Properties

Label 22.2
Level 22
Weight 2
Dimension 4
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 60
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 22 = 2 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(22))\).

Total New Old
Modular forms 25 4 21
Cusp forms 6 4 2
Eisenstein series 19 0 19

Trace form

\( 4 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} + q^{6} + 2 q^{7} - q^{8} + 7 q^{9} + 4 q^{10} - q^{11} + 6 q^{12} - 4 q^{13} + 2 q^{14} + 6 q^{15} - q^{16} + 2 q^{17} - 8 q^{18} - 5 q^{19} - 6 q^{20} - 12 q^{21}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
22.2.a \(\chi_{22}(1, \cdot)\) None 0 1
22.2.c \(\chi_{22}(3, \cdot)\) 22.2.c.a 4 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(22))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(22)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)