Defining parameters
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(220))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 2 | 40 |
Cusp forms | 31 | 2 | 29 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(220))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 11 | |||||||
220.2.a.a | $1$ | $1.757$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-4\) | $-$ | $-$ | $+$ | \(q-2q^{3}+q^{5}-4q^{7}+q^{9}-q^{11}-4q^{13}+\cdots\) | |
220.2.a.b | $1$ | $1.757$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q+2q^{3}+q^{5}+q^{9}+q^{11}+2q^{15}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(220))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(220)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)