[N,k,chi] = [22,6,Mod(1,22)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("22.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{793})\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(11\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 29T_{3} + 12 \)
T3^2 - 29*T3 + 12
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(22))\).
$p$
$F_p(T)$
$2$
\( (T - 4)^{2} \)
(T - 4)^2
$3$
\( T^{2} - 29T + 12 \)
T^2 - 29*T + 12
$5$
\( T^{2} + 13T - 4914 \)
T^2 + 13*T - 4914
$7$
\( T^{2} + 14T - 7088 \)
T^2 + 14*T - 7088
$11$
\( (T + 121)^{2} \)
(T + 121)^2
$13$
\( T^{2} + 646T + 84504 \)
T^2 + 646*T + 84504
$17$
\( T^{2} + 208 T - 3037476 \)
T^2 + 208*T - 3037476
$19$
\( T^{2} + 2148 T + 769664 \)
T^2 + 2148*T + 769664
$23$
\( T^{2} - 349T + 20736 \)
T^2 - 349*T + 20736
$29$
\( T^{2} - 4422 T - 21668256 \)
T^2 - 4422*T - 21668256
$31$
\( T^{2} - 14381 T + 50132952 \)
T^2 - 14381*T + 50132952
$37$
\( T^{2} + 4267 T + 150474 \)
T^2 + 4267*T + 150474
$41$
\( T^{2} + 10110 T - 178286832 \)
T^2 + 10110*T - 178286832
$43$
\( T^{2} + 9798 T - 19793224 \)
T^2 + 9798*T - 19793224
$47$
\( T^{2} - 21144 T + 92468736 \)
T^2 - 21144*T + 92468736
$53$
\( T^{2} - 39584 T + 361877916 \)
T^2 - 39584*T + 361877916
$59$
\( T^{2} - 90951 T + 2046037356 \)
T^2 - 90951*T + 2046037356
$61$
\( T^{2} + 29550 T + 163449608 \)
T^2 + 29550*T + 163449608
$67$
\( T^{2} + 64149 T + 585679844 \)
T^2 + 64149*T + 585679844
$71$
\( T^{2} - 23583 T - 3313271952 \)
T^2 - 23583*T - 3313271952
$73$
\( T^{2} + 39058 T - 1315930776 \)
T^2 + 39058*T - 1315930776
$79$
\( T^{2} + 54974 T - 1348802144 \)
T^2 + 54974*T - 1348802144
$83$
\( T^{2} - 29986 T - 5297916504 \)
T^2 - 29986*T - 5297916504
$89$
\( T^{2} + 18047 T - 117223146 \)
T^2 + 18047*T - 117223146
$97$
\( T^{2} + 30309 T - 13142971534 \)
T^2 + 30309*T - 13142971534
show more
show less