Properties

Label 2175.4.a.n.1.6
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.57720\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.57720 q^{2} +3.00000 q^{3} +4.79637 q^{4} +10.7316 q^{6} -15.0281 q^{7} -11.4600 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+3.57720 q^{2} +3.00000 q^{3} +4.79637 q^{4} +10.7316 q^{6} -15.0281 q^{7} -11.4600 q^{8} +9.00000 q^{9} +70.8260 q^{11} +14.3891 q^{12} -62.2117 q^{13} -53.7587 q^{14} -79.3658 q^{16} +67.1848 q^{17} +32.1948 q^{18} +118.988 q^{19} -45.0844 q^{21} +253.359 q^{22} -72.5383 q^{23} -34.3801 q^{24} -222.544 q^{26} +27.0000 q^{27} -72.0804 q^{28} +29.0000 q^{29} -180.227 q^{31} -192.227 q^{32} +212.478 q^{33} +240.334 q^{34} +43.1673 q^{36} +47.8439 q^{37} +425.646 q^{38} -186.635 q^{39} +371.956 q^{41} -161.276 q^{42} +409.069 q^{43} +339.707 q^{44} -259.484 q^{46} -125.891 q^{47} -238.097 q^{48} -117.155 q^{49} +201.555 q^{51} -298.390 q^{52} +215.764 q^{53} +96.5844 q^{54} +172.223 q^{56} +356.965 q^{57} +103.739 q^{58} +356.919 q^{59} -466.115 q^{61} -644.707 q^{62} -135.253 q^{63} -52.7086 q^{64} +760.076 q^{66} +578.359 q^{67} +322.243 q^{68} -217.615 q^{69} +870.924 q^{71} -103.140 q^{72} -411.904 q^{73} +171.147 q^{74} +570.712 q^{76} -1064.38 q^{77} -667.631 q^{78} +1120.23 q^{79} +81.0000 q^{81} +1330.56 q^{82} -1079.28 q^{83} -216.241 q^{84} +1463.32 q^{86} +87.0000 q^{87} -811.668 q^{88} +388.993 q^{89} +934.926 q^{91} -347.920 q^{92} -540.680 q^{93} -450.339 q^{94} -576.681 q^{96} +1528.82 q^{97} -419.088 q^{98} +637.434 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22} - 34 q^{23} + 99 q^{24} - 241 q^{26} + 189 q^{27} + 57 q^{28} + 203 q^{29} + 524 q^{31} + 6 q^{32} + 228 q^{33} + 255 q^{34} + 198 q^{36} + 28 q^{37} - 222 q^{38} - 90 q^{39} + 1532 q^{41} + 267 q^{42} + 464 q^{43} + 1475 q^{44} + 72 q^{46} + 360 q^{47} + 414 q^{48} + 569 q^{49} + 420 q^{51} + 205 q^{52} - 282 q^{53} + 54 q^{54} + 1102 q^{56} + 270 q^{57} + 58 q^{58} + 766 q^{59} + 1200 q^{61} - 2856 q^{62} + 450 q^{63} + 701 q^{64} - 183 q^{66} - 1546 q^{67} - 1801 q^{68} - 102 q^{69} + 1802 q^{71} + 297 q^{72} + 220 q^{73} + 1594 q^{74} + 1960 q^{76} - 3222 q^{77} - 723 q^{78} + 1298 q^{79} + 567 q^{81} - 856 q^{82} - 1652 q^{83} + 171 q^{84} + 7628 q^{86} + 609 q^{87} - 550 q^{88} + 2846 q^{89} - 816 q^{91} - 472 q^{92} + 1572 q^{93} + 745 q^{94} + 18 q^{96} - 1110 q^{97} + 761 q^{98} + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.57720 1.26473 0.632366 0.774670i \(-0.282084\pi\)
0.632366 + 0.774670i \(0.282084\pi\)
\(3\) 3.00000 0.577350
\(4\) 4.79637 0.599546
\(5\) 0 0
\(6\) 10.7316 0.730193
\(7\) −15.0281 −0.811443 −0.405721 0.913997i \(-0.632980\pi\)
−0.405721 + 0.913997i \(0.632980\pi\)
\(8\) −11.4600 −0.506467
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 70.8260 1.94135 0.970674 0.240399i \(-0.0772781\pi\)
0.970674 + 0.240399i \(0.0772781\pi\)
\(12\) 14.3891 0.346148
\(13\) −62.2117 −1.32726 −0.663632 0.748059i \(-0.730986\pi\)
−0.663632 + 0.748059i \(0.730986\pi\)
\(14\) −53.7587 −1.02626
\(15\) 0 0
\(16\) −79.3658 −1.24009
\(17\) 67.1848 0.958513 0.479256 0.877675i \(-0.340906\pi\)
0.479256 + 0.877675i \(0.340906\pi\)
\(18\) 32.1948 0.421577
\(19\) 118.988 1.43673 0.718364 0.695667i \(-0.244891\pi\)
0.718364 + 0.695667i \(0.244891\pi\)
\(20\) 0 0
\(21\) −45.0844 −0.468487
\(22\) 253.359 2.45528
\(23\) −72.5383 −0.657621 −0.328810 0.944396i \(-0.606648\pi\)
−0.328810 + 0.944396i \(0.606648\pi\)
\(24\) −34.3801 −0.292409
\(25\) 0 0
\(26\) −222.544 −1.67863
\(27\) 27.0000 0.192450
\(28\) −72.0804 −0.486497
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −180.227 −1.04418 −0.522092 0.852889i \(-0.674848\pi\)
−0.522092 + 0.852889i \(0.674848\pi\)
\(32\) −192.227 −1.06191
\(33\) 212.478 1.12084
\(34\) 240.334 1.21226
\(35\) 0 0
\(36\) 43.1673 0.199849
\(37\) 47.8439 0.212581 0.106290 0.994335i \(-0.466103\pi\)
0.106290 + 0.994335i \(0.466103\pi\)
\(38\) 425.646 1.81708
\(39\) −186.635 −0.766296
\(40\) 0 0
\(41\) 371.956 1.41682 0.708411 0.705800i \(-0.249412\pi\)
0.708411 + 0.705800i \(0.249412\pi\)
\(42\) −161.276 −0.592510
\(43\) 409.069 1.45075 0.725377 0.688352i \(-0.241666\pi\)
0.725377 + 0.688352i \(0.241666\pi\)
\(44\) 339.707 1.16393
\(45\) 0 0
\(46\) −259.484 −0.831714
\(47\) −125.891 −0.390705 −0.195353 0.980733i \(-0.562585\pi\)
−0.195353 + 0.980733i \(0.562585\pi\)
\(48\) −238.097 −0.715967
\(49\) −117.155 −0.341560
\(50\) 0 0
\(51\) 201.555 0.553398
\(52\) −298.390 −0.795755
\(53\) 215.764 0.559198 0.279599 0.960117i \(-0.409798\pi\)
0.279599 + 0.960117i \(0.409798\pi\)
\(54\) 96.5844 0.243398
\(55\) 0 0
\(56\) 172.223 0.410969
\(57\) 356.965 0.829495
\(58\) 103.739 0.234855
\(59\) 356.919 0.787575 0.393788 0.919201i \(-0.371165\pi\)
0.393788 + 0.919201i \(0.371165\pi\)
\(60\) 0 0
\(61\) −466.115 −0.978358 −0.489179 0.872183i \(-0.662704\pi\)
−0.489179 + 0.872183i \(0.662704\pi\)
\(62\) −644.707 −1.32061
\(63\) −135.253 −0.270481
\(64\) −52.7086 −0.102946
\(65\) 0 0
\(66\) 760.076 1.41756
\(67\) 578.359 1.05459 0.527297 0.849681i \(-0.323206\pi\)
0.527297 + 0.849681i \(0.323206\pi\)
\(68\) 322.243 0.574672
\(69\) −217.615 −0.379678
\(70\) 0 0
\(71\) 870.924 1.45577 0.727885 0.685699i \(-0.240503\pi\)
0.727885 + 0.685699i \(0.240503\pi\)
\(72\) −103.140 −0.168822
\(73\) −411.904 −0.660407 −0.330204 0.943910i \(-0.607117\pi\)
−0.330204 + 0.943910i \(0.607117\pi\)
\(74\) 171.147 0.268857
\(75\) 0 0
\(76\) 570.712 0.861384
\(77\) −1064.38 −1.57529
\(78\) −667.631 −0.969159
\(79\) 1120.23 1.59538 0.797692 0.603065i \(-0.206054\pi\)
0.797692 + 0.603065i \(0.206054\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1330.56 1.79190
\(83\) −1079.28 −1.42730 −0.713652 0.700501i \(-0.752960\pi\)
−0.713652 + 0.700501i \(0.752960\pi\)
\(84\) −216.241 −0.280879
\(85\) 0 0
\(86\) 1463.32 1.83481
\(87\) 87.0000 0.107211
\(88\) −811.668 −0.983229
\(89\) 388.993 0.463294 0.231647 0.972800i \(-0.425589\pi\)
0.231647 + 0.972800i \(0.425589\pi\)
\(90\) 0 0
\(91\) 934.926 1.07700
\(92\) −347.920 −0.394274
\(93\) −540.680 −0.602859
\(94\) −450.339 −0.494137
\(95\) 0 0
\(96\) −576.681 −0.613097
\(97\) 1528.82 1.60029 0.800147 0.599803i \(-0.204755\pi\)
0.800147 + 0.599803i \(0.204755\pi\)
\(98\) −419.088 −0.431982
\(99\) 637.434 0.647116
\(100\) 0 0
\(101\) −1425.50 −1.40439 −0.702193 0.711987i \(-0.747796\pi\)
−0.702193 + 0.711987i \(0.747796\pi\)
\(102\) 721.001 0.699899
\(103\) 1595.68 1.52648 0.763240 0.646116i \(-0.223608\pi\)
0.763240 + 0.646116i \(0.223608\pi\)
\(104\) 712.949 0.672215
\(105\) 0 0
\(106\) 771.832 0.707236
\(107\) 155.104 0.140135 0.0700675 0.997542i \(-0.477679\pi\)
0.0700675 + 0.997542i \(0.477679\pi\)
\(108\) 129.502 0.115383
\(109\) 1212.23 1.06524 0.532618 0.846356i \(-0.321208\pi\)
0.532618 + 0.846356i \(0.321208\pi\)
\(110\) 0 0
\(111\) 143.532 0.122733
\(112\) 1192.72 1.00626
\(113\) 1152.01 0.959043 0.479521 0.877530i \(-0.340810\pi\)
0.479521 + 0.877530i \(0.340810\pi\)
\(114\) 1276.94 1.04909
\(115\) 0 0
\(116\) 139.095 0.111333
\(117\) −559.905 −0.442421
\(118\) 1276.77 0.996072
\(119\) −1009.66 −0.777778
\(120\) 0 0
\(121\) 3685.32 2.76883
\(122\) −1667.39 −1.23736
\(123\) 1115.87 0.818003
\(124\) −864.434 −0.626036
\(125\) 0 0
\(126\) −483.828 −0.342086
\(127\) −398.743 −0.278604 −0.139302 0.990250i \(-0.544486\pi\)
−0.139302 + 0.990250i \(0.544486\pi\)
\(128\) 1349.27 0.931715
\(129\) 1227.21 0.837593
\(130\) 0 0
\(131\) −385.241 −0.256937 −0.128468 0.991714i \(-0.541006\pi\)
−0.128468 + 0.991714i \(0.541006\pi\)
\(132\) 1019.12 0.671994
\(133\) −1788.17 −1.16582
\(134\) 2068.90 1.33378
\(135\) 0 0
\(136\) −769.941 −0.485455
\(137\) 351.877 0.219437 0.109719 0.993963i \(-0.465005\pi\)
0.109719 + 0.993963i \(0.465005\pi\)
\(138\) −778.452 −0.480190
\(139\) 1138.48 0.694711 0.347355 0.937734i \(-0.387080\pi\)
0.347355 + 0.937734i \(0.387080\pi\)
\(140\) 0 0
\(141\) −377.674 −0.225574
\(142\) 3115.47 1.84116
\(143\) −4406.21 −2.57668
\(144\) −714.292 −0.413364
\(145\) 0 0
\(146\) −1473.46 −0.835238
\(147\) −351.466 −0.197200
\(148\) 229.477 0.127452
\(149\) 1200.59 0.660107 0.330053 0.943962i \(-0.392933\pi\)
0.330053 + 0.943962i \(0.392933\pi\)
\(150\) 0 0
\(151\) −1539.35 −0.829605 −0.414802 0.909911i \(-0.636149\pi\)
−0.414802 + 0.909911i \(0.636149\pi\)
\(152\) −1363.61 −0.727655
\(153\) 604.664 0.319504
\(154\) −3807.51 −1.99232
\(155\) 0 0
\(156\) −895.171 −0.459430
\(157\) −223.134 −0.113427 −0.0567136 0.998390i \(-0.518062\pi\)
−0.0567136 + 0.998390i \(0.518062\pi\)
\(158\) 4007.28 2.01773
\(159\) 647.293 0.322853
\(160\) 0 0
\(161\) 1090.11 0.533622
\(162\) 289.753 0.140526
\(163\) 3114.71 1.49671 0.748353 0.663301i \(-0.230845\pi\)
0.748353 + 0.663301i \(0.230845\pi\)
\(164\) 1784.04 0.849450
\(165\) 0 0
\(166\) −3860.79 −1.80516
\(167\) 1720.78 0.797351 0.398676 0.917092i \(-0.369470\pi\)
0.398676 + 0.917092i \(0.369470\pi\)
\(168\) 516.669 0.237273
\(169\) 1673.30 0.761629
\(170\) 0 0
\(171\) 1070.90 0.478909
\(172\) 1962.04 0.869793
\(173\) −2438.70 −1.07174 −0.535870 0.844301i \(-0.680016\pi\)
−0.535870 + 0.844301i \(0.680016\pi\)
\(174\) 311.216 0.135593
\(175\) 0 0
\(176\) −5621.16 −2.40745
\(177\) 1070.76 0.454707
\(178\) 1391.50 0.585942
\(179\) −2248.00 −0.938676 −0.469338 0.883018i \(-0.655507\pi\)
−0.469338 + 0.883018i \(0.655507\pi\)
\(180\) 0 0
\(181\) −2357.13 −0.967977 −0.483989 0.875074i \(-0.660812\pi\)
−0.483989 + 0.875074i \(0.660812\pi\)
\(182\) 3344.42 1.36211
\(183\) −1398.34 −0.564855
\(184\) 831.292 0.333063
\(185\) 0 0
\(186\) −1934.12 −0.762455
\(187\) 4758.43 1.86081
\(188\) −603.821 −0.234246
\(189\) −405.760 −0.156162
\(190\) 0 0
\(191\) 1922.56 0.728331 0.364166 0.931334i \(-0.381354\pi\)
0.364166 + 0.931334i \(0.381354\pi\)
\(192\) −158.126 −0.0594362
\(193\) −1840.68 −0.686504 −0.343252 0.939243i \(-0.611528\pi\)
−0.343252 + 0.939243i \(0.611528\pi\)
\(194\) 5468.91 2.02394
\(195\) 0 0
\(196\) −561.919 −0.204781
\(197\) 2712.79 0.981109 0.490555 0.871410i \(-0.336794\pi\)
0.490555 + 0.871410i \(0.336794\pi\)
\(198\) 2280.23 0.818428
\(199\) 224.631 0.0800185 0.0400093 0.999199i \(-0.487261\pi\)
0.0400093 + 0.999199i \(0.487261\pi\)
\(200\) 0 0
\(201\) 1735.08 0.608870
\(202\) −5099.31 −1.77617
\(203\) −435.816 −0.150681
\(204\) 966.729 0.331787
\(205\) 0 0
\(206\) 5708.08 1.93059
\(207\) −652.845 −0.219207
\(208\) 4937.48 1.64593
\(209\) 8427.48 2.78919
\(210\) 0 0
\(211\) −4160.10 −1.35731 −0.678656 0.734456i \(-0.737437\pi\)
−0.678656 + 0.734456i \(0.737437\pi\)
\(212\) 1034.88 0.335265
\(213\) 2612.77 0.840489
\(214\) 554.837 0.177233
\(215\) 0 0
\(216\) −309.421 −0.0974696
\(217\) 2708.47 0.847295
\(218\) 4336.40 1.34724
\(219\) −1235.71 −0.381286
\(220\) 0 0
\(221\) −4179.68 −1.27220
\(222\) 513.441 0.155225
\(223\) 1746.41 0.524432 0.262216 0.965009i \(-0.415547\pi\)
0.262216 + 0.965009i \(0.415547\pi\)
\(224\) 2888.81 0.861683
\(225\) 0 0
\(226\) 4120.97 1.21293
\(227\) −129.508 −0.0378666 −0.0189333 0.999821i \(-0.506027\pi\)
−0.0189333 + 0.999821i \(0.506027\pi\)
\(228\) 1712.14 0.497320
\(229\) −682.166 −0.196851 −0.0984253 0.995144i \(-0.531381\pi\)
−0.0984253 + 0.995144i \(0.531381\pi\)
\(230\) 0 0
\(231\) −3193.15 −0.909496
\(232\) −332.341 −0.0940486
\(233\) −1731.11 −0.486732 −0.243366 0.969935i \(-0.578252\pi\)
−0.243366 + 0.969935i \(0.578252\pi\)
\(234\) −2002.89 −0.559544
\(235\) 0 0
\(236\) 1711.92 0.472188
\(237\) 3360.68 0.921095
\(238\) −3611.77 −0.983681
\(239\) 3308.38 0.895402 0.447701 0.894183i \(-0.352243\pi\)
0.447701 + 0.894183i \(0.352243\pi\)
\(240\) 0 0
\(241\) 3586.39 0.958588 0.479294 0.877654i \(-0.340893\pi\)
0.479294 + 0.877654i \(0.340893\pi\)
\(242\) 13183.1 3.50183
\(243\) 243.000 0.0641500
\(244\) −2235.66 −0.586571
\(245\) 0 0
\(246\) 3991.68 1.03455
\(247\) −7402.48 −1.90692
\(248\) 2065.41 0.528844
\(249\) −3237.83 −0.824054
\(250\) 0 0
\(251\) −2956.22 −0.743406 −0.371703 0.928352i \(-0.621226\pi\)
−0.371703 + 0.928352i \(0.621226\pi\)
\(252\) −648.724 −0.162166
\(253\) −5137.59 −1.27667
\(254\) −1426.39 −0.352360
\(255\) 0 0
\(256\) 5248.27 1.28132
\(257\) −2258.12 −0.548084 −0.274042 0.961718i \(-0.588361\pi\)
−0.274042 + 0.961718i \(0.588361\pi\)
\(258\) 4389.96 1.05933
\(259\) −719.004 −0.172497
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −1378.09 −0.324956
\(263\) −2908.67 −0.681963 −0.340981 0.940070i \(-0.610759\pi\)
−0.340981 + 0.940070i \(0.610759\pi\)
\(264\) −2435.01 −0.567667
\(265\) 0 0
\(266\) −6396.66 −1.47445
\(267\) 1166.98 0.267483
\(268\) 2774.02 0.632277
\(269\) −297.910 −0.0675238 −0.0337619 0.999430i \(-0.510749\pi\)
−0.0337619 + 0.999430i \(0.510749\pi\)
\(270\) 0 0
\(271\) 6993.04 1.56752 0.783758 0.621067i \(-0.213300\pi\)
0.783758 + 0.621067i \(0.213300\pi\)
\(272\) −5332.18 −1.18864
\(273\) 2804.78 0.621805
\(274\) 1258.73 0.277529
\(275\) 0 0
\(276\) −1043.76 −0.227634
\(277\) −5701.84 −1.23679 −0.618394 0.785868i \(-0.712216\pi\)
−0.618394 + 0.785868i \(0.712216\pi\)
\(278\) 4072.58 0.878622
\(279\) −1622.04 −0.348061
\(280\) 0 0
\(281\) −1216.34 −0.258223 −0.129112 0.991630i \(-0.541213\pi\)
−0.129112 + 0.991630i \(0.541213\pi\)
\(282\) −1351.02 −0.285290
\(283\) −4096.17 −0.860396 −0.430198 0.902735i \(-0.641556\pi\)
−0.430198 + 0.902735i \(0.641556\pi\)
\(284\) 4177.27 0.872801
\(285\) 0 0
\(286\) −15761.9 −3.25881
\(287\) −5589.80 −1.14967
\(288\) −1730.04 −0.353972
\(289\) −399.197 −0.0812532
\(290\) 0 0
\(291\) 4586.47 0.923931
\(292\) −1975.64 −0.395944
\(293\) −5854.29 −1.16727 −0.583637 0.812015i \(-0.698371\pi\)
−0.583637 + 0.812015i \(0.698371\pi\)
\(294\) −1257.26 −0.249405
\(295\) 0 0
\(296\) −548.292 −0.107665
\(297\) 1912.30 0.373613
\(298\) 4294.74 0.834858
\(299\) 4512.73 0.872836
\(300\) 0 0
\(301\) −6147.54 −1.17720
\(302\) −5506.56 −1.04923
\(303\) −4276.51 −0.810822
\(304\) −9443.62 −1.78167
\(305\) 0 0
\(306\) 2163.00 0.404087
\(307\) 2748.38 0.510940 0.255470 0.966817i \(-0.417770\pi\)
0.255470 + 0.966817i \(0.417770\pi\)
\(308\) −5105.17 −0.944461
\(309\) 4787.05 0.881313
\(310\) 0 0
\(311\) −10289.0 −1.87600 −0.938000 0.346634i \(-0.887325\pi\)
−0.938000 + 0.346634i \(0.887325\pi\)
\(312\) 2138.85 0.388104
\(313\) −8540.93 −1.54237 −0.771185 0.636611i \(-0.780336\pi\)
−0.771185 + 0.636611i \(0.780336\pi\)
\(314\) −798.196 −0.143455
\(315\) 0 0
\(316\) 5373.02 0.956506
\(317\) 131.153 0.0232375 0.0116187 0.999933i \(-0.496302\pi\)
0.0116187 + 0.999933i \(0.496302\pi\)
\(318\) 2315.50 0.408323
\(319\) 2053.95 0.360499
\(320\) 0 0
\(321\) 465.311 0.0809070
\(322\) 3899.56 0.674888
\(323\) 7994.22 1.37712
\(324\) 388.506 0.0666162
\(325\) 0 0
\(326\) 11142.0 1.89293
\(327\) 3636.70 0.615014
\(328\) −4262.63 −0.717574
\(329\) 1891.91 0.317035
\(330\) 0 0
\(331\) −7274.79 −1.20803 −0.604016 0.796972i \(-0.706434\pi\)
−0.604016 + 0.796972i \(0.706434\pi\)
\(332\) −5176.61 −0.855734
\(333\) 430.595 0.0708602
\(334\) 6155.56 1.00844
\(335\) 0 0
\(336\) 3578.16 0.580966
\(337\) −4663.56 −0.753830 −0.376915 0.926248i \(-0.623015\pi\)
−0.376915 + 0.926248i \(0.623015\pi\)
\(338\) 5985.72 0.963256
\(339\) 3456.03 0.553704
\(340\) 0 0
\(341\) −12764.7 −2.02712
\(342\) 3830.81 0.605692
\(343\) 6915.27 1.08860
\(344\) −4687.94 −0.734759
\(345\) 0 0
\(346\) −8723.72 −1.35546
\(347\) −6050.81 −0.936093 −0.468046 0.883704i \(-0.655042\pi\)
−0.468046 + 0.883704i \(0.655042\pi\)
\(348\) 417.284 0.0642781
\(349\) 12824.0 1.96691 0.983455 0.181152i \(-0.0579825\pi\)
0.983455 + 0.181152i \(0.0579825\pi\)
\(350\) 0 0
\(351\) −1679.72 −0.255432
\(352\) −13614.7 −2.06155
\(353\) −12514.5 −1.88691 −0.943457 0.331494i \(-0.892447\pi\)
−0.943457 + 0.331494i \(0.892447\pi\)
\(354\) 3830.32 0.575082
\(355\) 0 0
\(356\) 1865.75 0.277766
\(357\) −3028.99 −0.449051
\(358\) −8041.53 −1.18717
\(359\) 3394.70 0.499068 0.249534 0.968366i \(-0.419723\pi\)
0.249534 + 0.968366i \(0.419723\pi\)
\(360\) 0 0
\(361\) 7299.26 1.06419
\(362\) −8431.92 −1.22423
\(363\) 11056.0 1.59859
\(364\) 4484.25 0.645710
\(365\) 0 0
\(366\) −5002.16 −0.714391
\(367\) 9991.93 1.42118 0.710592 0.703604i \(-0.248427\pi\)
0.710592 + 0.703604i \(0.248427\pi\)
\(368\) 5757.06 0.815509
\(369\) 3347.60 0.472274
\(370\) 0 0
\(371\) −3242.54 −0.453758
\(372\) −2593.30 −0.361442
\(373\) −7219.40 −1.00216 −0.501081 0.865400i \(-0.667064\pi\)
−0.501081 + 0.865400i \(0.667064\pi\)
\(374\) 17021.9 2.35342
\(375\) 0 0
\(376\) 1442.72 0.197879
\(377\) −1804.14 −0.246467
\(378\) −1451.48 −0.197503
\(379\) 10797.8 1.46345 0.731724 0.681601i \(-0.238716\pi\)
0.731724 + 0.681601i \(0.238716\pi\)
\(380\) 0 0
\(381\) −1196.23 −0.160852
\(382\) 6877.37 0.921144
\(383\) 3396.75 0.453174 0.226587 0.973991i \(-0.427243\pi\)
0.226587 + 0.973991i \(0.427243\pi\)
\(384\) 4047.80 0.537926
\(385\) 0 0
\(386\) −6584.49 −0.868243
\(387\) 3681.62 0.483585
\(388\) 7332.80 0.959450
\(389\) −4927.07 −0.642192 −0.321096 0.947047i \(-0.604051\pi\)
−0.321096 + 0.947047i \(0.604051\pi\)
\(390\) 0 0
\(391\) −4873.47 −0.630338
\(392\) 1342.60 0.172989
\(393\) −1155.72 −0.148342
\(394\) 9704.21 1.24084
\(395\) 0 0
\(396\) 3057.37 0.387976
\(397\) 7777.55 0.983234 0.491617 0.870812i \(-0.336406\pi\)
0.491617 + 0.870812i \(0.336406\pi\)
\(398\) 803.551 0.101202
\(399\) −5364.52 −0.673088
\(400\) 0 0
\(401\) 6058.22 0.754446 0.377223 0.926122i \(-0.376879\pi\)
0.377223 + 0.926122i \(0.376879\pi\)
\(402\) 6206.71 0.770057
\(403\) 11212.2 1.38591
\(404\) −6837.24 −0.841994
\(405\) 0 0
\(406\) −1559.00 −0.190571
\(407\) 3388.59 0.412693
\(408\) −2309.82 −0.280278
\(409\) −15078.2 −1.82291 −0.911454 0.411403i \(-0.865039\pi\)
−0.911454 + 0.411403i \(0.865039\pi\)
\(410\) 0 0
\(411\) 1055.63 0.126692
\(412\) 7653.48 0.915194
\(413\) −5363.83 −0.639073
\(414\) −2335.36 −0.277238
\(415\) 0 0
\(416\) 11958.8 1.40944
\(417\) 3415.45 0.401091
\(418\) 30146.8 3.52758
\(419\) 5698.22 0.664383 0.332192 0.943212i \(-0.392212\pi\)
0.332192 + 0.943212i \(0.392212\pi\)
\(420\) 0 0
\(421\) 846.838 0.0980341 0.0490171 0.998798i \(-0.484391\pi\)
0.0490171 + 0.998798i \(0.484391\pi\)
\(422\) −14881.5 −1.71664
\(423\) −1133.02 −0.130235
\(424\) −2472.67 −0.283215
\(425\) 0 0
\(426\) 9346.41 1.06299
\(427\) 7004.83 0.793882
\(428\) 743.934 0.0840173
\(429\) −13218.6 −1.48765
\(430\) 0 0
\(431\) −7518.27 −0.840237 −0.420119 0.907469i \(-0.638012\pi\)
−0.420119 + 0.907469i \(0.638012\pi\)
\(432\) −2142.88 −0.238656
\(433\) −12686.0 −1.40797 −0.703987 0.710213i \(-0.748599\pi\)
−0.703987 + 0.710213i \(0.748599\pi\)
\(434\) 9688.75 1.07160
\(435\) 0 0
\(436\) 5814.31 0.638658
\(437\) −8631.22 −0.944822
\(438\) −4420.39 −0.482225
\(439\) 10530.4 1.14485 0.572424 0.819958i \(-0.306003\pi\)
0.572424 + 0.819958i \(0.306003\pi\)
\(440\) 0 0
\(441\) −1054.40 −0.113853
\(442\) −14951.6 −1.60899
\(443\) 5199.17 0.557608 0.278804 0.960348i \(-0.410062\pi\)
0.278804 + 0.960348i \(0.410062\pi\)
\(444\) 688.430 0.0735843
\(445\) 0 0
\(446\) 6247.27 0.663266
\(447\) 3601.76 0.381113
\(448\) 792.112 0.0835352
\(449\) −11836.7 −1.24412 −0.622058 0.782971i \(-0.713703\pi\)
−0.622058 + 0.782971i \(0.713703\pi\)
\(450\) 0 0
\(451\) 26344.1 2.75055
\(452\) 5525.46 0.574990
\(453\) −4618.04 −0.478973
\(454\) −463.274 −0.0478911
\(455\) 0 0
\(456\) −4090.84 −0.420112
\(457\) −404.451 −0.0413992 −0.0206996 0.999786i \(-0.506589\pi\)
−0.0206996 + 0.999786i \(0.506589\pi\)
\(458\) −2440.24 −0.248963
\(459\) 1813.99 0.184466
\(460\) 0 0
\(461\) 7072.59 0.714541 0.357270 0.934001i \(-0.383707\pi\)
0.357270 + 0.934001i \(0.383707\pi\)
\(462\) −11422.5 −1.15027
\(463\) 6500.22 0.652464 0.326232 0.945290i \(-0.394221\pi\)
0.326232 + 0.945290i \(0.394221\pi\)
\(464\) −2301.61 −0.230279
\(465\) 0 0
\(466\) −6192.51 −0.615585
\(467\) 8850.61 0.876997 0.438498 0.898732i \(-0.355511\pi\)
0.438498 + 0.898732i \(0.355511\pi\)
\(468\) −2685.51 −0.265252
\(469\) −8691.65 −0.855742
\(470\) 0 0
\(471\) −669.403 −0.0654872
\(472\) −4090.31 −0.398881
\(473\) 28972.7 2.81642
\(474\) 12021.8 1.16494
\(475\) 0 0
\(476\) −4842.71 −0.466314
\(477\) 1941.88 0.186399
\(478\) 11834.7 1.13244
\(479\) −8582.91 −0.818712 −0.409356 0.912375i \(-0.634247\pi\)
−0.409356 + 0.912375i \(0.634247\pi\)
\(480\) 0 0
\(481\) −2976.45 −0.282150
\(482\) 12829.2 1.21236
\(483\) 3270.34 0.308087
\(484\) 17676.1 1.66004
\(485\) 0 0
\(486\) 869.260 0.0811326
\(487\) 2823.62 0.262732 0.131366 0.991334i \(-0.458064\pi\)
0.131366 + 0.991334i \(0.458064\pi\)
\(488\) 5341.69 0.495506
\(489\) 9344.14 0.864124
\(490\) 0 0
\(491\) −13116.2 −1.20555 −0.602776 0.797911i \(-0.705939\pi\)
−0.602776 + 0.797911i \(0.705939\pi\)
\(492\) 5352.11 0.490430
\(493\) 1948.36 0.177991
\(494\) −26480.2 −2.41174
\(495\) 0 0
\(496\) 14303.8 1.29488
\(497\) −13088.4 −1.18127
\(498\) −11582.4 −1.04221
\(499\) −16495.4 −1.47983 −0.739916 0.672699i \(-0.765135\pi\)
−0.739916 + 0.672699i \(0.765135\pi\)
\(500\) 0 0
\(501\) 5162.33 0.460351
\(502\) −10575.0 −0.940209
\(503\) 16677.3 1.47834 0.739169 0.673520i \(-0.235219\pi\)
0.739169 + 0.673520i \(0.235219\pi\)
\(504\) 1550.01 0.136990
\(505\) 0 0
\(506\) −18378.2 −1.61465
\(507\) 5019.89 0.439726
\(508\) −1912.52 −0.167036
\(509\) 9386.35 0.817373 0.408686 0.912675i \(-0.365987\pi\)
0.408686 + 0.912675i \(0.365987\pi\)
\(510\) 0 0
\(511\) 6190.15 0.535883
\(512\) 7979.98 0.688806
\(513\) 3212.69 0.276498
\(514\) −8077.75 −0.693180
\(515\) 0 0
\(516\) 5886.13 0.502175
\(517\) −8916.37 −0.758495
\(518\) −2572.02 −0.218162
\(519\) −7316.10 −0.618769
\(520\) 0 0
\(521\) −16530.2 −1.39002 −0.695009 0.719001i \(-0.744600\pi\)
−0.695009 + 0.719001i \(0.744600\pi\)
\(522\) 933.649 0.0782849
\(523\) 18295.9 1.52968 0.764842 0.644217i \(-0.222817\pi\)
0.764842 + 0.644217i \(0.222817\pi\)
\(524\) −1847.76 −0.154045
\(525\) 0 0
\(526\) −10404.9 −0.862500
\(527\) −12108.5 −1.00086
\(528\) −16863.5 −1.38994
\(529\) −6905.20 −0.567535
\(530\) 0 0
\(531\) 3212.27 0.262525
\(532\) −8576.74 −0.698964
\(533\) −23140.0 −1.88050
\(534\) 4174.51 0.338294
\(535\) 0 0
\(536\) −6628.01 −0.534117
\(537\) −6743.99 −0.541945
\(538\) −1065.68 −0.0853994
\(539\) −8297.63 −0.663088
\(540\) 0 0
\(541\) −949.695 −0.0754724 −0.0377362 0.999288i \(-0.512015\pi\)
−0.0377362 + 0.999288i \(0.512015\pi\)
\(542\) 25015.5 1.98249
\(543\) −7071.38 −0.558862
\(544\) −12914.7 −1.01786
\(545\) 0 0
\(546\) 10033.3 0.786417
\(547\) −18017.4 −1.40835 −0.704177 0.710024i \(-0.748684\pi\)
−0.704177 + 0.710024i \(0.748684\pi\)
\(548\) 1687.73 0.131563
\(549\) −4195.03 −0.326119
\(550\) 0 0
\(551\) 3450.67 0.266794
\(552\) 2493.87 0.192294
\(553\) −16834.9 −1.29456
\(554\) −20396.6 −1.56420
\(555\) 0 0
\(556\) 5460.58 0.416511
\(557\) 11387.6 0.866263 0.433131 0.901331i \(-0.357409\pi\)
0.433131 + 0.901331i \(0.357409\pi\)
\(558\) −5802.37 −0.440204
\(559\) −25448.9 −1.92553
\(560\) 0 0
\(561\) 14275.3 1.07434
\(562\) −4351.09 −0.326583
\(563\) 277.822 0.0207971 0.0103986 0.999946i \(-0.496690\pi\)
0.0103986 + 0.999946i \(0.496690\pi\)
\(564\) −1811.46 −0.135242
\(565\) 0 0
\(566\) −14652.8 −1.08817
\(567\) −1217.28 −0.0901603
\(568\) −9980.82 −0.737299
\(569\) 15475.5 1.14019 0.570093 0.821580i \(-0.306907\pi\)
0.570093 + 0.821580i \(0.306907\pi\)
\(570\) 0 0
\(571\) −3245.82 −0.237887 −0.118944 0.992901i \(-0.537951\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(572\) −21133.8 −1.54484
\(573\) 5767.67 0.420502
\(574\) −19995.8 −1.45402
\(575\) 0 0
\(576\) −474.377 −0.0343155
\(577\) 23087.9 1.66579 0.832895 0.553430i \(-0.186682\pi\)
0.832895 + 0.553430i \(0.186682\pi\)
\(578\) −1428.01 −0.102764
\(579\) −5522.05 −0.396353
\(580\) 0 0
\(581\) 16219.5 1.15818
\(582\) 16406.7 1.16852
\(583\) 15281.7 1.08560
\(584\) 4720.44 0.334474
\(585\) 0 0
\(586\) −20942.0 −1.47629
\(587\) −13526.1 −0.951075 −0.475537 0.879696i \(-0.657746\pi\)
−0.475537 + 0.879696i \(0.657746\pi\)
\(588\) −1685.76 −0.118230
\(589\) −21444.9 −1.50021
\(590\) 0 0
\(591\) 8138.38 0.566444
\(592\) −3797.17 −0.263619
\(593\) −15964.6 −1.10554 −0.552770 0.833334i \(-0.686429\pi\)
−0.552770 + 0.833334i \(0.686429\pi\)
\(594\) 6840.69 0.472520
\(595\) 0 0
\(596\) 5758.46 0.395764
\(597\) 673.894 0.0461987
\(598\) 16142.9 1.10390
\(599\) 22.9584 0.00156603 0.000783017 1.00000i \(-0.499751\pi\)
0.000783017 1.00000i \(0.499751\pi\)
\(600\) 0 0
\(601\) −7471.32 −0.507090 −0.253545 0.967324i \(-0.581597\pi\)
−0.253545 + 0.967324i \(0.581597\pi\)
\(602\) −21991.0 −1.48885
\(603\) 5205.23 0.351531
\(604\) −7383.28 −0.497386
\(605\) 0 0
\(606\) −15297.9 −1.02547
\(607\) −23036.9 −1.54042 −0.770212 0.637788i \(-0.779849\pi\)
−0.770212 + 0.637788i \(0.779849\pi\)
\(608\) −22872.8 −1.52568
\(609\) −1307.45 −0.0869958
\(610\) 0 0
\(611\) 7831.91 0.518569
\(612\) 2900.19 0.191557
\(613\) 20040.0 1.32040 0.660202 0.751088i \(-0.270470\pi\)
0.660202 + 0.751088i \(0.270470\pi\)
\(614\) 9831.52 0.646202
\(615\) 0 0
\(616\) 12197.9 0.797834
\(617\) 27464.4 1.79202 0.896010 0.444035i \(-0.146453\pi\)
0.896010 + 0.444035i \(0.146453\pi\)
\(618\) 17124.2 1.11462
\(619\) 3585.29 0.232803 0.116402 0.993202i \(-0.462864\pi\)
0.116402 + 0.993202i \(0.462864\pi\)
\(620\) 0 0
\(621\) −1958.53 −0.126559
\(622\) −36805.9 −2.37264
\(623\) −5845.83 −0.375936
\(624\) 14812.4 0.950276
\(625\) 0 0
\(626\) −30552.6 −1.95069
\(627\) 25282.4 1.61034
\(628\) −1070.23 −0.0680048
\(629\) 3214.38 0.203761
\(630\) 0 0
\(631\) −27135.3 −1.71195 −0.855973 0.517020i \(-0.827041\pi\)
−0.855973 + 0.517020i \(0.827041\pi\)
\(632\) −12837.8 −0.808009
\(633\) −12480.3 −0.783645
\(634\) 469.160 0.0293892
\(635\) 0 0
\(636\) 3104.65 0.193565
\(637\) 7288.43 0.453341
\(638\) 7347.40 0.455935
\(639\) 7838.32 0.485257
\(640\) 0 0
\(641\) 23443.5 1.44456 0.722278 0.691603i \(-0.243095\pi\)
0.722278 + 0.691603i \(0.243095\pi\)
\(642\) 1664.51 0.102326
\(643\) 9339.29 0.572792 0.286396 0.958111i \(-0.407543\pi\)
0.286396 + 0.958111i \(0.407543\pi\)
\(644\) 5228.59 0.319931
\(645\) 0 0
\(646\) 28596.9 1.74169
\(647\) −1103.56 −0.0670562 −0.0335281 0.999438i \(-0.510674\pi\)
−0.0335281 + 0.999438i \(0.510674\pi\)
\(648\) −928.263 −0.0562741
\(649\) 25279.2 1.52896
\(650\) 0 0
\(651\) 8125.41 0.489186
\(652\) 14939.3 0.897344
\(653\) 3127.51 0.187425 0.0937127 0.995599i \(-0.470126\pi\)
0.0937127 + 0.995599i \(0.470126\pi\)
\(654\) 13009.2 0.777828
\(655\) 0 0
\(656\) −29520.6 −1.75699
\(657\) −3707.14 −0.220136
\(658\) 6767.75 0.400964
\(659\) 16004.5 0.946050 0.473025 0.881049i \(-0.343162\pi\)
0.473025 + 0.881049i \(0.343162\pi\)
\(660\) 0 0
\(661\) 10807.3 0.635939 0.317970 0.948101i \(-0.396999\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(662\) −26023.4 −1.52784
\(663\) −12539.1 −0.734504
\(664\) 12368.6 0.722882
\(665\) 0 0
\(666\) 1540.32 0.0896191
\(667\) −2103.61 −0.122117
\(668\) 8253.47 0.478049
\(669\) 5239.24 0.302781
\(670\) 0 0
\(671\) −33013.0 −1.89933
\(672\) 8666.44 0.497493
\(673\) −23835.6 −1.36522 −0.682612 0.730781i \(-0.739156\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(674\) −16682.5 −0.953392
\(675\) 0 0
\(676\) 8025.75 0.456631
\(677\) −5081.10 −0.288453 −0.144227 0.989545i \(-0.546069\pi\)
−0.144227 + 0.989545i \(0.546069\pi\)
\(678\) 12362.9 0.700286
\(679\) −22975.4 −1.29855
\(680\) 0 0
\(681\) −388.523 −0.0218623
\(682\) −45662.0 −2.56377
\(683\) −7815.19 −0.437833 −0.218917 0.975744i \(-0.570252\pi\)
−0.218917 + 0.975744i \(0.570252\pi\)
\(684\) 5136.41 0.287128
\(685\) 0 0
\(686\) 24737.3 1.37679
\(687\) −2046.50 −0.113652
\(688\) −32466.1 −1.79907
\(689\) −13423.1 −0.742204
\(690\) 0 0
\(691\) 8815.96 0.485347 0.242674 0.970108i \(-0.421976\pi\)
0.242674 + 0.970108i \(0.421976\pi\)
\(692\) −11696.9 −0.642557
\(693\) −9579.44 −0.525098
\(694\) −21644.9 −1.18391
\(695\) 0 0
\(696\) −997.023 −0.0542990
\(697\) 24989.8 1.35804
\(698\) 45873.9 2.48761
\(699\) −5193.32 −0.281015
\(700\) 0 0
\(701\) −4100.40 −0.220927 −0.110464 0.993880i \(-0.535234\pi\)
−0.110464 + 0.993880i \(0.535234\pi\)
\(702\) −6008.68 −0.323053
\(703\) 5692.87 0.305420
\(704\) −3733.14 −0.199855
\(705\) 0 0
\(706\) −44767.0 −2.38644
\(707\) 21422.7 1.13958
\(708\) 5135.75 0.272618
\(709\) −17803.3 −0.943042 −0.471521 0.881855i \(-0.656295\pi\)
−0.471521 + 0.881855i \(0.656295\pi\)
\(710\) 0 0
\(711\) 10082.0 0.531795
\(712\) −4457.87 −0.234643
\(713\) 13073.3 0.686677
\(714\) −10835.3 −0.567928
\(715\) 0 0
\(716\) −10782.2 −0.562780
\(717\) 9925.13 0.516961
\(718\) 12143.5 0.631187
\(719\) −4213.37 −0.218543 −0.109271 0.994012i \(-0.534852\pi\)
−0.109271 + 0.994012i \(0.534852\pi\)
\(720\) 0 0
\(721\) −23980.1 −1.23865
\(722\) 26110.9 1.34591
\(723\) 10759.2 0.553441
\(724\) −11305.6 −0.580347
\(725\) 0 0
\(726\) 39549.4 2.02178
\(727\) −29559.3 −1.50797 −0.753984 0.656893i \(-0.771870\pi\)
−0.753984 + 0.656893i \(0.771870\pi\)
\(728\) −10714.3 −0.545464
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 27483.2 1.39057
\(732\) −6706.97 −0.338657
\(733\) −23312.9 −1.17474 −0.587369 0.809319i \(-0.699836\pi\)
−0.587369 + 0.809319i \(0.699836\pi\)
\(734\) 35743.1 1.79742
\(735\) 0 0
\(736\) 13943.8 0.698337
\(737\) 40962.8 2.04733
\(738\) 11975.0 0.597300
\(739\) 27985.2 1.39303 0.696517 0.717540i \(-0.254732\pi\)
0.696517 + 0.717540i \(0.254732\pi\)
\(740\) 0 0
\(741\) −22207.4 −1.10096
\(742\) −11599.2 −0.573881
\(743\) 2542.48 0.125538 0.0627690 0.998028i \(-0.480007\pi\)
0.0627690 + 0.998028i \(0.480007\pi\)
\(744\) 6196.22 0.305328
\(745\) 0 0
\(746\) −25825.3 −1.26747
\(747\) −9713.50 −0.475768
\(748\) 22823.2 1.11564
\(749\) −2330.92 −0.113712
\(750\) 0 0
\(751\) 33600.2 1.63261 0.816305 0.577622i \(-0.196019\pi\)
0.816305 + 0.577622i \(0.196019\pi\)
\(752\) 9991.46 0.484510
\(753\) −8868.65 −0.429206
\(754\) −6453.77 −0.311714
\(755\) 0 0
\(756\) −1946.17 −0.0936264
\(757\) 34022.4 1.63351 0.816754 0.576986i \(-0.195771\pi\)
0.816754 + 0.576986i \(0.195771\pi\)
\(758\) 38626.0 1.85087
\(759\) −15412.8 −0.737086
\(760\) 0 0
\(761\) 15032.8 0.716084 0.358042 0.933705i \(-0.383444\pi\)
0.358042 + 0.933705i \(0.383444\pi\)
\(762\) −4279.16 −0.203435
\(763\) −18217.6 −0.864378
\(764\) 9221.28 0.436668
\(765\) 0 0
\(766\) 12150.8 0.573144
\(767\) −22204.6 −1.04532
\(768\) 15744.8 0.739768
\(769\) −24042.9 −1.12745 −0.563725 0.825963i \(-0.690632\pi\)
−0.563725 + 0.825963i \(0.690632\pi\)
\(770\) 0 0
\(771\) −6774.36 −0.316437
\(772\) −8828.59 −0.411590
\(773\) −17441.1 −0.811530 −0.405765 0.913977i \(-0.632995\pi\)
−0.405765 + 0.913977i \(0.632995\pi\)
\(774\) 13169.9 0.611605
\(775\) 0 0
\(776\) −17520.4 −0.810496
\(777\) −2157.01 −0.0995912
\(778\) −17625.1 −0.812200
\(779\) 44258.5 2.03559
\(780\) 0 0
\(781\) 61684.0 2.82616
\(782\) −17433.4 −0.797208
\(783\) 783.000 0.0357371
\(784\) 9298.12 0.423566
\(785\) 0 0
\(786\) −4134.26 −0.187613
\(787\) 38211.9 1.73076 0.865379 0.501119i \(-0.167078\pi\)
0.865379 + 0.501119i \(0.167078\pi\)
\(788\) 13011.6 0.588220
\(789\) −8726.00 −0.393731
\(790\) 0 0
\(791\) −17312.5 −0.778208
\(792\) −7305.02 −0.327743
\(793\) 28997.8 1.29854
\(794\) 27821.8 1.24353
\(795\) 0 0
\(796\) 1077.41 0.0479748
\(797\) −18149.9 −0.806655 −0.403327 0.915056i \(-0.632146\pi\)
−0.403327 + 0.915056i \(0.632146\pi\)
\(798\) −19190.0 −0.851276
\(799\) −8457.99 −0.374496
\(800\) 0 0
\(801\) 3500.93 0.154431
\(802\) 21671.5 0.954172
\(803\) −29173.5 −1.28208
\(804\) 8322.06 0.365045
\(805\) 0 0
\(806\) 40108.3 1.75280
\(807\) −893.730 −0.0389849
\(808\) 16336.3 0.711275
\(809\) −339.522 −0.0147552 −0.00737759 0.999973i \(-0.502348\pi\)
−0.00737759 + 0.999973i \(0.502348\pi\)
\(810\) 0 0
\(811\) 26295.4 1.13854 0.569270 0.822151i \(-0.307226\pi\)
0.569270 + 0.822151i \(0.307226\pi\)
\(812\) −2090.33 −0.0903403
\(813\) 20979.1 0.905005
\(814\) 12121.7 0.521946
\(815\) 0 0
\(816\) −15996.5 −0.686263
\(817\) 48674.5 2.08434
\(818\) −53937.8 −2.30549
\(819\) 8414.33 0.359000
\(820\) 0 0
\(821\) −46289.6 −1.96775 −0.983873 0.178867i \(-0.942757\pi\)
−0.983873 + 0.178867i \(0.942757\pi\)
\(822\) 3776.20 0.160231
\(823\) 28099.3 1.19013 0.595067 0.803676i \(-0.297126\pi\)
0.595067 + 0.803676i \(0.297126\pi\)
\(824\) −18286.6 −0.773111
\(825\) 0 0
\(826\) −19187.5 −0.808255
\(827\) 38732.3 1.62860 0.814301 0.580443i \(-0.197121\pi\)
0.814301 + 0.580443i \(0.197121\pi\)
\(828\) −3131.28 −0.131425
\(829\) −9334.33 −0.391067 −0.195534 0.980697i \(-0.562644\pi\)
−0.195534 + 0.980697i \(0.562644\pi\)
\(830\) 0 0
\(831\) −17105.5 −0.714060
\(832\) 3279.09 0.136637
\(833\) −7871.06 −0.327390
\(834\) 12217.7 0.507273
\(835\) 0 0
\(836\) 40421.3 1.67225
\(837\) −4866.12 −0.200953
\(838\) 20383.7 0.840266
\(839\) −40742.1 −1.67649 −0.838245 0.545294i \(-0.816418\pi\)
−0.838245 + 0.545294i \(0.816418\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 3029.31 0.123987
\(843\) −3649.02 −0.149085
\(844\) −19953.4 −0.813771
\(845\) 0 0
\(846\) −4053.05 −0.164712
\(847\) −55383.5 −2.24675
\(848\) −17124.3 −0.693457
\(849\) −12288.5 −0.496750
\(850\) 0 0
\(851\) −3470.51 −0.139797
\(852\) 12531.8 0.503912
\(853\) 29088.9 1.16762 0.583812 0.811889i \(-0.301560\pi\)
0.583812 + 0.811889i \(0.301560\pi\)
\(854\) 25057.7 1.00405
\(855\) 0 0
\(856\) −1777.49 −0.0709737
\(857\) −31564.0 −1.25812 −0.629059 0.777357i \(-0.716560\pi\)
−0.629059 + 0.777357i \(0.716560\pi\)
\(858\) −47285.6 −1.88147
\(859\) 21654.5 0.860120 0.430060 0.902800i \(-0.358492\pi\)
0.430060 + 0.902800i \(0.358492\pi\)
\(860\) 0 0
\(861\) −16769.4 −0.663763
\(862\) −26894.4 −1.06267
\(863\) −2304.51 −0.0908996 −0.0454498 0.998967i \(-0.514472\pi\)
−0.0454498 + 0.998967i \(0.514472\pi\)
\(864\) −5190.13 −0.204366
\(865\) 0 0
\(866\) −45380.5 −1.78071
\(867\) −1197.59 −0.0469116
\(868\) 12990.8 0.507992
\(869\) 79341.1 3.09720
\(870\) 0 0
\(871\) −35980.7 −1.39972
\(872\) −13892.2 −0.539507
\(873\) 13759.4 0.533432
\(874\) −30875.6 −1.19495
\(875\) 0 0
\(876\) −5926.93 −0.228599
\(877\) −42141.0 −1.62258 −0.811289 0.584645i \(-0.801234\pi\)
−0.811289 + 0.584645i \(0.801234\pi\)
\(878\) 37669.4 1.44793
\(879\) −17562.9 −0.673926
\(880\) 0 0
\(881\) 3482.39 0.133172 0.0665861 0.997781i \(-0.478789\pi\)
0.0665861 + 0.997781i \(0.478789\pi\)
\(882\) −3771.79 −0.143994
\(883\) −28559.6 −1.08846 −0.544229 0.838937i \(-0.683178\pi\)
−0.544229 + 0.838937i \(0.683178\pi\)
\(884\) −20047.3 −0.762742
\(885\) 0 0
\(886\) 18598.5 0.705224
\(887\) 42485.5 1.60826 0.804128 0.594456i \(-0.202633\pi\)
0.804128 + 0.594456i \(0.202633\pi\)
\(888\) −1644.88 −0.0621604
\(889\) 5992.37 0.226072
\(890\) 0 0
\(891\) 5736.90 0.215705
\(892\) 8376.43 0.314421
\(893\) −14979.6 −0.561337
\(894\) 12884.2 0.482005
\(895\) 0 0
\(896\) −20277.0 −0.756034
\(897\) 13538.2 0.503932
\(898\) −42342.3 −1.57347
\(899\) −5226.58 −0.193900
\(900\) 0 0
\(901\) 14496.1 0.535999
\(902\) 94238.2 3.47870
\(903\) −18442.6 −0.679659
\(904\) −13202.1 −0.485724
\(905\) 0 0
\(906\) −16519.7 −0.605772
\(907\) 22359.4 0.818559 0.409280 0.912409i \(-0.365780\pi\)
0.409280 + 0.912409i \(0.365780\pi\)
\(908\) −621.166 −0.0227028
\(909\) −12829.5 −0.468128
\(910\) 0 0
\(911\) −14833.6 −0.539471 −0.269735 0.962934i \(-0.586936\pi\)
−0.269735 + 0.962934i \(0.586936\pi\)
\(912\) −28330.9 −1.02865
\(913\) −76440.9 −2.77089
\(914\) −1446.80 −0.0523588
\(915\) 0 0
\(916\) −3271.92 −0.118021
\(917\) 5789.46 0.208489
\(918\) 6489.01 0.233300
\(919\) −41161.8 −1.47748 −0.738740 0.673991i \(-0.764579\pi\)
−0.738740 + 0.673991i \(0.764579\pi\)
\(920\) 0 0
\(921\) 8245.15 0.294991
\(922\) 25300.1 0.903702
\(923\) −54181.7 −1.93219
\(924\) −15315.5 −0.545285
\(925\) 0 0
\(926\) 23252.6 0.825192
\(927\) 14361.2 0.508826
\(928\) −5574.59 −0.197193
\(929\) 29321.8 1.03554 0.517771 0.855519i \(-0.326762\pi\)
0.517771 + 0.855519i \(0.326762\pi\)
\(930\) 0 0
\(931\) −13940.1 −0.490729
\(932\) −8303.02 −0.291818
\(933\) −30867.0 −1.08311
\(934\) 31660.4 1.10917
\(935\) 0 0
\(936\) 6416.54 0.224072
\(937\) 42922.5 1.49650 0.748249 0.663418i \(-0.230895\pi\)
0.748249 + 0.663418i \(0.230895\pi\)
\(938\) −31091.8 −1.08228
\(939\) −25622.8 −0.890488
\(940\) 0 0
\(941\) −13239.3 −0.458650 −0.229325 0.973350i \(-0.573652\pi\)
−0.229325 + 0.973350i \(0.573652\pi\)
\(942\) −2394.59 −0.0828237
\(943\) −26981.0 −0.931732
\(944\) −28327.2 −0.976665
\(945\) 0 0
\(946\) 103641. 3.56201
\(947\) 19266.8 0.661126 0.330563 0.943784i \(-0.392761\pi\)
0.330563 + 0.943784i \(0.392761\pi\)
\(948\) 16119.1 0.552239
\(949\) 25625.3 0.876534
\(950\) 0 0
\(951\) 393.459 0.0134162
\(952\) 11570.8 0.393919
\(953\) 14816.2 0.503615 0.251807 0.967777i \(-0.418975\pi\)
0.251807 + 0.967777i \(0.418975\pi\)
\(954\) 6946.49 0.235745
\(955\) 0 0
\(956\) 15868.2 0.536835
\(957\) 6161.86 0.208134
\(958\) −30702.8 −1.03545
\(959\) −5288.05 −0.178061
\(960\) 0 0
\(961\) 2690.68 0.0903185
\(962\) −10647.4 −0.356845
\(963\) 1395.93 0.0467117
\(964\) 17201.6 0.574717
\(965\) 0 0
\(966\) 11698.7 0.389647
\(967\) −1342.65 −0.0446502 −0.0223251 0.999751i \(-0.507107\pi\)
−0.0223251 + 0.999751i \(0.507107\pi\)
\(968\) −42233.9 −1.40232
\(969\) 23982.7 0.795082
\(970\) 0 0
\(971\) −11211.1 −0.370526 −0.185263 0.982689i \(-0.559314\pi\)
−0.185263 + 0.982689i \(0.559314\pi\)
\(972\) 1165.52 0.0384609
\(973\) −17109.3 −0.563718
\(974\) 10100.7 0.332285
\(975\) 0 0
\(976\) 36993.6 1.21325
\(977\) −30870.2 −1.01088 −0.505438 0.862863i \(-0.668669\pi\)
−0.505438 + 0.862863i \(0.668669\pi\)
\(978\) 33425.9 1.09288
\(979\) 27550.8 0.899414
\(980\) 0 0
\(981\) 10910.1 0.355079
\(982\) −46919.3 −1.52470
\(983\) −28549.4 −0.926332 −0.463166 0.886272i \(-0.653287\pi\)
−0.463166 + 0.886272i \(0.653287\pi\)
\(984\) −12787.9 −0.414292
\(985\) 0 0
\(986\) 6969.68 0.225111
\(987\) 5675.73 0.183040
\(988\) −35505.0 −1.14328
\(989\) −29673.1 −0.954046
\(990\) 0 0
\(991\) −20806.0 −0.666927 −0.333464 0.942763i \(-0.608217\pi\)
−0.333464 + 0.942763i \(0.608217\pi\)
\(992\) 34644.5 1.10883
\(993\) −21824.4 −0.697458
\(994\) −46819.7 −1.49399
\(995\) 0 0
\(996\) −15529.8 −0.494058
\(997\) −57999.9 −1.84240 −0.921201 0.389088i \(-0.872790\pi\)
−0.921201 + 0.389088i \(0.872790\pi\)
\(998\) −59007.4 −1.87159
\(999\) 1291.78 0.0409112
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.6 7
5.4 even 2 435.4.a.i.1.2 7
15.14 odd 2 1305.4.a.n.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.2 7 5.4 even 2
1305.4.a.n.1.6 7 15.14 odd 2
2175.4.a.n.1.6 7 1.1 even 1 trivial