Properties

Label 22.3
Level 22
Weight 3
Dimension 10
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 90
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(90\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(22))\).

Total New Old
Modular forms 40 10 30
Cusp forms 20 10 10
Eisenstein series 20 0 20

Trace form

\( 10 q - 20 q^{6} - 30 q^{7} - 20 q^{9} + 10 q^{11} + 20 q^{12} + 30 q^{13} + 40 q^{14} + 40 q^{15} + 30 q^{17} + 40 q^{18} - 30 q^{19} - 70 q^{23} - 40 q^{24} - 60 q^{25} - 120 q^{26} - 60 q^{27} - 40 q^{28}+ \cdots - 420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
22.3.b \(\chi_{22}(21, \cdot)\) 22.3.b.a 2 1
22.3.d \(\chi_{22}(7, \cdot)\) 22.3.d.a 8 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(22))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(22)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)