Properties

Label 22.4.a
Level $22$
Weight $4$
Character orbit 22.a
Rep. character $\chi_{22}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $12$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 22 = 2 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 22.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(12\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(22))\).

Total New Old
Modular forms 11 3 8
Cusp forms 7 3 4
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(1\)

Trace form

\( 3 q - 2 q^{2} - 2 q^{3} + 12 q^{4} - 8 q^{5} + 8 q^{6} - 4 q^{7} - 8 q^{8} - 15 q^{9} + 4 q^{10} + 11 q^{11} - 8 q^{12} - 138 q^{13} - 32 q^{14} + 186 q^{15} + 48 q^{16} + 126 q^{17} - 74 q^{18} - 12 q^{19}+ \cdots + 77 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(22))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11
22.4.a.a 22.a 1.a $1$ $1.298$ \(\Q\) None 22.4.a.a \(-2\) \(-7\) \(-19\) \(14\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-7q^{3}+4q^{4}-19q^{5}+14q^{6}+\cdots\)
22.4.a.b 22.a 1.a $1$ $1.298$ \(\Q\) None 22.4.a.b \(-2\) \(4\) \(14\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{3}+4q^{4}+14q^{5}-8q^{6}+\cdots\)
22.4.a.c 22.a 1.a $1$ $1.298$ \(\Q\) None 22.4.a.c \(2\) \(1\) \(-3\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+4q^{4}-3q^{5}+2q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(22))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(22)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)