Properties

Label 2184.2.a
Level $2184$
Weight $2$
Character orbit 2184.a
Rep. character $\chi_{2184}(1,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $22$
Sturm bound $896$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2184.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(896\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2184))\).

Total New Old
Modular forms 464 36 428
Cusp forms 433 36 397
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(23\)\(1\)\(22\)\(22\)\(1\)\(21\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(32\)\(4\)\(28\)\(30\)\(4\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(32\)\(4\)\(28\)\(30\)\(4\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(29\)\(0\)\(29\)\(27\)\(0\)\(27\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(27\)\(2\)\(25\)\(25\)\(2\)\(23\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(30\)\(2\)\(28\)\(28\)\(2\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(28\)\(2\)\(26\)\(26\)\(2\)\(24\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(31\)\(3\)\(28\)\(29\)\(3\)\(26\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(35\)\(2\)\(33\)\(33\)\(2\)\(31\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(26\)\(3\)\(23\)\(24\)\(3\)\(21\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(26\)\(2\)\(24\)\(24\)\(2\)\(22\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(29\)\(2\)\(27\)\(27\)\(2\)\(25\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(31\)\(1\)\(30\)\(29\)\(1\)\(28\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(28\)\(3\)\(25\)\(26\)\(3\)\(23\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(30\)\(4\)\(26\)\(28\)\(4\)\(24\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(27\)\(1\)\(26\)\(25\)\(1\)\(24\)\(2\)\(0\)\(2\)
Plus space\(+\)\(220\)\(12\)\(208\)\(205\)\(12\)\(193\)\(15\)\(0\)\(15\)
Minus space\(-\)\(244\)\(24\)\(220\)\(228\)\(24\)\(204\)\(16\)\(0\)\(16\)

Trace form

\( 36 q + 36 q^{9} + 4 q^{21} + 44 q^{25} + 16 q^{37} + 16 q^{41} + 32 q^{47} + 36 q^{49} + 16 q^{53} + 32 q^{55} + 16 q^{57} + 16 q^{59} + 16 q^{61} - 8 q^{67} + 32 q^{73} + 24 q^{79} + 36 q^{81} - 32 q^{83}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2184))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 13
2184.2.a.a 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.a \(0\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+q^{7}+q^{9}-5q^{11}-q^{13}+\cdots\)
2184.2.a.b 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.b \(0\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+q^{7}+q^{9}+6q^{11}-q^{13}+\cdots\)
2184.2.a.c 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.c \(0\) \(-1\) \(-2\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}-4q^{11}+q^{13}+\cdots\)
2184.2.a.d 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.d \(0\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+2q^{11}-q^{13}-2q^{17}+\cdots\)
2184.2.a.e 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.e \(0\) \(-1\) \(1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}+5q^{11}+q^{13}+\cdots\)
2184.2.a.f 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.f \(0\) \(-1\) \(2\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}+q^{13}-2q^{15}+\cdots\)
2184.2.a.g 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.g \(0\) \(-1\) \(2\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\)
2184.2.a.h 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.h \(0\) \(-1\) \(4\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{5}+q^{7}+q^{9}+6q^{11}-q^{13}+\cdots\)
2184.2.a.i 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.i \(0\) \(1\) \(-3\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}+q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\)
2184.2.a.j 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.j \(0\) \(1\) \(-2\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+q^{7}+q^{9}-4q^{11}+q^{13}+\cdots\)
2184.2.a.k 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.k \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-2q^{11}-q^{13}-2q^{17}+\cdots\)
2184.2.a.l 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.l \(0\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-2q^{11}-q^{13}-6q^{17}+\cdots\)
2184.2.a.m 2184.a 1.a $1$ $17.439$ \(\Q\) None 2184.2.a.m \(0\) \(1\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
2184.2.a.n 2184.a 1.a $2$ $17.439$ \(\Q(\sqrt{17}) \) None 2184.2.a.n \(0\) \(-2\) \(-3\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}-q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
2184.2.a.o 2184.a 1.a $2$ $17.439$ \(\Q(\sqrt{17}) \) None 2184.2.a.o \(0\) \(-2\) \(-1\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta q^{5}-q^{7}+q^{9}+(2-\beta )q^{11}+\cdots\)
2184.2.a.p 2184.a 1.a $2$ $17.439$ \(\Q(\sqrt{17}) \) None 2184.2.a.p \(0\) \(-2\) \(1\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta q^{5}+q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\)
2184.2.a.q 2184.a 1.a $2$ $17.439$ \(\Q(\sqrt{17}) \) None 2184.2.a.q \(0\) \(2\) \(-3\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{5}-q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
2184.2.a.r 2184.a 1.a $2$ $17.439$ \(\Q(\sqrt{33}) \) None 2184.2.a.r \(0\) \(2\) \(1\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{5}-q^{7}+q^{9}+(-2+\beta )q^{11}+\cdots\)
2184.2.a.s 2184.a 1.a $3$ $17.439$ 3.3.2089.1 None 2184.2.a.s \(0\) \(3\) \(0\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{1}q^{5}+q^{7}+q^{9}+(\beta _{1}+\beta _{2})q^{11}+\cdots\)
2184.2.a.t 2184.a 1.a $3$ $17.439$ 3.3.961.1 None 2184.2.a.t \(0\) \(3\) \(2\) \(-3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-\beta _{1})q^{5}-q^{7}+q^{9}+(3-\beta _{1}+\cdots)q^{11}+\cdots\)
2184.2.a.u 2184.a 1.a $3$ $17.439$ 3.3.316.1 None 2184.2.a.u \(0\) \(3\) \(3\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-\beta _{1})q^{5}+q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots\)
2184.2.a.v 2184.a 1.a $4$ $17.439$ 4.4.138892.1 None 2184.2.a.v \(0\) \(-4\) \(2\) \(-4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta _{1})q^{5}-q^{7}+q^{9}+(-1+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2184))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2184)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 2}\)