Newspace parameters
Level: | \( N \) | \(=\) | \( 22 = 2 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 22.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.52844403589\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.00000 | −21.0000 | 16.0000 | 81.0000 | 84.0000 | 98.0000 | −64.0000 | 198.000 | −324.000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 22.6.a.a | ✓ | 1 |
3.b | odd | 2 | 1 | 198.6.a.d | 1 | ||
4.b | odd | 2 | 1 | 176.6.a.d | 1 | ||
5.b | even | 2 | 1 | 550.6.a.g | 1 | ||
5.c | odd | 4 | 2 | 550.6.b.g | 2 | ||
7.b | odd | 2 | 1 | 1078.6.a.b | 1 | ||
8.b | even | 2 | 1 | 704.6.a.i | 1 | ||
8.d | odd | 2 | 1 | 704.6.a.b | 1 | ||
11.b | odd | 2 | 1 | 242.6.a.c | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
22.6.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
176.6.a.d | 1 | 4.b | odd | 2 | 1 | ||
198.6.a.d | 1 | 3.b | odd | 2 | 1 | ||
242.6.a.c | 1 | 11.b | odd | 2 | 1 | ||
550.6.a.g | 1 | 5.b | even | 2 | 1 | ||
550.6.b.g | 2 | 5.c | odd | 4 | 2 | ||
704.6.a.b | 1 | 8.d | odd | 2 | 1 | ||
704.6.a.i | 1 | 8.b | even | 2 | 1 | ||
1078.6.a.b | 1 | 7.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} + 21 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(22))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 4 \)
$3$
\( T + 21 \)
$5$
\( T - 81 \)
$7$
\( T - 98 \)
$11$
\( T - 121 \)
$13$
\( T - 824 \)
$17$
\( T - 978 \)
$19$
\( T + 2140 \)
$23$
\( T - 3699 \)
$29$
\( T - 3480 \)
$31$
\( T + 7813 \)
$37$
\( T + 13597 \)
$41$
\( T - 6492 \)
$43$
\( T - 14234 \)
$47$
\( T + 20352 \)
$53$
\( T + 366 \)
$59$
\( T - 9825 \)
$61$
\( T - 26132 \)
$67$
\( T - 17093 \)
$71$
\( T + 23583 \)
$73$
\( T + 35176 \)
$79$
\( T + 42490 \)
$83$
\( T - 22674 \)
$89$
\( T + 17145 \)
$97$
\( T + 30727 \)
show more
show less