Properties

Label 220.2.a
Level $220$
Weight $2$
Character orbit 220.a
Rep. character $\chi_{220}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(220))\).

Total New Old
Modular forms 42 2 40
Cusp forms 31 2 29
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeDim
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(1\)

Trace form

\( 2 q + 2 q^{5} - 4 q^{7} + 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{5} - 4 q^{7} + 2 q^{9} - 4 q^{13} - 4 q^{17} - 8 q^{19} + 8 q^{21} + 2 q^{25} - 4 q^{29} + 8 q^{31} + 4 q^{33} - 4 q^{35} - 4 q^{37} + 8 q^{39} - 4 q^{41} + 12 q^{43} + 2 q^{45} + 16 q^{47} + 2 q^{49} - 8 q^{51} - 4 q^{53} - 16 q^{59} - 12 q^{61} - 4 q^{63} - 4 q^{65} - 8 q^{67} + 24 q^{69} - 8 q^{71} - 20 q^{73} + 4 q^{77} - 22 q^{81} + 12 q^{83} - 4 q^{85} + 16 q^{87} + 12 q^{89} + 16 q^{91} - 16 q^{93} - 8 q^{95} + 20 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(220))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11
220.2.a.a 220.a 1.a $1$ $1.757$ \(\Q\) None 220.2.a.a \(0\) \(-2\) \(1\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-4q^{7}+q^{9}-q^{11}-4q^{13}+\cdots\)
220.2.a.b 220.a 1.a $1$ $1.757$ \(\Q\) None 220.2.a.b \(0\) \(2\) \(1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+q^{9}+q^{11}+2q^{15}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(220))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(220)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)