Properties

Label 22.7.d.a
Level $22$
Weight $7$
Character orbit 22.d
Analytic conductor $5.061$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [22,7,Mod(7,22)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("22.7"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 22 = 2 \cdot 11 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 22.d (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.06118983964\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 52 q^{3} + 192 q^{4} - 368 q^{5} + 400 q^{6} + 720 q^{7} - 3814 q^{9} + 4366 q^{11} + 3456 q^{12} + 3600 q^{13} - 4288 q^{14} - 2148 q^{15} - 6144 q^{16} - 5880 q^{17} + 18400 q^{18} - 23850 q^{19}+ \cdots + 4890070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 −3.32502 + 4.57649i −16.1429 + 49.6828i −9.88854 30.4338i −56.8190 + 41.2814i −173.698 239.074i 422.528 137.288i 172.160 + 55.9381i −1618.02 1175.56i 397.293i
7.2 −3.32502 + 4.57649i 2.09392 6.44443i −9.88854 30.4338i 65.2204 47.3854i 22.5306 + 31.0106i 234.010 76.0344i 172.160 + 55.9381i 552.627 + 401.507i 456.037i
7.3 −3.32502 + 4.57649i 14.1734 43.6214i −9.88854 30.4338i −186.053 + 135.176i 152.506 + 209.906i −183.893 + 59.7505i 172.160 + 55.9381i −1112.17 808.036i 1300.93i
7.4 3.32502 4.57649i −9.01575 + 27.7476i −9.88854 30.4338i −129.576 + 94.1428i 97.0093 + 133.522i −294.799 + 95.7861i −172.160 55.9381i −98.8743 71.8364i 906.032i
7.5 3.32502 4.57649i −6.58001 + 20.2512i −9.88854 30.4338i 135.508 98.4524i 70.8008 + 97.4489i 455.470 147.991i −172.160 55.9381i 222.959 + 161.989i 947.508i
7.6 3.32502 4.57649i 10.5828 32.5704i −9.88854 30.4338i −0.778391 + 0.565534i −113.870 156.729i −144.738 + 47.0282i −172.160 55.9381i −359.065 260.876i 5.44271i
13.1 −5.37999 1.74806i −31.8069 + 23.1090i 25.8885 + 18.8091i −8.73605 26.8868i 211.517 68.7259i 205.916 283.418i −106.400 146.448i 252.375 776.731i 159.922i
13.2 −5.37999 1.74806i 0.0235888 0.0171383i 25.8885 + 18.8091i −27.6593 85.1266i −0.156866 + 0.0509689i −308.398 + 424.474i −106.400 146.448i −225.273 + 693.319i 506.330i
13.3 −5.37999 1.74806i 36.3463 26.4071i 25.8885 + 18.8091i 9.06738 + 27.9065i −241.704 + 78.5344i 121.970 167.877i −106.400 146.448i 398.443 1226.28i 165.987i
13.4 5.37999 + 1.74806i −18.4229 + 13.3850i 25.8885 + 18.8091i 17.5479 + 54.0070i −122.513 + 39.8069i −314.104 + 432.327i 106.400 + 146.448i −65.0282 + 200.136i 321.232i
13.5 5.37999 + 1.74806i 10.9678 7.96859i 25.8885 + 18.8091i 46.4416 + 142.932i 72.9363 23.6984i 340.329 468.423i 106.400 + 146.448i −168.479 + 518.524i 850.157i
13.6 5.37999 + 1.74806i 33.7806 24.5431i 25.8885 + 18.8091i −48.1631 148.231i 224.642 72.9907i −174.289 + 239.888i 106.400 + 146.448i 313.496 964.842i 881.671i
17.1 −5.37999 + 1.74806i −31.8069 23.1090i 25.8885 18.8091i −8.73605 + 26.8868i 211.517 + 68.7259i 205.916 + 283.418i −106.400 + 146.448i 252.375 + 776.731i 159.922i
17.2 −5.37999 + 1.74806i 0.0235888 + 0.0171383i 25.8885 18.8091i −27.6593 + 85.1266i −0.156866 0.0509689i −308.398 424.474i −106.400 + 146.448i −225.273 693.319i 506.330i
17.3 −5.37999 + 1.74806i 36.3463 + 26.4071i 25.8885 18.8091i 9.06738 27.9065i −241.704 78.5344i 121.970 + 167.877i −106.400 + 146.448i 398.443 + 1226.28i 165.987i
17.4 5.37999 1.74806i −18.4229 13.3850i 25.8885 18.8091i 17.5479 54.0070i −122.513 39.8069i −314.104 432.327i 106.400 146.448i −65.0282 200.136i 321.232i
17.5 5.37999 1.74806i 10.9678 + 7.96859i 25.8885 18.8091i 46.4416 142.932i 72.9363 + 23.6984i 340.329 + 468.423i 106.400 146.448i −168.479 518.524i 850.157i
17.6 5.37999 1.74806i 33.7806 + 24.5431i 25.8885 18.8091i −48.1631 + 148.231i 224.642 + 72.9907i −174.289 239.888i 106.400 146.448i 313.496 + 964.842i 881.671i
19.1 −3.32502 4.57649i −16.1429 49.6828i −9.88854 + 30.4338i −56.8190 41.2814i −173.698 + 239.074i 422.528 + 137.288i 172.160 55.9381i −1618.02 + 1175.56i 397.293i
19.2 −3.32502 4.57649i 2.09392 + 6.44443i −9.88854 + 30.4338i 65.2204 + 47.3854i 22.5306 31.0106i 234.010 + 76.0344i 172.160 55.9381i 552.627 401.507i 456.037i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 22.7.d.a 24
11.c even 5 1 242.7.b.e 24
11.d odd 10 1 inner 22.7.d.a 24
11.d odd 10 1 242.7.b.e 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.7.d.a 24 1.a even 1 1 trivial
22.7.d.a 24 11.d odd 10 1 inner
242.7.b.e 24 11.c even 5 1
242.7.b.e 24 11.d odd 10 1

Hecke kernels

This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(22, [\chi])\).