Newspace parameters
| Level: | \( N \) | \(=\) | \( 22 = 2 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 7 \) |
| Character orbit: | \([\chi]\) | \(=\) | 22.d (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.06118983964\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7.1 | −3.32502 | + | 4.57649i | −16.1429 | + | 49.6828i | −9.88854 | − | 30.4338i | −56.8190 | + | 41.2814i | −173.698 | − | 239.074i | 422.528 | − | 137.288i | 172.160 | + | 55.9381i | −1618.02 | − | 1175.56i | − | 397.293i | |
| 7.2 | −3.32502 | + | 4.57649i | 2.09392 | − | 6.44443i | −9.88854 | − | 30.4338i | 65.2204 | − | 47.3854i | 22.5306 | + | 31.0106i | 234.010 | − | 76.0344i | 172.160 | + | 55.9381i | 552.627 | + | 401.507i | 456.037i | ||
| 7.3 | −3.32502 | + | 4.57649i | 14.1734 | − | 43.6214i | −9.88854 | − | 30.4338i | −186.053 | + | 135.176i | 152.506 | + | 209.906i | −183.893 | + | 59.7505i | 172.160 | + | 55.9381i | −1112.17 | − | 808.036i | − | 1300.93i | |
| 7.4 | 3.32502 | − | 4.57649i | −9.01575 | + | 27.7476i | −9.88854 | − | 30.4338i | −129.576 | + | 94.1428i | 97.0093 | + | 133.522i | −294.799 | + | 95.7861i | −172.160 | − | 55.9381i | −98.8743 | − | 71.8364i | 906.032i | ||
| 7.5 | 3.32502 | − | 4.57649i | −6.58001 | + | 20.2512i | −9.88854 | − | 30.4338i | 135.508 | − | 98.4524i | 70.8008 | + | 97.4489i | 455.470 | − | 147.991i | −172.160 | − | 55.9381i | 222.959 | + | 161.989i | − | 947.508i | |
| 7.6 | 3.32502 | − | 4.57649i | 10.5828 | − | 32.5704i | −9.88854 | − | 30.4338i | −0.778391 | + | 0.565534i | −113.870 | − | 156.729i | −144.738 | + | 47.0282i | −172.160 | − | 55.9381i | −359.065 | − | 260.876i | 5.44271i | ||
| 13.1 | −5.37999 | − | 1.74806i | −31.8069 | + | 23.1090i | 25.8885 | + | 18.8091i | −8.73605 | − | 26.8868i | 211.517 | − | 68.7259i | 205.916 | − | 283.418i | −106.400 | − | 146.448i | 252.375 | − | 776.731i | 159.922i | ||
| 13.2 | −5.37999 | − | 1.74806i | 0.0235888 | − | 0.0171383i | 25.8885 | + | 18.8091i | −27.6593 | − | 85.1266i | −0.156866 | + | 0.0509689i | −308.398 | + | 424.474i | −106.400 | − | 146.448i | −225.273 | + | 693.319i | 506.330i | ||
| 13.3 | −5.37999 | − | 1.74806i | 36.3463 | − | 26.4071i | 25.8885 | + | 18.8091i | 9.06738 | + | 27.9065i | −241.704 | + | 78.5344i | 121.970 | − | 167.877i | −106.400 | − | 146.448i | 398.443 | − | 1226.28i | − | 165.987i | |
| 13.4 | 5.37999 | + | 1.74806i | −18.4229 | + | 13.3850i | 25.8885 | + | 18.8091i | 17.5479 | + | 54.0070i | −122.513 | + | 39.8069i | −314.104 | + | 432.327i | 106.400 | + | 146.448i | −65.0282 | + | 200.136i | 321.232i | ||
| 13.5 | 5.37999 | + | 1.74806i | 10.9678 | − | 7.96859i | 25.8885 | + | 18.8091i | 46.4416 | + | 142.932i | 72.9363 | − | 23.6984i | 340.329 | − | 468.423i | 106.400 | + | 146.448i | −168.479 | + | 518.524i | 850.157i | ||
| 13.6 | 5.37999 | + | 1.74806i | 33.7806 | − | 24.5431i | 25.8885 | + | 18.8091i | −48.1631 | − | 148.231i | 224.642 | − | 72.9907i | −174.289 | + | 239.888i | 106.400 | + | 146.448i | 313.496 | − | 964.842i | − | 881.671i | |
| 17.1 | −5.37999 | + | 1.74806i | −31.8069 | − | 23.1090i | 25.8885 | − | 18.8091i | −8.73605 | + | 26.8868i | 211.517 | + | 68.7259i | 205.916 | + | 283.418i | −106.400 | + | 146.448i | 252.375 | + | 776.731i | − | 159.922i | |
| 17.2 | −5.37999 | + | 1.74806i | 0.0235888 | + | 0.0171383i | 25.8885 | − | 18.8091i | −27.6593 | + | 85.1266i | −0.156866 | − | 0.0509689i | −308.398 | − | 424.474i | −106.400 | + | 146.448i | −225.273 | − | 693.319i | − | 506.330i | |
| 17.3 | −5.37999 | + | 1.74806i | 36.3463 | + | 26.4071i | 25.8885 | − | 18.8091i | 9.06738 | − | 27.9065i | −241.704 | − | 78.5344i | 121.970 | + | 167.877i | −106.400 | + | 146.448i | 398.443 | + | 1226.28i | 165.987i | ||
| 17.4 | 5.37999 | − | 1.74806i | −18.4229 | − | 13.3850i | 25.8885 | − | 18.8091i | 17.5479 | − | 54.0070i | −122.513 | − | 39.8069i | −314.104 | − | 432.327i | 106.400 | − | 146.448i | −65.0282 | − | 200.136i | − | 321.232i | |
| 17.5 | 5.37999 | − | 1.74806i | 10.9678 | + | 7.96859i | 25.8885 | − | 18.8091i | 46.4416 | − | 142.932i | 72.9363 | + | 23.6984i | 340.329 | + | 468.423i | 106.400 | − | 146.448i | −168.479 | − | 518.524i | − | 850.157i | |
| 17.6 | 5.37999 | − | 1.74806i | 33.7806 | + | 24.5431i | 25.8885 | − | 18.8091i | −48.1631 | + | 148.231i | 224.642 | + | 72.9907i | −174.289 | − | 239.888i | 106.400 | − | 146.448i | 313.496 | + | 964.842i | 881.671i | ||
| 19.1 | −3.32502 | − | 4.57649i | −16.1429 | − | 49.6828i | −9.88854 | + | 30.4338i | −56.8190 | − | 41.2814i | −173.698 | + | 239.074i | 422.528 | + | 137.288i | 172.160 | − | 55.9381i | −1618.02 | + | 1175.56i | 397.293i | ||
| 19.2 | −3.32502 | − | 4.57649i | 2.09392 | + | 6.44443i | −9.88854 | + | 30.4338i | 65.2204 | + | 47.3854i | 22.5306 | − | 31.0106i | 234.010 | + | 76.0344i | 172.160 | − | 55.9381i | 552.627 | − | 401.507i | − | 456.037i | |
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.d | odd | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 22.7.d.a | ✓ | 24 |
| 11.c | even | 5 | 1 | 242.7.b.e | 24 | ||
| 11.d | odd | 10 | 1 | inner | 22.7.d.a | ✓ | 24 |
| 11.d | odd | 10 | 1 | 242.7.b.e | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 22.7.d.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 22.7.d.a | ✓ | 24 | 11.d | odd | 10 | 1 | inner |
| 242.7.b.e | 24 | 11.c | even | 5 | 1 | ||
| 242.7.b.e | 24 | 11.d | odd | 10 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(22, [\chi])\).