^{4} - \nu^{3} - 31\nu^{2} + 32\nu - 4 ) / 66 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 53\nu^{7} + 1568\nu^{6} - 6230\nu^{5} - 1872\nu^{4} + 24919\nu^{3} + 115828\nu^{2} - 221174\nu - 346324 ) / 132264 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -106\nu^{7} + 371\nu^{6} + 1939\nu^{5} - 5775\nu^{4} - 13265\nu^{3} + 25858\nu^{2} + 164794\nu - 86908 ) / 132264 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -143\nu^{7} + 1252\nu^{6} - 3382\nu^{5} - 5196\nu^{4} + 11867\nu^{3} + 38372\nu^{2} - 52846\nu - 256484 ) / 132264 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 98\nu^{7} - 343\nu^{6} + 79\nu^{5} + 660\nu^{4} + 6025\nu^{3} - 9869\nu^{2} - 2000\nu + 19208 ) / 33066 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 143\nu^{7} - 250\nu^{6} + 376\nu^{5} - 3822\nu^{4} + 11179\nu^{3} + 3712\nu^{2} - 1262\nu - 92212 ) / 44088 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -215\nu^{7} + 1003\nu^{6} - 250\nu^{5} - 2634\nu^{4} - 4195\nu^{3} + 17945\nu^{2} + 39560\nu - 41138 ) / 33066 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{6} + 2\beta_{5} + \beta_{4} + 2\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{6} + \beta_{5} - \beta_{4} + 2\beta_{3} + 2\beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{7} - 2\beta_{6} + 8\beta_{5} - \beta_{4} + 3\beta_{2} + 3\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{7} - 8\beta_{6} + 15\beta_{5} - 16\beta_{4} + 8\beta_{2} + \beta _1 - 28 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 25\beta_{7} + 21\beta_{6} - 6\beta_{5} - 76\beta_{4} - 30\beta_{3} + 15\beta_{2} + 5\beta _1 - 49 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 60\beta_{7} + 96\beta_{6} - 55\beta_{5} - 148\beta_{4} - 120\beta_{3} - 36\beta_{2} - 87\beta _1 - 158 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -35\beta_{7} + 385\beta_{6} - 322\beta_{5} - 378\beta_{4} - 174\beta_{3} - 175\beta_{2} - 399\beta _1 - 381 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
131.1
2.43649 + 1.82288i
−1.43649 + 1.82288i
−1.43649 1.82288i
2.43649 1.82288i
2.43649 0.822876i
−1.43649 0.822876i
−1.43649 + 0.822876i
2.43649 + 0.822876i
−1.32288 0.500000i 3.25937i 1.50000 + 1.32288i −1.00000 −1.62968 + 4.31174i −3.25937 −1.32288 2.50000i −7.62348 1.32288 + 0.500000i
131.2 −1.32288 0.500000i 0.613616i 1.50000 + 1.32288i −1.00000 0.306808 0.811738i 0.613616 −1.32288 2.50000i 2.62348 1.32288 + 0.500000i
131.3 −1.32288 + 0.500000i 0.613616i 1.50000 1.32288i −1.00000 0.306808 + 0.811738i 0.613616 −1.32288 + 2.50000i 2.62348 1.32288 0.500000i
131.4 −1.32288 + 0.500000i 3.25937i 1.50000 1.32288i −1.00000 −1.62968 4.31174i −3.25937 −1.32288 + 2.50000i −7.62348 1.32288 0.500000i
131.5 1.32288 0.500000i 0.613616i 1.50000 1.32288i −1.00000 −0.306808 0.811738i −0.613616 1.32288 2.50000i 2.62348 −1.32288 + 0.500000i
131.6 1.32288 0.500000i 3.25937i 1.50000 1.32288i −1.00000 1.62968 + 4.31174i 3.25937 1.32288 2.50000i −7.62348 −1.32288 + 0.500000i
131.7 1.32288 + 0.500000i 3.25937i 1.50000 + 1.32288i −1.00000 1.62968 4.31174i 3.25937 1.32288 + 2.50000i −7.62348 −1.32288 0.500000i
131.8 1.32288 + 0.500000i 0.613616i 1.50000 + 1.32288i −1.00000 −0.306808 + 0.811738i −0.613616 1.32288 + 2.50000i 2.62348 −1.32288 0.500000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 131.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.d.c 8
4.b odd 2 1 inner 220.2.d.c 8
8.b even 2 1 3520.2.f.i 8
8.d odd 2 1 3520.2.f.i 8
11.b odd 2 1 inner 220.2.d.c 8
44.c even 2 1 inner 220.2.d.c 8
88.b odd 2 1 3520.2.f.i 8
88.g even 2 1 3520.2.f.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.d.c 8 1.a even 1 1 trivial
220.2.d.c 8 4.b odd 2 1 inner
220.2.d.c 8 11.b odd 2 1 inner
220.2.d.c 8 44.c even 2 1 inner
3520.2.f.i 8 8.b even 2 1
3520.2.f.i 8 8.d odd 2 1
3520.2.f.i 8 88.b odd 2 1
3520.2.f.i 8 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\):

\( T_{3}^{4} + 11T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 11T_{7}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 3 T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} + 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - 178 T^{4} + 14641 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 53 T^{2} + 676)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 71 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 65 T^{2} + 400)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 11 T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - T - 26)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 44 T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 9 T - 6)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 156 T^{2} + 2304)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 137 T^{2} + 256)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 60)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 99 T^{2} + 324)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 176 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 60)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7 T - 14)^{4} \) Copy content Toggle raw display
$97$ \( (T - 2)^{8} \) Copy content Toggle raw display
show more
show less