Properties

Label 22.6.a.a
Level $22$
Weight $6$
Character orbit 22.a
Self dual yes
Analytic conductor $3.528$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 22 = 2 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 22.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.52844403589\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 4 q^{2} - 21 q^{3} + 16 q^{4} + 81 q^{5} + 84 q^{6} + 98 q^{7} - 64 q^{8} + 198 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - 21 q^{3} + 16 q^{4} + 81 q^{5} + 84 q^{6} + 98 q^{7} - 64 q^{8} + 198 q^{9} - 324 q^{10} + 121 q^{11} - 336 q^{12} + 824 q^{13} - 392 q^{14} - 1701 q^{15} + 256 q^{16} + 978 q^{17} - 792 q^{18} - 2140 q^{19} + 1296 q^{20} - 2058 q^{21} - 484 q^{22} + 3699 q^{23} + 1344 q^{24} + 3436 q^{25} - 3296 q^{26} + 945 q^{27} + 1568 q^{28} + 3480 q^{29} + 6804 q^{30} - 7813 q^{31} - 1024 q^{32} - 2541 q^{33} - 3912 q^{34} + 7938 q^{35} + 3168 q^{36} - 13597 q^{37} + 8560 q^{38} - 17304 q^{39} - 5184 q^{40} + 6492 q^{41} + 8232 q^{42} + 14234 q^{43} + 1936 q^{44} + 16038 q^{45} - 14796 q^{46} - 20352 q^{47} - 5376 q^{48} - 7203 q^{49} - 13744 q^{50} - 20538 q^{51} + 13184 q^{52} - 366 q^{53} - 3780 q^{54} + 9801 q^{55} - 6272 q^{56} + 44940 q^{57} - 13920 q^{58} + 9825 q^{59} - 27216 q^{60} + 26132 q^{61} + 31252 q^{62} + 19404 q^{63} + 4096 q^{64} + 66744 q^{65} + 10164 q^{66} + 17093 q^{67} + 15648 q^{68} - 77679 q^{69} - 31752 q^{70} - 23583 q^{71} - 12672 q^{72} - 35176 q^{73} + 54388 q^{74} - 72156 q^{75} - 34240 q^{76} + 11858 q^{77} + 69216 q^{78} - 42490 q^{79} + 20736 q^{80} - 67959 q^{81} - 25968 q^{82} + 22674 q^{83} - 32928 q^{84} + 79218 q^{85} - 56936 q^{86} - 73080 q^{87} - 7744 q^{88} - 17145 q^{89} - 64152 q^{90} + 80752 q^{91} + 59184 q^{92} + 164073 q^{93} + 81408 q^{94} - 173340 q^{95} + 21504 q^{96} - 30727 q^{97} + 28812 q^{98} + 23958 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −21.0000 16.0000 81.0000 84.0000 98.0000 −64.0000 198.000 −324.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 22.6.a.a 1
3.b odd 2 1 198.6.a.d 1
4.b odd 2 1 176.6.a.d 1
5.b even 2 1 550.6.a.g 1
5.c odd 4 2 550.6.b.g 2
7.b odd 2 1 1078.6.a.b 1
8.b even 2 1 704.6.a.i 1
8.d odd 2 1 704.6.a.b 1
11.b odd 2 1 242.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.6.a.a 1 1.a even 1 1 trivial
176.6.a.d 1 4.b odd 2 1
198.6.a.d 1 3.b odd 2 1
242.6.a.c 1 11.b odd 2 1
550.6.a.g 1 5.b even 2 1
550.6.b.g 2 5.c odd 4 2
704.6.a.b 1 8.d odd 2 1
704.6.a.i 1 8.b even 2 1
1078.6.a.b 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 21 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(22))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T + 21 \) Copy content Toggle raw display
$5$ \( T - 81 \) Copy content Toggle raw display
$7$ \( T - 98 \) Copy content Toggle raw display
$11$ \( T - 121 \) Copy content Toggle raw display
$13$ \( T - 824 \) Copy content Toggle raw display
$17$ \( T - 978 \) Copy content Toggle raw display
$19$ \( T + 2140 \) Copy content Toggle raw display
$23$ \( T - 3699 \) Copy content Toggle raw display
$29$ \( T - 3480 \) Copy content Toggle raw display
$31$ \( T + 7813 \) Copy content Toggle raw display
$37$ \( T + 13597 \) Copy content Toggle raw display
$41$ \( T - 6492 \) Copy content Toggle raw display
$43$ \( T - 14234 \) Copy content Toggle raw display
$47$ \( T + 20352 \) Copy content Toggle raw display
$53$ \( T + 366 \) Copy content Toggle raw display
$59$ \( T - 9825 \) Copy content Toggle raw display
$61$ \( T - 26132 \) Copy content Toggle raw display
$67$ \( T - 17093 \) Copy content Toggle raw display
$71$ \( T + 23583 \) Copy content Toggle raw display
$73$ \( T + 35176 \) Copy content Toggle raw display
$79$ \( T + 42490 \) Copy content Toggle raw display
$83$ \( T - 22674 \) Copy content Toggle raw display
$89$ \( T + 17145 \) Copy content Toggle raw display
$97$ \( T + 30727 \) Copy content Toggle raw display
show more
show less