Defining parameters
Level: | \( N \) | \(=\) | \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2184.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(896\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2184))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 464 | 36 | 428 |
Cusp forms | 433 | 36 | 397 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(23\) | \(1\) | \(22\) | \(22\) | \(1\) | \(21\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(32\) | \(4\) | \(28\) | \(30\) | \(4\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(32\) | \(4\) | \(28\) | \(30\) | \(4\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(29\) | \(0\) | \(29\) | \(27\) | \(0\) | \(27\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(27\) | \(2\) | \(25\) | \(25\) | \(2\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(30\) | \(2\) | \(28\) | \(28\) | \(2\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(31\) | \(3\) | \(28\) | \(29\) | \(3\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(35\) | \(2\) | \(33\) | \(33\) | \(2\) | \(31\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(26\) | \(3\) | \(23\) | \(24\) | \(3\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(26\) | \(2\) | \(24\) | \(24\) | \(2\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(29\) | \(2\) | \(27\) | \(27\) | \(2\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(31\) | \(1\) | \(30\) | \(29\) | \(1\) | \(28\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(30\) | \(4\) | \(26\) | \(28\) | \(4\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(27\) | \(1\) | \(26\) | \(25\) | \(1\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(220\) | \(12\) | \(208\) | \(205\) | \(12\) | \(193\) | \(15\) | \(0\) | \(15\) | ||||||
Minus space | \(-\) | \(244\) | \(24\) | \(220\) | \(228\) | \(24\) | \(204\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2184))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2184))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2184)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 2}\)