Defining parameters
Level: | \( N \) | = | \( 22 = 2 \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(22))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 55 | 15 | 40 |
Cusp forms | 35 | 15 | 20 |
Eisenstein series | 20 | 0 | 20 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
22.4.a | \(\chi_{22}(1, \cdot)\) | 22.4.a.a | 1 | 1 |
22.4.a.b | 1 | |||
22.4.a.c | 1 | |||
22.4.c | \(\chi_{22}(3, \cdot)\) | 22.4.c.a | 4 | 4 |
22.4.c.b | 8 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(22))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(22)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 1}\)