Properties

Label 22.4
Level 22
Weight 4
Dimension 15
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 120
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(22))\).

Total New Old
Modular forms 55 15 40
Cusp forms 35 15 20
Eisenstein series 20 0 20

Trace form

\( 15 q + 50 q^{6} + 20 q^{7} - 160 q^{9} - 100 q^{10} - 100 q^{11} - 80 q^{12} - 40 q^{13} + 20 q^{14} + 410 q^{15} + 310 q^{17} + 230 q^{18} - 225 q^{19} - 420 q^{21} + 390 q^{23} + 200 q^{24} + 300 q^{25}+ \cdots - 7790 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
22.4.a \(\chi_{22}(1, \cdot)\) 22.4.a.a 1 1
22.4.a.b 1
22.4.a.c 1
22.4.c \(\chi_{22}(3, \cdot)\) 22.4.c.a 4 4
22.4.c.b 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(22))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(22)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)