Properties

Label 2175.4.a.n.1.7
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.24052\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.24052 q^{2} +3.00000 q^{3} +19.4631 q^{4} +15.7216 q^{6} +18.4475 q^{7} +60.0724 q^{8} +9.00000 q^{9} +11.5384 q^{11} +58.3892 q^{12} +34.4618 q^{13} +96.6746 q^{14} +159.106 q^{16} -70.7681 q^{17} +47.1647 q^{18} +3.52127 q^{19} +55.3426 q^{21} +60.4671 q^{22} +18.3117 q^{23} +180.217 q^{24} +180.598 q^{26} +27.0000 q^{27} +359.045 q^{28} +29.0000 q^{29} -120.558 q^{31} +353.221 q^{32} +34.6151 q^{33} -370.862 q^{34} +175.168 q^{36} +182.505 q^{37} +18.4533 q^{38} +103.385 q^{39} +74.4691 q^{41} +290.024 q^{42} +405.899 q^{43} +224.572 q^{44} +95.9626 q^{46} +327.143 q^{47} +477.319 q^{48} -2.68899 q^{49} -212.304 q^{51} +670.732 q^{52} -409.067 q^{53} +141.494 q^{54} +1108.19 q^{56} +10.5638 q^{57} +151.975 q^{58} +120.722 q^{59} +34.6082 q^{61} -631.788 q^{62} +166.028 q^{63} +578.210 q^{64} +181.401 q^{66} -671.739 q^{67} -1377.36 q^{68} +54.9350 q^{69} +873.524 q^{71} +540.652 q^{72} -432.426 q^{73} +956.419 q^{74} +68.5347 q^{76} +212.854 q^{77} +541.793 q^{78} -548.355 q^{79} +81.0000 q^{81} +390.257 q^{82} -511.077 q^{83} +1077.14 q^{84} +2127.12 q^{86} +87.0000 q^{87} +693.138 q^{88} -788.135 q^{89} +635.734 q^{91} +356.401 q^{92} -361.675 q^{93} +1714.40 q^{94} +1059.66 q^{96} -967.070 q^{97} -14.0917 q^{98} +103.845 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.24052 1.85280 0.926402 0.376536i \(-0.122885\pi\)
0.926402 + 0.376536i \(0.122885\pi\)
\(3\) 3.00000 0.577350
\(4\) 19.4631 2.43288
\(5\) 0 0
\(6\) 15.7216 1.06972
\(7\) 18.4475 0.996072 0.498036 0.867156i \(-0.334055\pi\)
0.498036 + 0.867156i \(0.334055\pi\)
\(8\) 60.0724 2.65485
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.5384 0.316268 0.158134 0.987418i \(-0.449452\pi\)
0.158134 + 0.987418i \(0.449452\pi\)
\(12\) 58.3892 1.40463
\(13\) 34.4618 0.735229 0.367614 0.929978i \(-0.380175\pi\)
0.367614 + 0.929978i \(0.380175\pi\)
\(14\) 96.6746 1.84553
\(15\) 0 0
\(16\) 159.106 2.48604
\(17\) −70.7681 −1.00963 −0.504817 0.863226i \(-0.668440\pi\)
−0.504817 + 0.863226i \(0.668440\pi\)
\(18\) 47.1647 0.617601
\(19\) 3.52127 0.0425176 0.0212588 0.999774i \(-0.493233\pi\)
0.0212588 + 0.999774i \(0.493233\pi\)
\(20\) 0 0
\(21\) 55.3426 0.575083
\(22\) 60.4671 0.585983
\(23\) 18.3117 0.166011 0.0830053 0.996549i \(-0.473548\pi\)
0.0830053 + 0.996549i \(0.473548\pi\)
\(24\) 180.217 1.53278
\(25\) 0 0
\(26\) 180.598 1.36224
\(27\) 27.0000 0.192450
\(28\) 359.045 2.42333
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −120.558 −0.698481 −0.349240 0.937033i \(-0.613560\pi\)
−0.349240 + 0.937033i \(0.613560\pi\)
\(32\) 353.221 1.95129
\(33\) 34.6151 0.182598
\(34\) −370.862 −1.87065
\(35\) 0 0
\(36\) 175.168 0.810961
\(37\) 182.505 0.810907 0.405454 0.914116i \(-0.367114\pi\)
0.405454 + 0.914116i \(0.367114\pi\)
\(38\) 18.4533 0.0787768
\(39\) 103.385 0.424485
\(40\) 0 0
\(41\) 74.4691 0.283661 0.141831 0.989891i \(-0.454701\pi\)
0.141831 + 0.989891i \(0.454701\pi\)
\(42\) 290.024 1.06552
\(43\) 405.899 1.43951 0.719756 0.694227i \(-0.244254\pi\)
0.719756 + 0.694227i \(0.244254\pi\)
\(44\) 224.572 0.769444
\(45\) 0 0
\(46\) 95.9626 0.307585
\(47\) 327.143 1.01529 0.507646 0.861566i \(-0.330516\pi\)
0.507646 + 0.861566i \(0.330516\pi\)
\(48\) 477.319 1.43531
\(49\) −2.68899 −0.00783963
\(50\) 0 0
\(51\) −212.304 −0.582913
\(52\) 670.732 1.78873
\(53\) −409.067 −1.06018 −0.530092 0.847940i \(-0.677843\pi\)
−0.530092 + 0.847940i \(0.677843\pi\)
\(54\) 141.494 0.356572
\(55\) 0 0
\(56\) 1108.19 2.64442
\(57\) 10.5638 0.0245475
\(58\) 151.975 0.344057
\(59\) 120.722 0.266384 0.133192 0.991090i \(-0.457477\pi\)
0.133192 + 0.991090i \(0.457477\pi\)
\(60\) 0 0
\(61\) 34.6082 0.0726415 0.0363207 0.999340i \(-0.488436\pi\)
0.0363207 + 0.999340i \(0.488436\pi\)
\(62\) −631.788 −1.29415
\(63\) 166.028 0.332024
\(64\) 578.210 1.12932
\(65\) 0 0
\(66\) 181.401 0.338318
\(67\) −671.739 −1.22487 −0.612433 0.790523i \(-0.709809\pi\)
−0.612433 + 0.790523i \(0.709809\pi\)
\(68\) −1377.36 −2.45632
\(69\) 54.9350 0.0958463
\(70\) 0 0
\(71\) 873.524 1.46012 0.730058 0.683386i \(-0.239493\pi\)
0.730058 + 0.683386i \(0.239493\pi\)
\(72\) 540.652 0.884951
\(73\) −432.426 −0.693311 −0.346655 0.937993i \(-0.612683\pi\)
−0.346655 + 0.937993i \(0.612683\pi\)
\(74\) 956.419 1.50245
\(75\) 0 0
\(76\) 68.5347 0.103440
\(77\) 212.854 0.315026
\(78\) 541.793 0.786487
\(79\) −548.355 −0.780946 −0.390473 0.920614i \(-0.627689\pi\)
−0.390473 + 0.920614i \(0.627689\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 390.257 0.525569
\(83\) −511.077 −0.675879 −0.337940 0.941168i \(-0.609730\pi\)
−0.337940 + 0.941168i \(0.609730\pi\)
\(84\) 1077.14 1.39911
\(85\) 0 0
\(86\) 2127.12 2.66713
\(87\) 87.0000 0.107211
\(88\) 693.138 0.839646
\(89\) −788.135 −0.938676 −0.469338 0.883019i \(-0.655507\pi\)
−0.469338 + 0.883019i \(0.655507\pi\)
\(90\) 0 0
\(91\) 635.734 0.732341
\(92\) 356.401 0.403884
\(93\) −361.675 −0.403268
\(94\) 1714.40 1.88114
\(95\) 0 0
\(96\) 1059.66 1.12658
\(97\) −967.070 −1.01228 −0.506140 0.862452i \(-0.668928\pi\)
−0.506140 + 0.862452i \(0.668928\pi\)
\(98\) −14.0917 −0.0145253
\(99\) 103.845 0.105423
\(100\) 0 0
\(101\) 510.016 0.502460 0.251230 0.967927i \(-0.419165\pi\)
0.251230 + 0.967927i \(0.419165\pi\)
\(102\) −1112.59 −1.08002
\(103\) −1645.72 −1.57435 −0.787175 0.616730i \(-0.788457\pi\)
−0.787175 + 0.616730i \(0.788457\pi\)
\(104\) 2070.20 1.95192
\(105\) 0 0
\(106\) −2143.73 −1.96431
\(107\) 1305.35 1.17937 0.589687 0.807632i \(-0.299251\pi\)
0.589687 + 0.807632i \(0.299251\pi\)
\(108\) 525.503 0.468209
\(109\) 932.125 0.819095 0.409548 0.912289i \(-0.365687\pi\)
0.409548 + 0.912289i \(0.365687\pi\)
\(110\) 0 0
\(111\) 547.514 0.468178
\(112\) 2935.12 2.47627
\(113\) −1719.89 −1.43180 −0.715901 0.698202i \(-0.753984\pi\)
−0.715901 + 0.698202i \(0.753984\pi\)
\(114\) 55.3598 0.0454818
\(115\) 0 0
\(116\) 564.429 0.451775
\(117\) 310.156 0.245076
\(118\) 632.646 0.493558
\(119\) −1305.50 −1.00567
\(120\) 0 0
\(121\) −1197.87 −0.899974
\(122\) 181.365 0.134590
\(123\) 223.407 0.163772
\(124\) −2346.43 −1.69932
\(125\) 0 0
\(126\) 870.072 0.615176
\(127\) 883.792 0.617511 0.308756 0.951141i \(-0.400088\pi\)
0.308756 + 0.951141i \(0.400088\pi\)
\(128\) 204.357 0.141116
\(129\) 1217.70 0.831102
\(130\) 0 0
\(131\) −937.386 −0.625190 −0.312595 0.949887i \(-0.601198\pi\)
−0.312595 + 0.949887i \(0.601198\pi\)
\(132\) 673.717 0.444239
\(133\) 64.9587 0.0423506
\(134\) −3520.26 −2.26944
\(135\) 0 0
\(136\) −4251.21 −2.68043
\(137\) −237.650 −0.148203 −0.0741014 0.997251i \(-0.523609\pi\)
−0.0741014 + 0.997251i \(0.523609\pi\)
\(138\) 287.888 0.177584
\(139\) 1706.72 1.04146 0.520728 0.853723i \(-0.325661\pi\)
0.520728 + 0.853723i \(0.325661\pi\)
\(140\) 0 0
\(141\) 981.430 0.586179
\(142\) 4577.72 2.70531
\(143\) 397.633 0.232530
\(144\) 1431.96 0.828679
\(145\) 0 0
\(146\) −2266.14 −1.28457
\(147\) −8.06698 −0.00452621
\(148\) 3552.10 1.97284
\(149\) 3546.59 1.94999 0.974994 0.222230i \(-0.0713334\pi\)
0.974994 + 0.222230i \(0.0713334\pi\)
\(150\) 0 0
\(151\) 1818.23 0.979901 0.489951 0.871750i \(-0.337015\pi\)
0.489951 + 0.871750i \(0.337015\pi\)
\(152\) 211.531 0.112878
\(153\) −636.913 −0.336545
\(154\) 1115.47 0.583682
\(155\) 0 0
\(156\) 2012.20 1.03272
\(157\) 37.7540 0.0191917 0.00959585 0.999954i \(-0.496945\pi\)
0.00959585 + 0.999954i \(0.496945\pi\)
\(158\) −2873.66 −1.44694
\(159\) −1227.20 −0.612097
\(160\) 0 0
\(161\) 337.805 0.165359
\(162\) 424.482 0.205867
\(163\) −1541.87 −0.740913 −0.370457 0.928850i \(-0.620799\pi\)
−0.370457 + 0.928850i \(0.620799\pi\)
\(164\) 1449.40 0.690115
\(165\) 0 0
\(166\) −2678.31 −1.25227
\(167\) −1669.49 −0.773586 −0.386793 0.922167i \(-0.626417\pi\)
−0.386793 + 0.922167i \(0.626417\pi\)
\(168\) 3324.56 1.52676
\(169\) −1009.39 −0.459438
\(170\) 0 0
\(171\) 31.6914 0.0141725
\(172\) 7900.04 3.50216
\(173\) 728.623 0.320209 0.160105 0.987100i \(-0.448817\pi\)
0.160105 + 0.987100i \(0.448817\pi\)
\(174\) 455.925 0.198641
\(175\) 0 0
\(176\) 1835.83 0.786255
\(177\) 362.166 0.153797
\(178\) −4130.24 −1.73918
\(179\) 1926.46 0.804416 0.402208 0.915548i \(-0.368243\pi\)
0.402208 + 0.915548i \(0.368243\pi\)
\(180\) 0 0
\(181\) 3695.62 1.51764 0.758821 0.651299i \(-0.225776\pi\)
0.758821 + 0.651299i \(0.225776\pi\)
\(182\) 3331.58 1.35689
\(183\) 103.825 0.0419396
\(184\) 1100.03 0.440733
\(185\) 0 0
\(186\) −1895.36 −0.747177
\(187\) −816.549 −0.319315
\(188\) 6367.21 2.47009
\(189\) 498.083 0.191694
\(190\) 0 0
\(191\) 2490.19 0.943370 0.471685 0.881767i \(-0.343646\pi\)
0.471685 + 0.881767i \(0.343646\pi\)
\(192\) 1734.63 0.652012
\(193\) −4493.27 −1.67582 −0.837909 0.545809i \(-0.816222\pi\)
−0.837909 + 0.545809i \(0.816222\pi\)
\(194\) −5067.95 −1.87555
\(195\) 0 0
\(196\) −52.3361 −0.0190729
\(197\) −1990.23 −0.719787 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(198\) 544.204 0.195328
\(199\) −83.8021 −0.0298521 −0.0149261 0.999889i \(-0.504751\pi\)
−0.0149261 + 0.999889i \(0.504751\pi\)
\(200\) 0 0
\(201\) −2015.22 −0.707176
\(202\) 2672.75 0.930960
\(203\) 534.978 0.184966
\(204\) −4132.09 −1.41816
\(205\) 0 0
\(206\) −8624.45 −2.91696
\(207\) 164.805 0.0553369
\(208\) 5483.09 1.82781
\(209\) 40.6297 0.0134470
\(210\) 0 0
\(211\) −4369.95 −1.42578 −0.712891 0.701275i \(-0.752615\pi\)
−0.712891 + 0.701275i \(0.752615\pi\)
\(212\) −7961.71 −2.57930
\(213\) 2620.57 0.842998
\(214\) 6840.72 2.18515
\(215\) 0 0
\(216\) 1621.96 0.510926
\(217\) −2224.00 −0.695738
\(218\) 4884.82 1.51762
\(219\) −1297.28 −0.400283
\(220\) 0 0
\(221\) −2438.79 −0.742313
\(222\) 2869.26 0.867441
\(223\) −3633.76 −1.09119 −0.545594 0.838050i \(-0.683696\pi\)
−0.545594 + 0.838050i \(0.683696\pi\)
\(224\) 6516.05 1.94362
\(225\) 0 0
\(226\) −9013.12 −2.65285
\(227\) 3692.30 1.07959 0.539794 0.841797i \(-0.318502\pi\)
0.539794 + 0.841797i \(0.318502\pi\)
\(228\) 205.604 0.0597213
\(229\) 4833.73 1.39486 0.697428 0.716655i \(-0.254328\pi\)
0.697428 + 0.716655i \(0.254328\pi\)
\(230\) 0 0
\(231\) 638.563 0.181880
\(232\) 1742.10 0.492994
\(233\) 4834.45 1.35929 0.679647 0.733539i \(-0.262133\pi\)
0.679647 + 0.733539i \(0.262133\pi\)
\(234\) 1625.38 0.454078
\(235\) 0 0
\(236\) 2349.62 0.648081
\(237\) −1645.06 −0.450879
\(238\) −6841.48 −1.86331
\(239\) 4019.80 1.08795 0.543974 0.839102i \(-0.316919\pi\)
0.543974 + 0.839102i \(0.316919\pi\)
\(240\) 0 0
\(241\) 1076.81 0.287816 0.143908 0.989591i \(-0.454033\pi\)
0.143908 + 0.989591i \(0.454033\pi\)
\(242\) −6277.44 −1.66748
\(243\) 243.000 0.0641500
\(244\) 673.582 0.176728
\(245\) 0 0
\(246\) 1170.77 0.303437
\(247\) 121.349 0.0312602
\(248\) −7242.23 −1.85436
\(249\) −1533.23 −0.390219
\(250\) 0 0
\(251\) −3179.99 −0.799677 −0.399839 0.916586i \(-0.630934\pi\)
−0.399839 + 0.916586i \(0.630934\pi\)
\(252\) 3231.41 0.807776
\(253\) 211.287 0.0525039
\(254\) 4631.53 1.14413
\(255\) 0 0
\(256\) −3554.74 −0.867858
\(257\) −3125.29 −0.758561 −0.379280 0.925282i \(-0.623828\pi\)
−0.379280 + 0.925282i \(0.623828\pi\)
\(258\) 6381.37 1.53987
\(259\) 3366.76 0.807722
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −4912.39 −1.15835
\(263\) 4474.30 1.04904 0.524519 0.851399i \(-0.324245\pi\)
0.524519 + 0.851399i \(0.324245\pi\)
\(264\) 2079.42 0.484770
\(265\) 0 0
\(266\) 340.417 0.0784674
\(267\) −2364.41 −0.541945
\(268\) −13074.1 −2.97995
\(269\) 4053.04 0.918655 0.459327 0.888267i \(-0.348091\pi\)
0.459327 + 0.888267i \(0.348091\pi\)
\(270\) 0 0
\(271\) −8045.96 −1.80353 −0.901766 0.432225i \(-0.857729\pi\)
−0.901766 + 0.432225i \(0.857729\pi\)
\(272\) −11259.7 −2.50999
\(273\) 1907.20 0.422817
\(274\) −1245.41 −0.274591
\(275\) 0 0
\(276\) 1069.20 0.233183
\(277\) −4625.74 −1.00337 −0.501685 0.865050i \(-0.667286\pi\)
−0.501685 + 0.865050i \(0.667286\pi\)
\(278\) 8944.11 1.92961
\(279\) −1085.02 −0.232827
\(280\) 0 0
\(281\) −69.7964 −0.0148174 −0.00740872 0.999973i \(-0.502358\pi\)
−0.00740872 + 0.999973i \(0.502358\pi\)
\(282\) 5143.20 1.08608
\(283\) −1903.58 −0.399845 −0.199922 0.979812i \(-0.564069\pi\)
−0.199922 + 0.979812i \(0.564069\pi\)
\(284\) 17001.4 3.55229
\(285\) 0 0
\(286\) 2083.80 0.430832
\(287\) 1373.77 0.282547
\(288\) 3178.99 0.650429
\(289\) 95.1246 0.0193618
\(290\) 0 0
\(291\) −2901.21 −0.584440
\(292\) −8416.34 −1.68674
\(293\) −623.198 −0.124258 −0.0621290 0.998068i \(-0.519789\pi\)
−0.0621290 + 0.998068i \(0.519789\pi\)
\(294\) −42.2752 −0.00838619
\(295\) 0 0
\(296\) 10963.5 2.15284
\(297\) 311.536 0.0608659
\(298\) 18586.0 3.61295
\(299\) 631.052 0.122056
\(300\) 0 0
\(301\) 7487.83 1.43386
\(302\) 9528.45 1.81557
\(303\) 1530.05 0.290095
\(304\) 560.256 0.105700
\(305\) 0 0
\(306\) −3337.76 −0.623552
\(307\) 6899.90 1.28273 0.641365 0.767236i \(-0.278368\pi\)
0.641365 + 0.767236i \(0.278368\pi\)
\(308\) 4142.80 0.766422
\(309\) −4937.17 −0.908951
\(310\) 0 0
\(311\) −181.369 −0.0330692 −0.0165346 0.999863i \(-0.505263\pi\)
−0.0165346 + 0.999863i \(0.505263\pi\)
\(312\) 6210.61 1.12694
\(313\) 3839.22 0.693308 0.346654 0.937993i \(-0.387318\pi\)
0.346654 + 0.937993i \(0.387318\pi\)
\(314\) 197.851 0.0355585
\(315\) 0 0
\(316\) −10672.7 −1.89995
\(317\) −7000.08 −1.24026 −0.620132 0.784497i \(-0.712921\pi\)
−0.620132 + 0.784497i \(0.712921\pi\)
\(318\) −6431.18 −1.13410
\(319\) 334.613 0.0587296
\(320\) 0 0
\(321\) 3916.05 0.680912
\(322\) 1770.27 0.306377
\(323\) −249.193 −0.0429272
\(324\) 1576.51 0.270320
\(325\) 0 0
\(326\) −8080.22 −1.37277
\(327\) 2796.38 0.472905
\(328\) 4473.54 0.753079
\(329\) 6034.98 1.01130
\(330\) 0 0
\(331\) −1176.84 −0.195423 −0.0977115 0.995215i \(-0.531152\pi\)
−0.0977115 + 0.995215i \(0.531152\pi\)
\(332\) −9947.12 −1.64433
\(333\) 1642.54 0.270302
\(334\) −8748.99 −1.43330
\(335\) 0 0
\(336\) 8805.35 1.42968
\(337\) 174.049 0.0281336 0.0140668 0.999901i \(-0.495522\pi\)
0.0140668 + 0.999901i \(0.495522\pi\)
\(338\) −5289.71 −0.851249
\(339\) −5159.67 −0.826652
\(340\) 0 0
\(341\) −1391.05 −0.220907
\(342\) 166.080 0.0262589
\(343\) −6377.10 −1.00388
\(344\) 24383.3 3.82169
\(345\) 0 0
\(346\) 3818.37 0.593285
\(347\) 10895.5 1.68560 0.842799 0.538228i \(-0.180906\pi\)
0.842799 + 0.538228i \(0.180906\pi\)
\(348\) 1693.29 0.260832
\(349\) −11820.3 −1.81298 −0.906488 0.422232i \(-0.861247\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(350\) 0 0
\(351\) 930.468 0.141495
\(352\) 4075.60 0.617131
\(353\) −9795.13 −1.47689 −0.738445 0.674314i \(-0.764439\pi\)
−0.738445 + 0.674314i \(0.764439\pi\)
\(354\) 1897.94 0.284956
\(355\) 0 0
\(356\) −15339.5 −2.28369
\(357\) −3916.49 −0.580623
\(358\) 10095.7 1.49042
\(359\) 8894.06 1.30755 0.653775 0.756689i \(-0.273184\pi\)
0.653775 + 0.756689i \(0.273184\pi\)
\(360\) 0 0
\(361\) −6846.60 −0.998192
\(362\) 19367.0 2.81189
\(363\) −3593.60 −0.519600
\(364\) 12373.3 1.78170
\(365\) 0 0
\(366\) 544.096 0.0777058
\(367\) −11113.1 −1.58066 −0.790329 0.612683i \(-0.790090\pi\)
−0.790329 + 0.612683i \(0.790090\pi\)
\(368\) 2913.50 0.412708
\(369\) 670.222 0.0945538
\(370\) 0 0
\(371\) −7546.28 −1.05602
\(372\) −7039.30 −0.981104
\(373\) −13469.8 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(374\) −4279.14 −0.591629
\(375\) 0 0
\(376\) 19652.3 2.69545
\(377\) 999.391 0.136529
\(378\) 2610.21 0.355172
\(379\) −3750.71 −0.508341 −0.254170 0.967159i \(-0.581802\pi\)
−0.254170 + 0.967159i \(0.581802\pi\)
\(380\) 0 0
\(381\) 2651.38 0.356520
\(382\) 13049.9 1.74788
\(383\) −12404.3 −1.65490 −0.827451 0.561537i \(-0.810210\pi\)
−0.827451 + 0.561537i \(0.810210\pi\)
\(384\) 613.072 0.0814732
\(385\) 0 0
\(386\) −23547.1 −3.10496
\(387\) 3653.09 0.479837
\(388\) −18822.1 −2.46276
\(389\) −7718.67 −1.00605 −0.503023 0.864273i \(-0.667779\pi\)
−0.503023 + 0.864273i \(0.667779\pi\)
\(390\) 0 0
\(391\) −1295.88 −0.167610
\(392\) −161.534 −0.0208131
\(393\) −2812.16 −0.360953
\(394\) −10429.8 −1.33362
\(395\) 0 0
\(396\) 2021.15 0.256481
\(397\) 6747.40 0.853004 0.426502 0.904487i \(-0.359746\pi\)
0.426502 + 0.904487i \(0.359746\pi\)
\(398\) −439.167 −0.0553101
\(399\) 194.876 0.0244511
\(400\) 0 0
\(401\) −5047.40 −0.628567 −0.314283 0.949329i \(-0.601764\pi\)
−0.314283 + 0.949329i \(0.601764\pi\)
\(402\) −10560.8 −1.31026
\(403\) −4154.65 −0.513543
\(404\) 9926.47 1.22243
\(405\) 0 0
\(406\) 2803.56 0.342706
\(407\) 2105.81 0.256464
\(408\) −12753.6 −1.54755
\(409\) 5317.14 0.642826 0.321413 0.946939i \(-0.395842\pi\)
0.321413 + 0.946939i \(0.395842\pi\)
\(410\) 0 0
\(411\) −712.949 −0.0855649
\(412\) −32030.8 −3.83021
\(413\) 2227.02 0.265338
\(414\) 863.663 0.102528
\(415\) 0 0
\(416\) 12172.6 1.43464
\(417\) 5120.17 0.601284
\(418\) 212.921 0.0249146
\(419\) 2953.43 0.344355 0.172177 0.985066i \(-0.444920\pi\)
0.172177 + 0.985066i \(0.444920\pi\)
\(420\) 0 0
\(421\) 7427.88 0.859888 0.429944 0.902855i \(-0.358533\pi\)
0.429944 + 0.902855i \(0.358533\pi\)
\(422\) −22900.8 −2.64170
\(423\) 2944.29 0.338431
\(424\) −24573.7 −2.81463
\(425\) 0 0
\(426\) 13733.2 1.56191
\(427\) 638.436 0.0723562
\(428\) 25406.1 2.86928
\(429\) 1192.90 0.134251
\(430\) 0 0
\(431\) 3302.08 0.369038 0.184519 0.982829i \(-0.440927\pi\)
0.184519 + 0.982829i \(0.440927\pi\)
\(432\) 4295.87 0.478438
\(433\) −9352.89 −1.03804 −0.519020 0.854762i \(-0.673703\pi\)
−0.519020 + 0.854762i \(0.673703\pi\)
\(434\) −11654.9 −1.28907
\(435\) 0 0
\(436\) 18142.0 1.99276
\(437\) 64.4802 0.00705837
\(438\) −6798.42 −0.741646
\(439\) −6109.74 −0.664241 −0.332120 0.943237i \(-0.607764\pi\)
−0.332120 + 0.943237i \(0.607764\pi\)
\(440\) 0 0
\(441\) −24.2009 −0.00261321
\(442\) −12780.6 −1.37536
\(443\) −14282.0 −1.53173 −0.765865 0.643002i \(-0.777689\pi\)
−0.765865 + 0.643002i \(0.777689\pi\)
\(444\) 10656.3 1.13902
\(445\) 0 0
\(446\) −19042.8 −2.02176
\(447\) 10639.8 1.12583
\(448\) 10666.5 1.12488
\(449\) −16406.0 −1.72439 −0.862193 0.506581i \(-0.830909\pi\)
−0.862193 + 0.506581i \(0.830909\pi\)
\(450\) 0 0
\(451\) 859.252 0.0897131
\(452\) −33474.3 −3.48341
\(453\) 5454.68 0.565746
\(454\) 19349.6 2.00026
\(455\) 0 0
\(456\) 634.593 0.0651701
\(457\) 15726.2 1.60971 0.804856 0.593470i \(-0.202243\pi\)
0.804856 + 0.593470i \(0.202243\pi\)
\(458\) 25331.3 2.58440
\(459\) −1910.74 −0.194304
\(460\) 0 0
\(461\) −14091.2 −1.42363 −0.711816 0.702366i \(-0.752127\pi\)
−0.711816 + 0.702366i \(0.752127\pi\)
\(462\) 3346.41 0.336989
\(463\) 8794.40 0.882743 0.441372 0.897324i \(-0.354492\pi\)
0.441372 + 0.897324i \(0.354492\pi\)
\(464\) 4614.08 0.461645
\(465\) 0 0
\(466\) 25335.0 2.51850
\(467\) 8746.05 0.866636 0.433318 0.901241i \(-0.357343\pi\)
0.433318 + 0.901241i \(0.357343\pi\)
\(468\) 6036.59 0.596242
\(469\) −12391.9 −1.22005
\(470\) 0 0
\(471\) 113.262 0.0110803
\(472\) 7252.06 0.707210
\(473\) 4683.41 0.455272
\(474\) −8620.99 −0.835391
\(475\) 0 0
\(476\) −25409.0 −2.44668
\(477\) −3681.61 −0.353395
\(478\) 21065.9 2.01575
\(479\) −11452.6 −1.09245 −0.546225 0.837638i \(-0.683936\pi\)
−0.546225 + 0.837638i \(0.683936\pi\)
\(480\) 0 0
\(481\) 6289.43 0.596203
\(482\) 5643.06 0.533266
\(483\) 1013.41 0.0954698
\(484\) −23314.1 −2.18953
\(485\) 0 0
\(486\) 1273.45 0.118857
\(487\) −1635.31 −0.152163 −0.0760813 0.997102i \(-0.524241\pi\)
−0.0760813 + 0.997102i \(0.524241\pi\)
\(488\) 2079.00 0.192852
\(489\) −4625.62 −0.427766
\(490\) 0 0
\(491\) 2106.92 0.193654 0.0968270 0.995301i \(-0.469131\pi\)
0.0968270 + 0.995301i \(0.469131\pi\)
\(492\) 4348.19 0.398438
\(493\) −2052.28 −0.187484
\(494\) 635.933 0.0579190
\(495\) 0 0
\(496\) −19181.6 −1.73645
\(497\) 16114.3 1.45438
\(498\) −8034.93 −0.722999
\(499\) −8865.74 −0.795361 −0.397681 0.917524i \(-0.630185\pi\)
−0.397681 + 0.917524i \(0.630185\pi\)
\(500\) 0 0
\(501\) −5008.46 −0.446630
\(502\) −16664.8 −1.48165
\(503\) 14591.9 1.29348 0.646738 0.762712i \(-0.276133\pi\)
0.646738 + 0.762712i \(0.276133\pi\)
\(504\) 9973.69 0.881475
\(505\) 0 0
\(506\) 1107.25 0.0972794
\(507\) −3028.16 −0.265257
\(508\) 17201.3 1.50233
\(509\) 13600.3 1.18432 0.592162 0.805819i \(-0.298274\pi\)
0.592162 + 0.805819i \(0.298274\pi\)
\(510\) 0 0
\(511\) −7977.19 −0.690588
\(512\) −20263.6 −1.74909
\(513\) 95.0742 0.00818251
\(514\) −16378.1 −1.40546
\(515\) 0 0
\(516\) 23700.1 2.02197
\(517\) 3774.70 0.321105
\(518\) 17643.6 1.49655
\(519\) 2185.87 0.184873
\(520\) 0 0
\(521\) 8355.92 0.702647 0.351324 0.936254i \(-0.385732\pi\)
0.351324 + 0.936254i \(0.385732\pi\)
\(522\) 1367.78 0.114686
\(523\) −926.372 −0.0774520 −0.0387260 0.999250i \(-0.512330\pi\)
−0.0387260 + 0.999250i \(0.512330\pi\)
\(524\) −18244.4 −1.52101
\(525\) 0 0
\(526\) 23447.7 1.94366
\(527\) 8531.68 0.705210
\(528\) 5507.49 0.453944
\(529\) −11831.7 −0.972440
\(530\) 0 0
\(531\) 1086.50 0.0887947
\(532\) 1264.29 0.103034
\(533\) 2566.34 0.208556
\(534\) −12390.7 −1.00412
\(535\) 0 0
\(536\) −40353.0 −3.25184
\(537\) 5779.38 0.464430
\(538\) 21240.0 1.70209
\(539\) −31.0266 −0.00247943
\(540\) 0 0
\(541\) 13503.6 1.07313 0.536565 0.843859i \(-0.319722\pi\)
0.536565 + 0.843859i \(0.319722\pi\)
\(542\) −42165.0 −3.34159
\(543\) 11086.9 0.876211
\(544\) −24996.8 −1.97009
\(545\) 0 0
\(546\) 9994.74 0.783398
\(547\) 20425.4 1.59658 0.798288 0.602275i \(-0.205739\pi\)
0.798288 + 0.602275i \(0.205739\pi\)
\(548\) −4625.39 −0.360560
\(549\) 311.474 0.0242138
\(550\) 0 0
\(551\) 102.117 0.00789532
\(552\) 3300.08 0.254458
\(553\) −10115.8 −0.777879
\(554\) −24241.3 −1.85905
\(555\) 0 0
\(556\) 33218.0 2.53374
\(557\) 3929.12 0.298891 0.149446 0.988770i \(-0.452251\pi\)
0.149446 + 0.988770i \(0.452251\pi\)
\(558\) −5686.09 −0.431383
\(559\) 13988.0 1.05837
\(560\) 0 0
\(561\) −2449.65 −0.184357
\(562\) −365.769 −0.0274538
\(563\) −4452.67 −0.333318 −0.166659 0.986015i \(-0.553298\pi\)
−0.166659 + 0.986015i \(0.553298\pi\)
\(564\) 19101.6 1.42611
\(565\) 0 0
\(566\) −9975.75 −0.740834
\(567\) 1494.25 0.110675
\(568\) 52474.7 3.87639
\(569\) −5462.20 −0.402438 −0.201219 0.979546i \(-0.564490\pi\)
−0.201219 + 0.979546i \(0.564490\pi\)
\(570\) 0 0
\(571\) −7228.87 −0.529805 −0.264902 0.964275i \(-0.585340\pi\)
−0.264902 + 0.964275i \(0.585340\pi\)
\(572\) 7739.16 0.565717
\(573\) 7470.57 0.544655
\(574\) 7199.27 0.523505
\(575\) 0 0
\(576\) 5203.89 0.376439
\(577\) −12771.6 −0.921468 −0.460734 0.887538i \(-0.652414\pi\)
−0.460734 + 0.887538i \(0.652414\pi\)
\(578\) 498.502 0.0358736
\(579\) −13479.8 −0.967534
\(580\) 0 0
\(581\) −9428.10 −0.673224
\(582\) −15203.9 −1.08285
\(583\) −4719.97 −0.335303
\(584\) −25976.9 −1.84064
\(585\) 0 0
\(586\) −3265.88 −0.230226
\(587\) −6986.93 −0.491280 −0.245640 0.969361i \(-0.578998\pi\)
−0.245640 + 0.969361i \(0.578998\pi\)
\(588\) −157.008 −0.0110117
\(589\) −424.518 −0.0296977
\(590\) 0 0
\(591\) −5970.69 −0.415569
\(592\) 29037.6 2.01595
\(593\) −4323.42 −0.299396 −0.149698 0.988732i \(-0.547830\pi\)
−0.149698 + 0.988732i \(0.547830\pi\)
\(594\) 1632.61 0.112773
\(595\) 0 0
\(596\) 69027.6 4.74409
\(597\) −251.406 −0.0172351
\(598\) 3307.04 0.226145
\(599\) 13443.7 0.917019 0.458510 0.888689i \(-0.348383\pi\)
0.458510 + 0.888689i \(0.348383\pi\)
\(600\) 0 0
\(601\) −7179.72 −0.487299 −0.243650 0.969863i \(-0.578345\pi\)
−0.243650 + 0.969863i \(0.578345\pi\)
\(602\) 39240.1 2.65666
\(603\) −6045.65 −0.408288
\(604\) 35388.2 2.38399
\(605\) 0 0
\(606\) 8018.24 0.537490
\(607\) 8560.81 0.572442 0.286221 0.958164i \(-0.407601\pi\)
0.286221 + 0.958164i \(0.407601\pi\)
\(608\) 1243.79 0.0829641
\(609\) 1604.93 0.106790
\(610\) 0 0
\(611\) 11273.9 0.746472
\(612\) −12396.3 −0.818774
\(613\) −19634.3 −1.29367 −0.646837 0.762628i \(-0.723909\pi\)
−0.646837 + 0.762628i \(0.723909\pi\)
\(614\) 36159.1 2.37665
\(615\) 0 0
\(616\) 12786.7 0.836348
\(617\) −14268.5 −0.931003 −0.465502 0.885047i \(-0.654126\pi\)
−0.465502 + 0.885047i \(0.654126\pi\)
\(618\) −25873.3 −1.68411
\(619\) 1663.48 0.108014 0.0540071 0.998541i \(-0.482801\pi\)
0.0540071 + 0.998541i \(0.482801\pi\)
\(620\) 0 0
\(621\) 494.415 0.0319488
\(622\) −950.470 −0.0612707
\(623\) −14539.1 −0.934990
\(624\) 16449.3 1.05528
\(625\) 0 0
\(626\) 20119.5 1.28456
\(627\) 121.889 0.00776361
\(628\) 734.808 0.0466912
\(629\) −12915.5 −0.818720
\(630\) 0 0
\(631\) 13448.3 0.848444 0.424222 0.905558i \(-0.360548\pi\)
0.424222 + 0.905558i \(0.360548\pi\)
\(632\) −32941.0 −2.07330
\(633\) −13109.9 −0.823176
\(634\) −36684.1 −2.29797
\(635\) 0 0
\(636\) −23885.1 −1.48916
\(637\) −92.6675 −0.00576392
\(638\) 1753.55 0.108814
\(639\) 7861.71 0.486705
\(640\) 0 0
\(641\) 7644.92 0.471070 0.235535 0.971866i \(-0.424316\pi\)
0.235535 + 0.971866i \(0.424316\pi\)
\(642\) 20522.1 1.26160
\(643\) −1814.60 −0.111292 −0.0556462 0.998451i \(-0.517722\pi\)
−0.0556462 + 0.998451i \(0.517722\pi\)
\(644\) 6574.71 0.402298
\(645\) 0 0
\(646\) −1305.90 −0.0795357
\(647\) −18746.6 −1.13911 −0.569556 0.821952i \(-0.692885\pi\)
−0.569556 + 0.821952i \(0.692885\pi\)
\(648\) 4865.87 0.294984
\(649\) 1392.94 0.0842489
\(650\) 0 0
\(651\) −6672.00 −0.401684
\(652\) −30009.6 −1.80256
\(653\) −8299.18 −0.497354 −0.248677 0.968586i \(-0.579996\pi\)
−0.248677 + 0.968586i \(0.579996\pi\)
\(654\) 14654.5 0.876200
\(655\) 0 0
\(656\) 11848.5 0.705192
\(657\) −3891.84 −0.231104
\(658\) 31626.4 1.87375
\(659\) 12624.7 0.746262 0.373131 0.927779i \(-0.378284\pi\)
0.373131 + 0.927779i \(0.378284\pi\)
\(660\) 0 0
\(661\) −10912.8 −0.642144 −0.321072 0.947055i \(-0.604043\pi\)
−0.321072 + 0.947055i \(0.604043\pi\)
\(662\) −6167.26 −0.362081
\(663\) −7316.38 −0.428574
\(664\) −30701.6 −1.79436
\(665\) 0 0
\(666\) 8607.77 0.500817
\(667\) 531.038 0.0308274
\(668\) −32493.4 −1.88204
\(669\) −10901.3 −0.629998
\(670\) 0 0
\(671\) 399.323 0.0229742
\(672\) 19548.1 1.12215
\(673\) −6292.15 −0.360393 −0.180197 0.983631i \(-0.557673\pi\)
−0.180197 + 0.983631i \(0.557673\pi\)
\(674\) 912.105 0.0521261
\(675\) 0 0
\(676\) −19645.7 −1.11776
\(677\) −16630.8 −0.944125 −0.472062 0.881565i \(-0.656490\pi\)
−0.472062 + 0.881565i \(0.656490\pi\)
\(678\) −27039.4 −1.53162
\(679\) −17840.0 −1.00830
\(680\) 0 0
\(681\) 11076.9 0.623300
\(682\) −7289.81 −0.409298
\(683\) −11843.7 −0.663521 −0.331761 0.943364i \(-0.607643\pi\)
−0.331761 + 0.943364i \(0.607643\pi\)
\(684\) 616.812 0.0344801
\(685\) 0 0
\(686\) −33419.4 −1.86000
\(687\) 14501.2 0.805321
\(688\) 64581.1 3.57868
\(689\) −14097.2 −0.779478
\(690\) 0 0
\(691\) 20458.3 1.12630 0.563149 0.826356i \(-0.309590\pi\)
0.563149 + 0.826356i \(0.309590\pi\)
\(692\) 14181.2 0.779032
\(693\) 1915.69 0.105009
\(694\) 57098.2 3.12308
\(695\) 0 0
\(696\) 5226.30 0.284630
\(697\) −5270.03 −0.286394
\(698\) −61944.8 −3.35909
\(699\) 14503.4 0.784789
\(700\) 0 0
\(701\) 23987.6 1.29244 0.646220 0.763151i \(-0.276349\pi\)
0.646220 + 0.763151i \(0.276349\pi\)
\(702\) 4876.14 0.262162
\(703\) 642.648 0.0344778
\(704\) 6671.61 0.357167
\(705\) 0 0
\(706\) −51331.6 −2.73639
\(707\) 9408.52 0.500487
\(708\) 7048.86 0.374170
\(709\) 6275.84 0.332432 0.166216 0.986089i \(-0.446845\pi\)
0.166216 + 0.986089i \(0.446845\pi\)
\(710\) 0 0
\(711\) −4935.19 −0.260315
\(712\) −47345.2 −2.49205
\(713\) −2207.62 −0.115955
\(714\) −20524.4 −1.07578
\(715\) 0 0
\(716\) 37494.8 1.95705
\(717\) 12059.4 0.628127
\(718\) 46609.5 2.42263
\(719\) −15544.4 −0.806273 −0.403136 0.915140i \(-0.632080\pi\)
−0.403136 + 0.915140i \(0.632080\pi\)
\(720\) 0 0
\(721\) −30359.5 −1.56817
\(722\) −35879.8 −1.84945
\(723\) 3230.44 0.166170
\(724\) 71928.1 3.69225
\(725\) 0 0
\(726\) −18832.3 −0.962718
\(727\) 25002.9 1.27552 0.637762 0.770233i \(-0.279860\pi\)
0.637762 + 0.770233i \(0.279860\pi\)
\(728\) 38190.1 1.94426
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −28724.7 −1.45338
\(732\) 2020.75 0.102034
\(733\) 16981.1 0.855678 0.427839 0.903855i \(-0.359275\pi\)
0.427839 + 0.903855i \(0.359275\pi\)
\(734\) −58238.7 −2.92865
\(735\) 0 0
\(736\) 6468.06 0.323934
\(737\) −7750.78 −0.387386
\(738\) 3512.31 0.175190
\(739\) 920.528 0.0458216 0.0229108 0.999738i \(-0.492707\pi\)
0.0229108 + 0.999738i \(0.492707\pi\)
\(740\) 0 0
\(741\) 364.047 0.0180481
\(742\) −39546.4 −1.95660
\(743\) −6708.21 −0.331225 −0.165613 0.986191i \(-0.552960\pi\)
−0.165613 + 0.986191i \(0.552960\pi\)
\(744\) −21726.7 −1.07062
\(745\) 0 0
\(746\) −70588.9 −3.46440
\(747\) −4599.69 −0.225293
\(748\) −15892.5 −0.776857
\(749\) 24080.5 1.17474
\(750\) 0 0
\(751\) 34311.4 1.66717 0.833583 0.552394i \(-0.186286\pi\)
0.833583 + 0.552394i \(0.186286\pi\)
\(752\) 52050.6 2.52405
\(753\) −9539.96 −0.461694
\(754\) 5237.33 0.252961
\(755\) 0 0
\(756\) 9694.22 0.466370
\(757\) 12405.6 0.595628 0.297814 0.954624i \(-0.403743\pi\)
0.297814 + 0.954624i \(0.403743\pi\)
\(758\) −19655.7 −0.941856
\(759\) 633.860 0.0303131
\(760\) 0 0
\(761\) −18869.8 −0.898857 −0.449428 0.893316i \(-0.648372\pi\)
−0.449428 + 0.893316i \(0.648372\pi\)
\(762\) 13894.6 0.660562
\(763\) 17195.4 0.815878
\(764\) 48466.7 2.29511
\(765\) 0 0
\(766\) −65004.8 −3.06621
\(767\) 4160.29 0.195853
\(768\) −10664.2 −0.501058
\(769\) 38269.7 1.79459 0.897295 0.441432i \(-0.145529\pi\)
0.897295 + 0.441432i \(0.145529\pi\)
\(770\) 0 0
\(771\) −9375.86 −0.437955
\(772\) −87452.9 −4.07707
\(773\) −37398.4 −1.74014 −0.870069 0.492930i \(-0.835926\pi\)
−0.870069 + 0.492930i \(0.835926\pi\)
\(774\) 19144.1 0.889044
\(775\) 0 0
\(776\) −58094.2 −2.68745
\(777\) 10100.3 0.466339
\(778\) −40449.9 −1.86401
\(779\) 262.226 0.0120606
\(780\) 0 0
\(781\) 10079.0 0.461788
\(782\) −6791.09 −0.310549
\(783\) 783.000 0.0357371
\(784\) −427.836 −0.0194896
\(785\) 0 0
\(786\) −14737.2 −0.668776
\(787\) 22352.2 1.01241 0.506206 0.862413i \(-0.331048\pi\)
0.506206 + 0.862413i \(0.331048\pi\)
\(788\) −38736.0 −1.75116
\(789\) 13422.9 0.605663
\(790\) 0 0
\(791\) −31727.7 −1.42618
\(792\) 6238.25 0.279882
\(793\) 1192.66 0.0534081
\(794\) 35359.9 1.58045
\(795\) 0 0
\(796\) −1631.05 −0.0726267
\(797\) 29993.8 1.33304 0.666521 0.745487i \(-0.267783\pi\)
0.666521 + 0.745487i \(0.267783\pi\)
\(798\) 1021.25 0.0453032
\(799\) −23151.3 −1.02507
\(800\) 0 0
\(801\) −7093.22 −0.312892
\(802\) −26451.0 −1.16461
\(803\) −4989.50 −0.219272
\(804\) −39222.3 −1.72048
\(805\) 0 0
\(806\) −21772.5 −0.951495
\(807\) 12159.1 0.530385
\(808\) 30637.9 1.33396
\(809\) 28328.9 1.23114 0.615569 0.788083i \(-0.288926\pi\)
0.615569 + 0.788083i \(0.288926\pi\)
\(810\) 0 0
\(811\) 4087.14 0.176965 0.0884826 0.996078i \(-0.471798\pi\)
0.0884826 + 0.996078i \(0.471798\pi\)
\(812\) 10412.3 0.450001
\(813\) −24137.9 −1.04127
\(814\) 11035.5 0.475178
\(815\) 0 0
\(816\) −33779.0 −1.44914
\(817\) 1429.28 0.0612046
\(818\) 27864.6 1.19103
\(819\) 5721.61 0.244114
\(820\) 0 0
\(821\) −9552.90 −0.406088 −0.203044 0.979170i \(-0.565084\pi\)
−0.203044 + 0.979170i \(0.565084\pi\)
\(822\) −3736.23 −0.158535
\(823\) −26863.5 −1.13779 −0.568895 0.822410i \(-0.692629\pi\)
−0.568895 + 0.822410i \(0.692629\pi\)
\(824\) −98862.6 −4.17966
\(825\) 0 0
\(826\) 11670.8 0.491619
\(827\) 43901.7 1.84596 0.922981 0.384846i \(-0.125746\pi\)
0.922981 + 0.384846i \(0.125746\pi\)
\(828\) 3207.61 0.134628
\(829\) −9622.68 −0.403148 −0.201574 0.979473i \(-0.564606\pi\)
−0.201574 + 0.979473i \(0.564606\pi\)
\(830\) 0 0
\(831\) −13877.2 −0.579296
\(832\) 19926.2 0.830307
\(833\) 190.295 0.00791516
\(834\) 26832.3 1.11406
\(835\) 0 0
\(836\) 790.779 0.0327149
\(837\) −3255.07 −0.134423
\(838\) 15477.5 0.638022
\(839\) 26742.6 1.10043 0.550214 0.835024i \(-0.314546\pi\)
0.550214 + 0.835024i \(0.314546\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 38926.0 1.59320
\(843\) −209.389 −0.00855486
\(844\) −85052.7 −3.46876
\(845\) 0 0
\(846\) 15429.6 0.627046
\(847\) −22097.7 −0.896440
\(848\) −65085.2 −2.63566
\(849\) −5710.74 −0.230851
\(850\) 0 0
\(851\) 3341.96 0.134619
\(852\) 51004.3 2.05092
\(853\) 16600.5 0.666341 0.333171 0.942867i \(-0.391881\pi\)
0.333171 + 0.942867i \(0.391881\pi\)
\(854\) 3345.74 0.134062
\(855\) 0 0
\(856\) 78415.6 3.13106
\(857\) −15752.2 −0.627869 −0.313935 0.949445i \(-0.601647\pi\)
−0.313935 + 0.949445i \(0.601647\pi\)
\(858\) 6251.41 0.248741
\(859\) −35249.8 −1.40012 −0.700062 0.714082i \(-0.746844\pi\)
−0.700062 + 0.714082i \(0.746844\pi\)
\(860\) 0 0
\(861\) 4121.31 0.163129
\(862\) 17304.6 0.683755
\(863\) 36020.7 1.42081 0.710404 0.703794i \(-0.248512\pi\)
0.710404 + 0.703794i \(0.248512\pi\)
\(864\) 9536.96 0.375526
\(865\) 0 0
\(866\) −49014.0 −1.92328
\(867\) 285.374 0.0111785
\(868\) −43285.9 −1.69265
\(869\) −6327.12 −0.246988
\(870\) 0 0
\(871\) −23149.3 −0.900556
\(872\) 55995.0 2.17458
\(873\) −8703.63 −0.337426
\(874\) 337.910 0.0130778
\(875\) 0 0
\(876\) −25249.0 −0.973842
\(877\) −1353.74 −0.0521239 −0.0260620 0.999660i \(-0.508297\pi\)
−0.0260620 + 0.999660i \(0.508297\pi\)
\(878\) −32018.2 −1.23071
\(879\) −1869.59 −0.0717404
\(880\) 0 0
\(881\) −1774.07 −0.0678435 −0.0339217 0.999424i \(-0.510800\pi\)
−0.0339217 + 0.999424i \(0.510800\pi\)
\(882\) −126.826 −0.00484177
\(883\) −1483.09 −0.0565233 −0.0282616 0.999601i \(-0.508997\pi\)
−0.0282616 + 0.999601i \(0.508997\pi\)
\(884\) −47466.4 −1.80596
\(885\) 0 0
\(886\) −74844.9 −2.83799
\(887\) −18524.8 −0.701244 −0.350622 0.936517i \(-0.614030\pi\)
−0.350622 + 0.936517i \(0.614030\pi\)
\(888\) 32890.5 1.24294
\(889\) 16303.8 0.615086
\(890\) 0 0
\(891\) 934.609 0.0351409
\(892\) −70724.2 −2.65473
\(893\) 1151.96 0.0431678
\(894\) 55758.0 2.08594
\(895\) 0 0
\(896\) 3769.89 0.140561
\(897\) 1893.16 0.0704689
\(898\) −85976.2 −3.19495
\(899\) −3496.19 −0.129705
\(900\) 0 0
\(901\) 28948.9 1.07040
\(902\) 4502.93 0.166221
\(903\) 22463.5 0.827838
\(904\) −103318. −3.80122
\(905\) 0 0
\(906\) 28585.4 1.04822
\(907\) 26687.1 0.976991 0.488495 0.872567i \(-0.337546\pi\)
0.488495 + 0.872567i \(0.337546\pi\)
\(908\) 71863.4 2.62651
\(909\) 4590.14 0.167487
\(910\) 0 0
\(911\) −4443.10 −0.161588 −0.0807939 0.996731i \(-0.525746\pi\)
−0.0807939 + 0.996731i \(0.525746\pi\)
\(912\) 1680.77 0.0610261
\(913\) −5897.00 −0.213759
\(914\) 82413.2 2.98248
\(915\) 0 0
\(916\) 94079.3 3.39352
\(917\) −17292.5 −0.622734
\(918\) −10013.3 −0.360008
\(919\) 17674.0 0.634398 0.317199 0.948359i \(-0.397258\pi\)
0.317199 + 0.948359i \(0.397258\pi\)
\(920\) 0 0
\(921\) 20699.7 0.740585
\(922\) −73845.4 −2.63771
\(923\) 30103.2 1.07352
\(924\) 12428.4 0.442494
\(925\) 0 0
\(926\) 46087.2 1.63555
\(927\) −14811.5 −0.524783
\(928\) 10243.4 0.362345
\(929\) 10760.5 0.380021 0.190010 0.981782i \(-0.439148\pi\)
0.190010 + 0.981782i \(0.439148\pi\)
\(930\) 0 0
\(931\) −9.46867 −0.000333322 0
\(932\) 94093.2 3.30700
\(933\) −544.108 −0.0190925
\(934\) 45833.9 1.60571
\(935\) 0 0
\(936\) 18631.8 0.650641
\(937\) −22210.3 −0.774365 −0.387182 0.922003i \(-0.626552\pi\)
−0.387182 + 0.922003i \(0.626552\pi\)
\(938\) −64940.1 −2.26052
\(939\) 11517.6 0.400281
\(940\) 0 0
\(941\) 34977.1 1.21171 0.605855 0.795575i \(-0.292831\pi\)
0.605855 + 0.795575i \(0.292831\pi\)
\(942\) 593.552 0.0205297
\(943\) 1363.65 0.0470908
\(944\) 19207.6 0.662241
\(945\) 0 0
\(946\) 24543.5 0.843530
\(947\) −42798.4 −1.46860 −0.734298 0.678827i \(-0.762489\pi\)
−0.734298 + 0.678827i \(0.762489\pi\)
\(948\) −32018.0 −1.09694
\(949\) −14902.2 −0.509742
\(950\) 0 0
\(951\) −21000.2 −0.716067
\(952\) −78424.3 −2.66990
\(953\) 15363.5 0.522217 0.261108 0.965309i \(-0.415912\pi\)
0.261108 + 0.965309i \(0.415912\pi\)
\(954\) −19293.5 −0.654771
\(955\) 0 0
\(956\) 78237.7 2.64685
\(957\) 1003.84 0.0339075
\(958\) −60017.7 −2.02410
\(959\) −4384.05 −0.147621
\(960\) 0 0
\(961\) −15256.7 −0.512125
\(962\) 32959.9 1.10465
\(963\) 11748.2 0.393125
\(964\) 20958.1 0.700222
\(965\) 0 0
\(966\) 5310.82 0.176887
\(967\) 44310.2 1.47355 0.736774 0.676139i \(-0.236348\pi\)
0.736774 + 0.676139i \(0.236348\pi\)
\(968\) −71958.7 −2.38930
\(969\) −747.580 −0.0247840
\(970\) 0 0
\(971\) 50163.2 1.65789 0.828946 0.559328i \(-0.188941\pi\)
0.828946 + 0.559328i \(0.188941\pi\)
\(972\) 4729.52 0.156070
\(973\) 31484.8 1.03736
\(974\) −8569.90 −0.281927
\(975\) 0 0
\(976\) 5506.39 0.180589
\(977\) 2549.65 0.0834908 0.0417454 0.999128i \(-0.486708\pi\)
0.0417454 + 0.999128i \(0.486708\pi\)
\(978\) −24240.7 −0.792568
\(979\) −9093.80 −0.296874
\(980\) 0 0
\(981\) 8389.13 0.273032
\(982\) 11041.4 0.358803
\(983\) −25382.0 −0.823561 −0.411781 0.911283i \(-0.635093\pi\)
−0.411781 + 0.911283i \(0.635093\pi\)
\(984\) 13420.6 0.434790
\(985\) 0 0
\(986\) −10755.0 −0.347372
\(987\) 18104.9 0.583877
\(988\) 2361.83 0.0760523
\(989\) 7432.68 0.238974
\(990\) 0 0
\(991\) −44583.2 −1.42909 −0.714547 0.699588i \(-0.753367\pi\)
−0.714547 + 0.699588i \(0.753367\pi\)
\(992\) −42583.7 −1.36294
\(993\) −3530.52 −0.112828
\(994\) 84447.6 2.69468
\(995\) 0 0
\(996\) −29841.4 −0.949357
\(997\) 39668.0 1.26008 0.630039 0.776563i \(-0.283039\pi\)
0.630039 + 0.776563i \(0.283039\pi\)
\(998\) −46461.1 −1.47365
\(999\) 4927.62 0.156059
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.7 7
5.4 even 2 435.4.a.i.1.1 7
15.14 odd 2 1305.4.a.n.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.1 7 5.4 even 2
1305.4.a.n.1.7 7 15.14 odd 2
2175.4.a.n.1.7 7 1.1 even 1 trivial