Defining parameters
| Level: | \( N \) | \(=\) | \( 22 = 2 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 22.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(6\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(22))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 5 | 0 | 5 |
| Cusp forms | 2 | 0 | 2 |
| Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(-\) | \(-\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(1\) | \(0\) | \(1\) | \(0\) | \(0\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | \(1\) | \(0\) | \(1\) | ||||
| Minus space | \(-\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | \(2\) | \(0\) | \(2\) | ||||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(22))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(22)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)