Properties

Label 22.4.c
Level $22$
Weight $4$
Character orbit 22.c
Rep. character $\chi_{22}(3,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $12$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 22 = 2 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 22.c (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(22, [\chi])\).

Total New Old
Modular forms 44 12 32
Cusp forms 28 12 16
Eisenstein series 16 0 16

Trace form

\( 12 q + 2 q^{2} + 2 q^{3} - 12 q^{4} + 8 q^{5} + 42 q^{6} + 24 q^{7} + 8 q^{8} - 145 q^{9} - 104 q^{10} - 111 q^{11} - 72 q^{12} + 98 q^{13} + 52 q^{14} + 224 q^{15} - 48 q^{16} + 184 q^{17} + 304 q^{18}+ \cdots - 7867 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(22, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
22.4.c.a 22.c 11.c $4$ $1.298$ \(\Q(\zeta_{10})\) None 22.4.c.a \(-2\) \(-1\) \(3\) \(25\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\zeta_{10}q^{2}+(-3+3\zeta_{10}+8\zeta_{10}^{3})q^{3}+\cdots\)
22.4.c.b 22.c 11.c $8$ $1.298$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 22.4.c.b \(4\) \(3\) \(5\) \(-1\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\beta _{3}q^{2}+(1+\beta _{3}-\beta _{4}-\beta _{5})q^{3}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(22, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(22, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 2}\)