Properties

Label 2175.4.a.n.1.5
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.27711\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27711 q^{2} +3.00000 q^{3} -2.81476 q^{4} +6.83134 q^{6} +26.8439 q^{7} -24.6264 q^{8} +9.00000 q^{9} -58.9546 q^{11} -8.44428 q^{12} -76.8831 q^{13} +61.1265 q^{14} -33.5591 q^{16} +118.899 q^{17} +20.4940 q^{18} -149.359 q^{19} +80.5316 q^{21} -134.246 q^{22} +8.10284 q^{23} -73.8793 q^{24} -175.072 q^{26} +27.0000 q^{27} -75.5590 q^{28} +29.0000 q^{29} +151.923 q^{31} +120.594 q^{32} -176.864 q^{33} +270.747 q^{34} -25.3328 q^{36} +329.276 q^{37} -340.106 q^{38} -230.649 q^{39} +126.272 q^{41} +183.379 q^{42} +416.162 q^{43} +165.943 q^{44} +18.4511 q^{46} +236.796 q^{47} -100.677 q^{48} +377.593 q^{49} +356.698 q^{51} +216.408 q^{52} -470.080 q^{53} +61.4820 q^{54} -661.068 q^{56} -448.076 q^{57} +66.0363 q^{58} +459.022 q^{59} +602.948 q^{61} +345.945 q^{62} +241.595 q^{63} +543.078 q^{64} -402.739 q^{66} -769.705 q^{67} -334.673 q^{68} +24.3085 q^{69} +494.182 q^{71} -221.638 q^{72} +908.575 q^{73} +749.799 q^{74} +420.409 q^{76} -1582.57 q^{77} -525.215 q^{78} +145.802 q^{79} +81.0000 q^{81} +287.535 q^{82} -364.521 q^{83} -226.677 q^{84} +947.648 q^{86} +87.0000 q^{87} +1451.84 q^{88} +1341.18 q^{89} -2063.84 q^{91} -22.8076 q^{92} +455.768 q^{93} +539.210 q^{94} +361.781 q^{96} -441.198 q^{97} +859.822 q^{98} -530.591 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27711 0.805081 0.402540 0.915402i \(-0.368127\pi\)
0.402540 + 0.915402i \(0.368127\pi\)
\(3\) 3.00000 0.577350
\(4\) −2.81476 −0.351845
\(5\) 0 0
\(6\) 6.83134 0.464814
\(7\) 26.8439 1.44943 0.724716 0.689047i \(-0.241971\pi\)
0.724716 + 0.689047i \(0.241971\pi\)
\(8\) −24.6264 −1.08834
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −58.9546 −1.61595 −0.807976 0.589215i \(-0.799437\pi\)
−0.807976 + 0.589215i \(0.799437\pi\)
\(12\) −8.44428 −0.203138
\(13\) −76.8831 −1.64027 −0.820136 0.572168i \(-0.806103\pi\)
−0.820136 + 0.572168i \(0.806103\pi\)
\(14\) 61.1265 1.16691
\(15\) 0 0
\(16\) −33.5591 −0.524360
\(17\) 118.899 1.69631 0.848156 0.529747i \(-0.177713\pi\)
0.848156 + 0.529747i \(0.177713\pi\)
\(18\) 20.4940 0.268360
\(19\) −149.359 −1.80343 −0.901716 0.432328i \(-0.857692\pi\)
−0.901716 + 0.432328i \(0.857692\pi\)
\(20\) 0 0
\(21\) 80.5316 0.836830
\(22\) −134.246 −1.30097
\(23\) 8.10284 0.0734591 0.0367296 0.999325i \(-0.488306\pi\)
0.0367296 + 0.999325i \(0.488306\pi\)
\(24\) −73.8793 −0.628356
\(25\) 0 0
\(26\) −175.072 −1.32055
\(27\) 27.0000 0.192450
\(28\) −75.5590 −0.509975
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 151.923 0.880198 0.440099 0.897949i \(-0.354943\pi\)
0.440099 + 0.897949i \(0.354943\pi\)
\(32\) 120.594 0.666192
\(33\) −176.864 −0.932971
\(34\) 270.747 1.36567
\(35\) 0 0
\(36\) −25.3328 −0.117282
\(37\) 329.276 1.46305 0.731523 0.681817i \(-0.238810\pi\)
0.731523 + 0.681817i \(0.238810\pi\)
\(38\) −340.106 −1.45191
\(39\) −230.649 −0.947012
\(40\) 0 0
\(41\) 126.272 0.480983 0.240492 0.970651i \(-0.422691\pi\)
0.240492 + 0.970651i \(0.422691\pi\)
\(42\) 183.379 0.673716
\(43\) 416.162 1.47591 0.737955 0.674850i \(-0.235792\pi\)
0.737955 + 0.674850i \(0.235792\pi\)
\(44\) 165.943 0.568565
\(45\) 0 0
\(46\) 18.4511 0.0591405
\(47\) 236.796 0.734898 0.367449 0.930044i \(-0.380231\pi\)
0.367449 + 0.930044i \(0.380231\pi\)
\(48\) −100.677 −0.302740
\(49\) 377.593 1.10085
\(50\) 0 0
\(51\) 356.698 0.979366
\(52\) 216.408 0.577122
\(53\) −470.080 −1.21831 −0.609155 0.793051i \(-0.708491\pi\)
−0.609155 + 0.793051i \(0.708491\pi\)
\(54\) 61.4820 0.154938
\(55\) 0 0
\(56\) −661.068 −1.57748
\(57\) −448.076 −1.04121
\(58\) 66.0363 0.149500
\(59\) 459.022 1.01287 0.506437 0.862277i \(-0.330962\pi\)
0.506437 + 0.862277i \(0.330962\pi\)
\(60\) 0 0
\(61\) 602.948 1.26557 0.632784 0.774328i \(-0.281912\pi\)
0.632784 + 0.774328i \(0.281912\pi\)
\(62\) 345.945 0.708630
\(63\) 241.595 0.483144
\(64\) 543.078 1.06070
\(65\) 0 0
\(66\) −402.739 −0.751117
\(67\) −769.705 −1.40350 −0.701750 0.712423i \(-0.747598\pi\)
−0.701750 + 0.712423i \(0.747598\pi\)
\(68\) −334.673 −0.596838
\(69\) 24.3085 0.0424116
\(70\) 0 0
\(71\) 494.182 0.826037 0.413019 0.910723i \(-0.364474\pi\)
0.413019 + 0.910723i \(0.364474\pi\)
\(72\) −221.638 −0.362781
\(73\) 908.575 1.45672 0.728361 0.685194i \(-0.240282\pi\)
0.728361 + 0.685194i \(0.240282\pi\)
\(74\) 749.799 1.17787
\(75\) 0 0
\(76\) 420.409 0.634529
\(77\) −1582.57 −2.34221
\(78\) −525.215 −0.762421
\(79\) 145.802 0.207645 0.103823 0.994596i \(-0.466893\pi\)
0.103823 + 0.994596i \(0.466893\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 287.535 0.387231
\(83\) −364.521 −0.482065 −0.241033 0.970517i \(-0.577486\pi\)
−0.241033 + 0.970517i \(0.577486\pi\)
\(84\) −226.677 −0.294434
\(85\) 0 0
\(86\) 947.648 1.18823
\(87\) 87.0000 0.107211
\(88\) 1451.84 1.75871
\(89\) 1341.18 1.59736 0.798678 0.601759i \(-0.205533\pi\)
0.798678 + 0.601759i \(0.205533\pi\)
\(90\) 0 0
\(91\) −2063.84 −2.37746
\(92\) −22.8076 −0.0258462
\(93\) 455.768 0.508182
\(94\) 539.210 0.591652
\(95\) 0 0
\(96\) 361.781 0.384626
\(97\) −441.198 −0.461823 −0.230912 0.972975i \(-0.574171\pi\)
−0.230912 + 0.972975i \(0.574171\pi\)
\(98\) 859.822 0.886277
\(99\) −530.591 −0.538651
\(100\) 0 0
\(101\) 8.77903 0.00864897 0.00432449 0.999991i \(-0.498623\pi\)
0.00432449 + 0.999991i \(0.498623\pi\)
\(102\) 812.240 0.788469
\(103\) 1307.14 1.25045 0.625224 0.780445i \(-0.285008\pi\)
0.625224 + 0.780445i \(0.285008\pi\)
\(104\) 1893.36 1.78518
\(105\) 0 0
\(106\) −1070.42 −0.980838
\(107\) −734.360 −0.663488 −0.331744 0.943369i \(-0.607637\pi\)
−0.331744 + 0.943369i \(0.607637\pi\)
\(108\) −75.9985 −0.0677126
\(109\) 735.066 0.645932 0.322966 0.946411i \(-0.395320\pi\)
0.322966 + 0.946411i \(0.395320\pi\)
\(110\) 0 0
\(111\) 987.829 0.844690
\(112\) −900.855 −0.760025
\(113\) −1335.34 −1.11166 −0.555831 0.831295i \(-0.687600\pi\)
−0.555831 + 0.831295i \(0.687600\pi\)
\(114\) −1020.32 −0.838260
\(115\) 0 0
\(116\) −81.6280 −0.0653360
\(117\) −691.948 −0.546758
\(118\) 1045.24 0.815445
\(119\) 3191.71 2.45869
\(120\) 0 0
\(121\) 2144.64 1.61130
\(122\) 1372.98 1.01888
\(123\) 378.815 0.277696
\(124\) −427.626 −0.309693
\(125\) 0 0
\(126\) 550.138 0.388970
\(127\) 98.9846 0.0691611 0.0345806 0.999402i \(-0.488990\pi\)
0.0345806 + 0.999402i \(0.488990\pi\)
\(128\) 271.900 0.187756
\(129\) 1248.49 0.852117
\(130\) 0 0
\(131\) 458.226 0.305614 0.152807 0.988256i \(-0.451169\pi\)
0.152807 + 0.988256i \(0.451169\pi\)
\(132\) 497.829 0.328261
\(133\) −4009.36 −2.61395
\(134\) −1752.71 −1.12993
\(135\) 0 0
\(136\) −2928.06 −1.84617
\(137\) 1514.86 0.944693 0.472346 0.881413i \(-0.343407\pi\)
0.472346 + 0.881413i \(0.343407\pi\)
\(138\) 55.3533 0.0341448
\(139\) −1174.64 −0.716774 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(140\) 0 0
\(141\) 710.387 0.424293
\(142\) 1125.31 0.665027
\(143\) 4532.61 2.65060
\(144\) −302.032 −0.174787
\(145\) 0 0
\(146\) 2068.93 1.17278
\(147\) 1132.78 0.635579
\(148\) −926.834 −0.514765
\(149\) −2868.30 −1.57705 −0.788526 0.615002i \(-0.789155\pi\)
−0.788526 + 0.615002i \(0.789155\pi\)
\(150\) 0 0
\(151\) −3009.92 −1.62214 −0.811072 0.584946i \(-0.801116\pi\)
−0.811072 + 0.584946i \(0.801116\pi\)
\(152\) 3678.17 1.96276
\(153\) 1070.09 0.565437
\(154\) −3603.69 −1.88567
\(155\) 0 0
\(156\) 649.223 0.333201
\(157\) 1831.72 0.931128 0.465564 0.885014i \(-0.345852\pi\)
0.465564 + 0.885014i \(0.345852\pi\)
\(158\) 332.007 0.167171
\(159\) −1410.24 −0.703392
\(160\) 0 0
\(161\) 217.512 0.106474
\(162\) 184.446 0.0894534
\(163\) −1791.86 −0.861038 −0.430519 0.902582i \(-0.641669\pi\)
−0.430519 + 0.902582i \(0.641669\pi\)
\(164\) −355.424 −0.169232
\(165\) 0 0
\(166\) −830.056 −0.388102
\(167\) −1689.71 −0.782958 −0.391479 0.920187i \(-0.628036\pi\)
−0.391479 + 0.920187i \(0.628036\pi\)
\(168\) −1983.21 −0.910759
\(169\) 3714.02 1.69049
\(170\) 0 0
\(171\) −1344.23 −0.601144
\(172\) −1171.40 −0.519291
\(173\) 196.378 0.0863024 0.0431512 0.999069i \(-0.486260\pi\)
0.0431512 + 0.999069i \(0.486260\pi\)
\(174\) 198.109 0.0863137
\(175\) 0 0
\(176\) 1978.46 0.847341
\(177\) 1377.07 0.584783
\(178\) 3054.01 1.28600
\(179\) −334.894 −0.139839 −0.0699195 0.997553i \(-0.522274\pi\)
−0.0699195 + 0.997553i \(0.522274\pi\)
\(180\) 0 0
\(181\) 1111.80 0.456571 0.228286 0.973594i \(-0.426688\pi\)
0.228286 + 0.973594i \(0.426688\pi\)
\(182\) −4699.60 −1.91405
\(183\) 1808.85 0.730676
\(184\) −199.544 −0.0799488
\(185\) 0 0
\(186\) 1037.84 0.409128
\(187\) −7009.65 −2.74116
\(188\) −666.523 −0.258570
\(189\) 724.784 0.278943
\(190\) 0 0
\(191\) 923.099 0.349702 0.174851 0.984595i \(-0.444056\pi\)
0.174851 + 0.984595i \(0.444056\pi\)
\(192\) 1629.23 0.612395
\(193\) −1015.66 −0.378803 −0.189401 0.981900i \(-0.560655\pi\)
−0.189401 + 0.981900i \(0.560655\pi\)
\(194\) −1004.66 −0.371805
\(195\) 0 0
\(196\) −1062.83 −0.387330
\(197\) 3656.92 1.32256 0.661282 0.750137i \(-0.270013\pi\)
0.661282 + 0.750137i \(0.270013\pi\)
\(198\) −1208.22 −0.433657
\(199\) −3408.89 −1.21432 −0.607160 0.794580i \(-0.707691\pi\)
−0.607160 + 0.794580i \(0.707691\pi\)
\(200\) 0 0
\(201\) −2309.12 −0.810311
\(202\) 19.9908 0.00696312
\(203\) 778.472 0.269153
\(204\) −1004.02 −0.344585
\(205\) 0 0
\(206\) 2976.50 1.00671
\(207\) 72.9256 0.0244864
\(208\) 2580.13 0.860094
\(209\) 8805.38 2.91426
\(210\) 0 0
\(211\) 982.934 0.320701 0.160351 0.987060i \(-0.448738\pi\)
0.160351 + 0.987060i \(0.448738\pi\)
\(212\) 1323.16 0.428656
\(213\) 1482.55 0.476913
\(214\) −1672.22 −0.534162
\(215\) 0 0
\(216\) −664.913 −0.209452
\(217\) 4078.19 1.27579
\(218\) 1673.83 0.520027
\(219\) 2725.73 0.841039
\(220\) 0 0
\(221\) −9141.34 −2.78241
\(222\) 2249.40 0.680044
\(223\) −987.852 −0.296643 −0.148322 0.988939i \(-0.547387\pi\)
−0.148322 + 0.988939i \(0.547387\pi\)
\(224\) 3237.20 0.965600
\(225\) 0 0
\(226\) −3040.71 −0.894978
\(227\) −3532.07 −1.03274 −0.516369 0.856366i \(-0.672717\pi\)
−0.516369 + 0.856366i \(0.672717\pi\)
\(228\) 1261.23 0.366345
\(229\) −121.305 −0.0350047 −0.0175023 0.999847i \(-0.505571\pi\)
−0.0175023 + 0.999847i \(0.505571\pi\)
\(230\) 0 0
\(231\) −4747.71 −1.35228
\(232\) −714.166 −0.202100
\(233\) −681.137 −0.191514 −0.0957570 0.995405i \(-0.530527\pi\)
−0.0957570 + 0.995405i \(0.530527\pi\)
\(234\) −1575.64 −0.440184
\(235\) 0 0
\(236\) −1292.04 −0.356374
\(237\) 437.405 0.119884
\(238\) 7267.89 1.97944
\(239\) 3861.30 1.04505 0.522525 0.852624i \(-0.324990\pi\)
0.522525 + 0.852624i \(0.324990\pi\)
\(240\) 0 0
\(241\) −1335.54 −0.356970 −0.178485 0.983943i \(-0.557120\pi\)
−0.178485 + 0.983943i \(0.557120\pi\)
\(242\) 4883.59 1.29723
\(243\) 243.000 0.0641500
\(244\) −1697.15 −0.445284
\(245\) 0 0
\(246\) 862.604 0.223568
\(247\) 11483.2 2.95812
\(248\) −3741.31 −0.957958
\(249\) −1093.56 −0.278321
\(250\) 0 0
\(251\) 3078.19 0.774079 0.387040 0.922063i \(-0.373498\pi\)
0.387040 + 0.922063i \(0.373498\pi\)
\(252\) −680.031 −0.169992
\(253\) −477.700 −0.118706
\(254\) 225.399 0.0556803
\(255\) 0 0
\(256\) −3725.47 −0.909540
\(257\) 1535.42 0.372672 0.186336 0.982486i \(-0.440339\pi\)
0.186336 + 0.982486i \(0.440339\pi\)
\(258\) 2842.94 0.686023
\(259\) 8839.05 2.12059
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) 1043.43 0.246044
\(263\) 1460.46 0.342418 0.171209 0.985235i \(-0.445233\pi\)
0.171209 + 0.985235i \(0.445233\pi\)
\(264\) 4355.52 1.01539
\(265\) 0 0
\(266\) −9129.77 −2.10444
\(267\) 4023.54 0.922234
\(268\) 2166.54 0.493814
\(269\) 4489.02 1.01747 0.508737 0.860922i \(-0.330113\pi\)
0.508737 + 0.860922i \(0.330113\pi\)
\(270\) 0 0
\(271\) 5678.26 1.27280 0.636402 0.771357i \(-0.280422\pi\)
0.636402 + 0.771357i \(0.280422\pi\)
\(272\) −3990.15 −0.889478
\(273\) −6191.52 −1.37263
\(274\) 3449.50 0.760554
\(275\) 0 0
\(276\) −68.4227 −0.0149223
\(277\) 8342.92 1.80967 0.904833 0.425766i \(-0.139995\pi\)
0.904833 + 0.425766i \(0.139995\pi\)
\(278\) −2674.78 −0.577061
\(279\) 1367.30 0.293399
\(280\) 0 0
\(281\) 4551.39 0.966238 0.483119 0.875555i \(-0.339504\pi\)
0.483119 + 0.875555i \(0.339504\pi\)
\(282\) 1617.63 0.341591
\(283\) 5634.41 1.18350 0.591751 0.806121i \(-0.298437\pi\)
0.591751 + 0.806121i \(0.298437\pi\)
\(284\) −1391.00 −0.290637
\(285\) 0 0
\(286\) 10321.3 2.13395
\(287\) 3389.62 0.697153
\(288\) 1085.34 0.222064
\(289\) 9224.02 1.87747
\(290\) 0 0
\(291\) −1323.59 −0.266634
\(292\) −2557.42 −0.512540
\(293\) 4203.48 0.838122 0.419061 0.907958i \(-0.362359\pi\)
0.419061 + 0.907958i \(0.362359\pi\)
\(294\) 2579.47 0.511692
\(295\) 0 0
\(296\) −8108.90 −1.59230
\(297\) −1591.77 −0.310990
\(298\) −6531.45 −1.26965
\(299\) −622.972 −0.120493
\(300\) 0 0
\(301\) 11171.4 2.13923
\(302\) −6853.93 −1.30596
\(303\) 26.3371 0.00499349
\(304\) 5012.34 0.945649
\(305\) 0 0
\(306\) 2436.72 0.455223
\(307\) −419.382 −0.0779655 −0.0389827 0.999240i \(-0.512412\pi\)
−0.0389827 + 0.999240i \(0.512412\pi\)
\(308\) 4454.55 0.824096
\(309\) 3921.41 0.721946
\(310\) 0 0
\(311\) 7213.66 1.31527 0.657636 0.753336i \(-0.271557\pi\)
0.657636 + 0.753336i \(0.271557\pi\)
\(312\) 5680.07 1.03068
\(313\) −1775.17 −0.320571 −0.160286 0.987071i \(-0.551242\pi\)
−0.160286 + 0.987071i \(0.551242\pi\)
\(314\) 4171.03 0.749633
\(315\) 0 0
\(316\) −410.397 −0.0730589
\(317\) −4522.95 −0.801369 −0.400685 0.916216i \(-0.631228\pi\)
−0.400685 + 0.916216i \(0.631228\pi\)
\(318\) −3211.27 −0.566287
\(319\) −1709.68 −0.300075
\(320\) 0 0
\(321\) −2203.08 −0.383065
\(322\) 495.298 0.0857202
\(323\) −17758.6 −3.05918
\(324\) −227.995 −0.0390939
\(325\) 0 0
\(326\) −4080.26 −0.693205
\(327\) 2205.20 0.372929
\(328\) −3109.62 −0.523476
\(329\) 6356.51 1.06518
\(330\) 0 0
\(331\) −4817.66 −0.800007 −0.400004 0.916514i \(-0.630991\pi\)
−0.400004 + 0.916514i \(0.630991\pi\)
\(332\) 1026.04 0.169612
\(333\) 2963.49 0.487682
\(334\) −3847.67 −0.630345
\(335\) 0 0
\(336\) −2702.56 −0.438801
\(337\) −1947.15 −0.314742 −0.157371 0.987540i \(-0.550302\pi\)
−0.157371 + 0.987540i \(0.550302\pi\)
\(338\) 8457.24 1.36099
\(339\) −4006.01 −0.641819
\(340\) 0 0
\(341\) −8956.54 −1.42236
\(342\) −3060.96 −0.483970
\(343\) 928.613 0.146182
\(344\) −10248.6 −1.60630
\(345\) 0 0
\(346\) 447.174 0.0694804
\(347\) −6797.20 −1.05156 −0.525782 0.850619i \(-0.676227\pi\)
−0.525782 + 0.850619i \(0.676227\pi\)
\(348\) −244.884 −0.0377217
\(349\) −9920.99 −1.52166 −0.760829 0.648953i \(-0.775207\pi\)
−0.760829 + 0.648953i \(0.775207\pi\)
\(350\) 0 0
\(351\) −2075.84 −0.315671
\(352\) −7109.55 −1.07653
\(353\) 2488.63 0.375231 0.187616 0.982243i \(-0.439924\pi\)
0.187616 + 0.982243i \(0.439924\pi\)
\(354\) 3135.73 0.470798
\(355\) 0 0
\(356\) −3775.09 −0.562021
\(357\) 9575.14 1.41952
\(358\) −762.592 −0.112582
\(359\) 7951.79 1.16902 0.584512 0.811385i \(-0.301286\pi\)
0.584512 + 0.811385i \(0.301286\pi\)
\(360\) 0 0
\(361\) 15449.0 2.25237
\(362\) 2531.69 0.367577
\(363\) 6433.93 0.930286
\(364\) 5809.21 0.836499
\(365\) 0 0
\(366\) 4118.94 0.588253
\(367\) −8545.32 −1.21543 −0.607714 0.794156i \(-0.707913\pi\)
−0.607714 + 0.794156i \(0.707913\pi\)
\(368\) −271.924 −0.0385190
\(369\) 1136.45 0.160328
\(370\) 0 0
\(371\) −12618.8 −1.76586
\(372\) −1282.88 −0.178801
\(373\) 10494.4 1.45678 0.728391 0.685162i \(-0.240269\pi\)
0.728391 + 0.685162i \(0.240269\pi\)
\(374\) −15961.8 −2.20685
\(375\) 0 0
\(376\) −5831.43 −0.799822
\(377\) −2229.61 −0.304591
\(378\) 1650.42 0.224572
\(379\) 3861.31 0.523330 0.261665 0.965159i \(-0.415728\pi\)
0.261665 + 0.965159i \(0.415728\pi\)
\(380\) 0 0
\(381\) 296.954 0.0399302
\(382\) 2102.00 0.281539
\(383\) −5649.95 −0.753784 −0.376892 0.926257i \(-0.623007\pi\)
−0.376892 + 0.926257i \(0.623007\pi\)
\(384\) 815.700 0.108401
\(385\) 0 0
\(386\) −2312.77 −0.304967
\(387\) 3745.46 0.491970
\(388\) 1241.87 0.162490
\(389\) 2257.79 0.294279 0.147139 0.989116i \(-0.452993\pi\)
0.147139 + 0.989116i \(0.452993\pi\)
\(390\) 0 0
\(391\) 963.422 0.124610
\(392\) −9298.77 −1.19811
\(393\) 1374.68 0.176446
\(394\) 8327.23 1.06477
\(395\) 0 0
\(396\) 1493.49 0.189522
\(397\) −221.335 −0.0279811 −0.0139905 0.999902i \(-0.504453\pi\)
−0.0139905 + 0.999902i \(0.504453\pi\)
\(398\) −7762.42 −0.977625
\(399\) −12028.1 −1.50917
\(400\) 0 0
\(401\) 3656.31 0.455330 0.227665 0.973739i \(-0.426891\pi\)
0.227665 + 0.973739i \(0.426891\pi\)
\(402\) −5258.12 −0.652366
\(403\) −11680.3 −1.44376
\(404\) −24.7109 −0.00304310
\(405\) 0 0
\(406\) 1772.67 0.216690
\(407\) −19412.4 −2.36421
\(408\) −8784.19 −1.06589
\(409\) −1114.22 −0.134706 −0.0673530 0.997729i \(-0.521455\pi\)
−0.0673530 + 0.997729i \(0.521455\pi\)
\(410\) 0 0
\(411\) 4544.57 0.545419
\(412\) −3679.28 −0.439964
\(413\) 12321.9 1.46809
\(414\) 166.060 0.0197135
\(415\) 0 0
\(416\) −9271.62 −1.09274
\(417\) −3523.92 −0.413829
\(418\) 20050.8 2.34622
\(419\) −2992.41 −0.348899 −0.174450 0.984666i \(-0.555815\pi\)
−0.174450 + 0.984666i \(0.555815\pi\)
\(420\) 0 0
\(421\) −7412.33 −0.858087 −0.429044 0.903284i \(-0.641149\pi\)
−0.429044 + 0.903284i \(0.641149\pi\)
\(422\) 2238.25 0.258190
\(423\) 2131.16 0.244966
\(424\) 11576.4 1.32594
\(425\) 0 0
\(426\) 3375.93 0.383953
\(427\) 16185.5 1.83436
\(428\) 2067.05 0.233445
\(429\) 13597.8 1.53033
\(430\) 0 0
\(431\) 2761.79 0.308656 0.154328 0.988020i \(-0.450679\pi\)
0.154328 + 0.988020i \(0.450679\pi\)
\(432\) −906.095 −0.100913
\(433\) 15263.4 1.69402 0.847012 0.531573i \(-0.178399\pi\)
0.847012 + 0.531573i \(0.178399\pi\)
\(434\) 9286.50 1.02711
\(435\) 0 0
\(436\) −2069.03 −0.227268
\(437\) −1210.23 −0.132479
\(438\) 6206.78 0.677104
\(439\) −9343.27 −1.01579 −0.507893 0.861420i \(-0.669575\pi\)
−0.507893 + 0.861420i \(0.669575\pi\)
\(440\) 0 0
\(441\) 3398.34 0.366952
\(442\) −20815.9 −2.24007
\(443\) 8167.05 0.875911 0.437955 0.898997i \(-0.355703\pi\)
0.437955 + 0.898997i \(0.355703\pi\)
\(444\) −2780.50 −0.297200
\(445\) 0 0
\(446\) −2249.45 −0.238822
\(447\) −8604.91 −0.910511
\(448\) 14578.3 1.53741
\(449\) 4390.88 0.461511 0.230756 0.973012i \(-0.425880\pi\)
0.230756 + 0.973012i \(0.425880\pi\)
\(450\) 0 0
\(451\) −7444.29 −0.777246
\(452\) 3758.65 0.391133
\(453\) −9029.76 −0.936546
\(454\) −8042.91 −0.831438
\(455\) 0 0
\(456\) 11034.5 1.13320
\(457\) −16232.1 −1.66150 −0.830748 0.556648i \(-0.812087\pi\)
−0.830748 + 0.556648i \(0.812087\pi\)
\(458\) −276.226 −0.0281816
\(459\) 3210.28 0.326455
\(460\) 0 0
\(461\) 14847.4 1.50002 0.750011 0.661425i \(-0.230048\pi\)
0.750011 + 0.661425i \(0.230048\pi\)
\(462\) −10811.1 −1.08869
\(463\) −9208.48 −0.924307 −0.462154 0.886800i \(-0.652923\pi\)
−0.462154 + 0.886800i \(0.652923\pi\)
\(464\) −973.213 −0.0973713
\(465\) 0 0
\(466\) −1551.02 −0.154184
\(467\) 8652.79 0.857394 0.428697 0.903448i \(-0.358973\pi\)
0.428697 + 0.903448i \(0.358973\pi\)
\(468\) 1947.67 0.192374
\(469\) −20661.9 −2.03428
\(470\) 0 0
\(471\) 5495.16 0.537587
\(472\) −11304.1 −1.10236
\(473\) −24534.7 −2.38500
\(474\) 996.021 0.0965164
\(475\) 0 0
\(476\) −8983.91 −0.865077
\(477\) −4230.72 −0.406103
\(478\) 8792.62 0.841350
\(479\) −9373.99 −0.894173 −0.447086 0.894491i \(-0.647538\pi\)
−0.447086 + 0.894491i \(0.647538\pi\)
\(480\) 0 0
\(481\) −25315.8 −2.39979
\(482\) −3041.18 −0.287390
\(483\) 652.535 0.0614728
\(484\) −6036.65 −0.566929
\(485\) 0 0
\(486\) 553.338 0.0516460
\(487\) 6481.75 0.603114 0.301557 0.953448i \(-0.402494\pi\)
0.301557 + 0.953448i \(0.402494\pi\)
\(488\) −14848.5 −1.37737
\(489\) −5375.57 −0.497120
\(490\) 0 0
\(491\) −1108.08 −0.101847 −0.0509235 0.998703i \(-0.516216\pi\)
−0.0509235 + 0.998703i \(0.516216\pi\)
\(492\) −1066.27 −0.0977059
\(493\) 3448.08 0.314997
\(494\) 26148.5 2.38153
\(495\) 0 0
\(496\) −5098.38 −0.461541
\(497\) 13265.8 1.19729
\(498\) −2490.17 −0.224071
\(499\) 4054.00 0.363691 0.181845 0.983327i \(-0.441793\pi\)
0.181845 + 0.983327i \(0.441793\pi\)
\(500\) 0 0
\(501\) −5069.14 −0.452041
\(502\) 7009.40 0.623196
\(503\) 2816.84 0.249695 0.124847 0.992176i \(-0.460156\pi\)
0.124847 + 0.992176i \(0.460156\pi\)
\(504\) −5949.62 −0.525827
\(505\) 0 0
\(506\) −1087.78 −0.0955683
\(507\) 11142.1 0.976008
\(508\) −278.618 −0.0243340
\(509\) −830.334 −0.0723063 −0.0361532 0.999346i \(-0.511510\pi\)
−0.0361532 + 0.999346i \(0.511510\pi\)
\(510\) 0 0
\(511\) 24389.7 2.11142
\(512\) −10658.5 −0.920009
\(513\) −4032.68 −0.347071
\(514\) 3496.31 0.300031
\(515\) 0 0
\(516\) −3514.19 −0.299813
\(517\) −13960.2 −1.18756
\(518\) 20127.5 1.70724
\(519\) 589.133 0.0498267
\(520\) 0 0
\(521\) −14425.9 −1.21307 −0.606536 0.795056i \(-0.707441\pi\)
−0.606536 + 0.795056i \(0.707441\pi\)
\(522\) 594.326 0.0498333
\(523\) −18615.3 −1.55638 −0.778192 0.628027i \(-0.783863\pi\)
−0.778192 + 0.628027i \(0.783863\pi\)
\(524\) −1289.80 −0.107529
\(525\) 0 0
\(526\) 3325.63 0.275674
\(527\) 18063.5 1.49309
\(528\) 5935.38 0.489213
\(529\) −12101.3 −0.994604
\(530\) 0 0
\(531\) 4131.20 0.337625
\(532\) 11285.4 0.919706
\(533\) −9708.16 −0.788944
\(534\) 9162.04 0.742473
\(535\) 0 0
\(536\) 18955.1 1.52749
\(537\) −1004.68 −0.0807360
\(538\) 10222.0 0.819148
\(539\) −22260.8 −1.77893
\(540\) 0 0
\(541\) 5586.54 0.443963 0.221982 0.975051i \(-0.428748\pi\)
0.221982 + 0.975051i \(0.428748\pi\)
\(542\) 12930.0 1.02471
\(543\) 3335.40 0.263602
\(544\) 14338.5 1.13007
\(545\) 0 0
\(546\) −14098.8 −1.10508
\(547\) 4779.89 0.373626 0.186813 0.982396i \(-0.440184\pi\)
0.186813 + 0.982396i \(0.440184\pi\)
\(548\) −4263.96 −0.332385
\(549\) 5426.54 0.421856
\(550\) 0 0
\(551\) −4331.40 −0.334889
\(552\) −598.632 −0.0461585
\(553\) 3913.88 0.300968
\(554\) 18997.8 1.45693
\(555\) 0 0
\(556\) 3306.32 0.252193
\(557\) 11829.0 0.899837 0.449919 0.893070i \(-0.351453\pi\)
0.449919 + 0.893070i \(0.351453\pi\)
\(558\) 3113.51 0.236210
\(559\) −31995.8 −2.42089
\(560\) 0 0
\(561\) −21029.0 −1.58261
\(562\) 10364.0 0.777900
\(563\) 22516.9 1.68557 0.842783 0.538254i \(-0.180916\pi\)
0.842783 + 0.538254i \(0.180916\pi\)
\(564\) −1999.57 −0.149285
\(565\) 0 0
\(566\) 12830.2 0.952815
\(567\) 2174.35 0.161048
\(568\) −12169.9 −0.899013
\(569\) −6879.75 −0.506879 −0.253439 0.967351i \(-0.581562\pi\)
−0.253439 + 0.967351i \(0.581562\pi\)
\(570\) 0 0
\(571\) −3088.90 −0.226386 −0.113193 0.993573i \(-0.536108\pi\)
−0.113193 + 0.993573i \(0.536108\pi\)
\(572\) −12758.2 −0.932601
\(573\) 2769.30 0.201901
\(574\) 7718.55 0.561265
\(575\) 0 0
\(576\) 4887.70 0.353566
\(577\) −760.799 −0.0548916 −0.0274458 0.999623i \(-0.508737\pi\)
−0.0274458 + 0.999623i \(0.508737\pi\)
\(578\) 21004.1 1.51152
\(579\) −3046.98 −0.218702
\(580\) 0 0
\(581\) −9785.16 −0.698721
\(582\) −3013.97 −0.214662
\(583\) 27713.4 1.96873
\(584\) −22375.0 −1.58542
\(585\) 0 0
\(586\) 9571.79 0.674756
\(587\) 3106.07 0.218401 0.109200 0.994020i \(-0.465171\pi\)
0.109200 + 0.994020i \(0.465171\pi\)
\(588\) −3188.50 −0.223625
\(589\) −22691.0 −1.58738
\(590\) 0 0
\(591\) 10970.8 0.763583
\(592\) −11050.2 −0.767163
\(593\) 7836.74 0.542692 0.271346 0.962482i \(-0.412531\pi\)
0.271346 + 0.962482i \(0.412531\pi\)
\(594\) −3624.65 −0.250372
\(595\) 0 0
\(596\) 8073.59 0.554877
\(597\) −10226.7 −0.701088
\(598\) −1418.58 −0.0970066
\(599\) 9174.05 0.625779 0.312889 0.949790i \(-0.398703\pi\)
0.312889 + 0.949790i \(0.398703\pi\)
\(600\) 0 0
\(601\) −8958.64 −0.608037 −0.304019 0.952666i \(-0.598329\pi\)
−0.304019 + 0.952666i \(0.598329\pi\)
\(602\) 25438.5 1.72225
\(603\) −6927.35 −0.467833
\(604\) 8472.20 0.570743
\(605\) 0 0
\(606\) 59.9725 0.00402016
\(607\) −14137.8 −0.945362 −0.472681 0.881234i \(-0.656714\pi\)
−0.472681 + 0.881234i \(0.656714\pi\)
\(608\) −18011.7 −1.20143
\(609\) 2335.42 0.155395
\(610\) 0 0
\(611\) −18205.6 −1.20543
\(612\) −3012.05 −0.198946
\(613\) −22666.7 −1.49347 −0.746737 0.665120i \(-0.768380\pi\)
−0.746737 + 0.665120i \(0.768380\pi\)
\(614\) −954.980 −0.0627685
\(615\) 0 0
\(616\) 38973.0 2.54914
\(617\) −12743.3 −0.831487 −0.415744 0.909482i \(-0.636479\pi\)
−0.415744 + 0.909482i \(0.636479\pi\)
\(618\) 8929.50 0.581225
\(619\) 13912.5 0.903379 0.451690 0.892175i \(-0.350821\pi\)
0.451690 + 0.892175i \(0.350821\pi\)
\(620\) 0 0
\(621\) 218.777 0.0141372
\(622\) 16426.3 1.05890
\(623\) 36002.4 2.31526
\(624\) 7740.38 0.496575
\(625\) 0 0
\(626\) −4042.27 −0.258086
\(627\) 26416.1 1.68255
\(628\) −5155.85 −0.327613
\(629\) 39150.7 2.48178
\(630\) 0 0
\(631\) −6045.07 −0.381379 −0.190690 0.981650i \(-0.561072\pi\)
−0.190690 + 0.981650i \(0.561072\pi\)
\(632\) −3590.58 −0.225990
\(633\) 2948.80 0.185157
\(634\) −10299.3 −0.645167
\(635\) 0 0
\(636\) 3969.49 0.247485
\(637\) −29030.5 −1.80570
\(638\) −3893.14 −0.241585
\(639\) 4447.64 0.275346
\(640\) 0 0
\(641\) −19600.7 −1.20777 −0.603885 0.797071i \(-0.706382\pi\)
−0.603885 + 0.797071i \(0.706382\pi\)
\(642\) −5016.66 −0.308398
\(643\) 11909.9 0.730454 0.365227 0.930919i \(-0.380991\pi\)
0.365227 + 0.930919i \(0.380991\pi\)
\(644\) −612.243 −0.0374623
\(645\) 0 0
\(646\) −40438.4 −2.46289
\(647\) −10476.3 −0.636576 −0.318288 0.947994i \(-0.603108\pi\)
−0.318288 + 0.947994i \(0.603108\pi\)
\(648\) −1994.74 −0.120927
\(649\) −27061.4 −1.63676
\(650\) 0 0
\(651\) 12234.6 0.736576
\(652\) 5043.65 0.302952
\(653\) −21201.7 −1.27058 −0.635289 0.772275i \(-0.719119\pi\)
−0.635289 + 0.772275i \(0.719119\pi\)
\(654\) 5021.48 0.300238
\(655\) 0 0
\(656\) −4237.56 −0.252209
\(657\) 8177.18 0.485574
\(658\) 14474.5 0.857560
\(659\) 23605.3 1.39534 0.697671 0.716418i \(-0.254220\pi\)
0.697671 + 0.716418i \(0.254220\pi\)
\(660\) 0 0
\(661\) 12258.0 0.721305 0.360652 0.932700i \(-0.382554\pi\)
0.360652 + 0.932700i \(0.382554\pi\)
\(662\) −10970.3 −0.644070
\(663\) −27424.0 −1.60643
\(664\) 8976.86 0.524653
\(665\) 0 0
\(666\) 6748.19 0.392623
\(667\) 234.982 0.0136410
\(668\) 4756.14 0.275480
\(669\) −2963.56 −0.171267
\(670\) 0 0
\(671\) −35546.6 −2.04510
\(672\) 9711.60 0.557490
\(673\) −9476.64 −0.542790 −0.271395 0.962468i \(-0.587485\pi\)
−0.271395 + 0.962468i \(0.587485\pi\)
\(674\) −4433.88 −0.253393
\(675\) 0 0
\(676\) −10454.1 −0.594792
\(677\) 15508.3 0.880401 0.440200 0.897900i \(-0.354907\pi\)
0.440200 + 0.897900i \(0.354907\pi\)
\(678\) −9122.13 −0.516716
\(679\) −11843.5 −0.669382
\(680\) 0 0
\(681\) −10596.2 −0.596252
\(682\) −20395.1 −1.14511
\(683\) 18286.7 1.02448 0.512242 0.858841i \(-0.328815\pi\)
0.512242 + 0.858841i \(0.328815\pi\)
\(684\) 3783.68 0.211510
\(685\) 0 0
\(686\) 2114.56 0.117688
\(687\) −363.916 −0.0202100
\(688\) −13966.0 −0.773908
\(689\) 36141.2 1.99836
\(690\) 0 0
\(691\) −22335.4 −1.22964 −0.614819 0.788668i \(-0.710771\pi\)
−0.614819 + 0.788668i \(0.710771\pi\)
\(692\) −552.756 −0.0303651
\(693\) −14243.1 −0.780738
\(694\) −15478.0 −0.846594
\(695\) 0 0
\(696\) −2142.50 −0.116683
\(697\) 15013.6 0.815898
\(698\) −22591.2 −1.22506
\(699\) −2043.41 −0.110571
\(700\) 0 0
\(701\) −1101.09 −0.0593259 −0.0296630 0.999560i \(-0.509443\pi\)
−0.0296630 + 0.999560i \(0.509443\pi\)
\(702\) −4726.93 −0.254140
\(703\) −49180.3 −2.63851
\(704\) −32016.9 −1.71404
\(705\) 0 0
\(706\) 5666.90 0.302091
\(707\) 235.663 0.0125361
\(708\) −3876.11 −0.205753
\(709\) −3572.01 −0.189209 −0.0946047 0.995515i \(-0.530159\pi\)
−0.0946047 + 0.995515i \(0.530159\pi\)
\(710\) 0 0
\(711\) 1312.22 0.0692151
\(712\) −33028.4 −1.73847
\(713\) 1231.01 0.0646585
\(714\) 21803.7 1.14283
\(715\) 0 0
\(716\) 942.647 0.0492016
\(717\) 11583.9 0.603360
\(718\) 18107.1 0.941158
\(719\) 16054.3 0.832719 0.416359 0.909200i \(-0.363306\pi\)
0.416359 + 0.909200i \(0.363306\pi\)
\(720\) 0 0
\(721\) 35088.6 1.81244
\(722\) 35179.1 1.81334
\(723\) −4006.63 −0.206097
\(724\) −3129.45 −0.160642
\(725\) 0 0
\(726\) 14650.8 0.748955
\(727\) 34377.9 1.75379 0.876895 0.480682i \(-0.159611\pi\)
0.876895 + 0.480682i \(0.159611\pi\)
\(728\) 50825.0 2.58750
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 49481.3 2.50360
\(732\) −5091.46 −0.257085
\(733\) −18345.6 −0.924435 −0.462217 0.886767i \(-0.652946\pi\)
−0.462217 + 0.886767i \(0.652946\pi\)
\(734\) −19458.7 −0.978518
\(735\) 0 0
\(736\) 977.151 0.0489379
\(737\) 45377.7 2.26799
\(738\) 2587.81 0.129077
\(739\) −6654.19 −0.331229 −0.165614 0.986191i \(-0.552961\pi\)
−0.165614 + 0.986191i \(0.552961\pi\)
\(740\) 0 0
\(741\) 34449.5 1.70787
\(742\) −28734.3 −1.42166
\(743\) −9867.74 −0.487231 −0.243615 0.969872i \(-0.578333\pi\)
−0.243615 + 0.969872i \(0.578333\pi\)
\(744\) −11223.9 −0.553077
\(745\) 0 0
\(746\) 23896.9 1.17283
\(747\) −3280.69 −0.160688
\(748\) 19730.5 0.964462
\(749\) −19713.1 −0.961682
\(750\) 0 0
\(751\) −10030.7 −0.487385 −0.243693 0.969853i \(-0.578359\pi\)
−0.243693 + 0.969853i \(0.578359\pi\)
\(752\) −7946.64 −0.385351
\(753\) 9234.58 0.446915
\(754\) −5077.08 −0.245220
\(755\) 0 0
\(756\) −2040.09 −0.0981448
\(757\) −21074.4 −1.01184 −0.505919 0.862581i \(-0.668846\pi\)
−0.505919 + 0.862581i \(0.668846\pi\)
\(758\) 8792.63 0.421323
\(759\) −1433.10 −0.0685352
\(760\) 0 0
\(761\) 7469.19 0.355792 0.177896 0.984049i \(-0.443071\pi\)
0.177896 + 0.984049i \(0.443071\pi\)
\(762\) 676.197 0.0321470
\(763\) 19732.0 0.936234
\(764\) −2598.30 −0.123041
\(765\) 0 0
\(766\) −12865.6 −0.606857
\(767\) −35291.0 −1.66139
\(768\) −11176.4 −0.525123
\(769\) −5361.63 −0.251424 −0.125712 0.992067i \(-0.540122\pi\)
−0.125712 + 0.992067i \(0.540122\pi\)
\(770\) 0 0
\(771\) 4606.25 0.215162
\(772\) 2858.84 0.133280
\(773\) 24649.9 1.14695 0.573476 0.819222i \(-0.305595\pi\)
0.573476 + 0.819222i \(0.305595\pi\)
\(774\) 8528.83 0.396075
\(775\) 0 0
\(776\) 10865.1 0.502623
\(777\) 26517.2 1.22432
\(778\) 5141.24 0.236918
\(779\) −18859.8 −0.867421
\(780\) 0 0
\(781\) −29134.3 −1.33484
\(782\) 2193.82 0.100321
\(783\) 783.000 0.0357371
\(784\) −12671.7 −0.577244
\(785\) 0 0
\(786\) 3130.30 0.142054
\(787\) 33943.1 1.53741 0.768705 0.639604i \(-0.220902\pi\)
0.768705 + 0.639604i \(0.220902\pi\)
\(788\) −10293.4 −0.465337
\(789\) 4381.38 0.197695
\(790\) 0 0
\(791\) −35845.6 −1.61128
\(792\) 13066.6 0.586238
\(793\) −46356.6 −2.07588
\(794\) −504.005 −0.0225270
\(795\) 0 0
\(796\) 9595.19 0.427252
\(797\) −16602.5 −0.737882 −0.368941 0.929453i \(-0.620280\pi\)
−0.368941 + 0.929453i \(0.620280\pi\)
\(798\) −27389.3 −1.21500
\(799\) 28154.8 1.24662
\(800\) 0 0
\(801\) 12070.6 0.532452
\(802\) 8325.83 0.366578
\(803\) −53564.7 −2.35399
\(804\) 6499.61 0.285104
\(805\) 0 0
\(806\) −26597.3 −1.16235
\(807\) 13467.1 0.587439
\(808\) −216.196 −0.00941306
\(809\) −2323.51 −0.100977 −0.0504883 0.998725i \(-0.516078\pi\)
−0.0504883 + 0.998725i \(0.516078\pi\)
\(810\) 0 0
\(811\) 38440.8 1.66441 0.832206 0.554466i \(-0.187078\pi\)
0.832206 + 0.554466i \(0.187078\pi\)
\(812\) −2191.21 −0.0947001
\(813\) 17034.8 0.734854
\(814\) −44204.1 −1.90338
\(815\) 0 0
\(816\) −11970.4 −0.513541
\(817\) −62157.4 −2.66170
\(818\) −2537.21 −0.108449
\(819\) −18574.6 −0.792488
\(820\) 0 0
\(821\) 27808.5 1.18212 0.591062 0.806626i \(-0.298709\pi\)
0.591062 + 0.806626i \(0.298709\pi\)
\(822\) 10348.5 0.439106
\(823\) 7497.23 0.317542 0.158771 0.987315i \(-0.449247\pi\)
0.158771 + 0.987315i \(0.449247\pi\)
\(824\) −32190.1 −1.36092
\(825\) 0 0
\(826\) 28058.4 1.18193
\(827\) −33174.6 −1.39491 −0.697457 0.716626i \(-0.745685\pi\)
−0.697457 + 0.716626i \(0.745685\pi\)
\(828\) −205.268 −0.00861540
\(829\) 9823.48 0.411561 0.205780 0.978598i \(-0.434027\pi\)
0.205780 + 0.978598i \(0.434027\pi\)
\(830\) 0 0
\(831\) 25028.8 1.04481
\(832\) −41753.5 −1.73984
\(833\) 44895.5 1.86739
\(834\) −8024.35 −0.333166
\(835\) 0 0
\(836\) −24785.0 −1.02537
\(837\) 4101.91 0.169394
\(838\) −6814.05 −0.280892
\(839\) 22580.6 0.929165 0.464583 0.885530i \(-0.346204\pi\)
0.464583 + 0.885530i \(0.346204\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −16878.7 −0.690830
\(843\) 13654.2 0.557858
\(844\) −2766.72 −0.112837
\(845\) 0 0
\(846\) 4852.89 0.197217
\(847\) 57570.5 2.33547
\(848\) 15775.4 0.638834
\(849\) 16903.2 0.683295
\(850\) 0 0
\(851\) 2668.07 0.107474
\(852\) −4173.01 −0.167799
\(853\) 28170.3 1.13075 0.565377 0.824832i \(-0.308731\pi\)
0.565377 + 0.824832i \(0.308731\pi\)
\(854\) 36856.1 1.47680
\(855\) 0 0
\(856\) 18084.7 0.722104
\(857\) −3158.13 −0.125880 −0.0629402 0.998017i \(-0.520048\pi\)
−0.0629402 + 0.998017i \(0.520048\pi\)
\(858\) 30963.8 1.23204
\(859\) 5122.45 0.203464 0.101732 0.994812i \(-0.467562\pi\)
0.101732 + 0.994812i \(0.467562\pi\)
\(860\) 0 0
\(861\) 10168.9 0.402502
\(862\) 6288.92 0.248493
\(863\) 3587.38 0.141502 0.0707509 0.997494i \(-0.477460\pi\)
0.0707509 + 0.997494i \(0.477460\pi\)
\(864\) 3256.03 0.128209
\(865\) 0 0
\(866\) 34756.5 1.36383
\(867\) 27672.1 1.08396
\(868\) −11479.1 −0.448879
\(869\) −8595.68 −0.335545
\(870\) 0 0
\(871\) 59177.4 2.30212
\(872\) −18102.0 −0.702996
\(873\) −3970.78 −0.153941
\(874\) −2755.83 −0.106656
\(875\) 0 0
\(876\) −7672.26 −0.295915
\(877\) −28862.1 −1.11129 −0.555646 0.831419i \(-0.687529\pi\)
−0.555646 + 0.831419i \(0.687529\pi\)
\(878\) −21275.7 −0.817789
\(879\) 12610.4 0.483890
\(880\) 0 0
\(881\) −23389.1 −0.894439 −0.447219 0.894424i \(-0.647586\pi\)
−0.447219 + 0.894424i \(0.647586\pi\)
\(882\) 7738.40 0.295426
\(883\) −27097.2 −1.03272 −0.516360 0.856371i \(-0.672713\pi\)
−0.516360 + 0.856371i \(0.672713\pi\)
\(884\) 25730.7 0.978978
\(885\) 0 0
\(886\) 18597.3 0.705179
\(887\) 37179.8 1.40741 0.703707 0.710490i \(-0.251527\pi\)
0.703707 + 0.710490i \(0.251527\pi\)
\(888\) −24326.7 −0.919314
\(889\) 2657.13 0.100244
\(890\) 0 0
\(891\) −4775.32 −0.179550
\(892\) 2780.57 0.104372
\(893\) −35367.5 −1.32534
\(894\) −19594.4 −0.733035
\(895\) 0 0
\(896\) 7298.85 0.272140
\(897\) −1868.92 −0.0695667
\(898\) 9998.53 0.371554
\(899\) 4405.76 0.163449
\(900\) 0 0
\(901\) −55892.1 −2.06663
\(902\) −16951.5 −0.625746
\(903\) 33514.2 1.23509
\(904\) 32884.6 1.20987
\(905\) 0 0
\(906\) −20561.8 −0.753995
\(907\) −19859.6 −0.727041 −0.363521 0.931586i \(-0.618425\pi\)
−0.363521 + 0.931586i \(0.618425\pi\)
\(908\) 9941.92 0.363364
\(909\) 79.0113 0.00288299
\(910\) 0 0
\(911\) 25471.8 0.926366 0.463183 0.886263i \(-0.346707\pi\)
0.463183 + 0.886263i \(0.346707\pi\)
\(912\) 15037.0 0.545971
\(913\) 21490.2 0.778995
\(914\) −36962.2 −1.33764
\(915\) 0 0
\(916\) 341.445 0.0123162
\(917\) 12300.6 0.442967
\(918\) 7310.16 0.262823
\(919\) −26174.7 −0.939526 −0.469763 0.882793i \(-0.655661\pi\)
−0.469763 + 0.882793i \(0.655661\pi\)
\(920\) 0 0
\(921\) −1258.15 −0.0450134
\(922\) 33809.1 1.20764
\(923\) −37994.3 −1.35493
\(924\) 13363.7 0.475792
\(925\) 0 0
\(926\) −20968.7 −0.744142
\(927\) 11764.2 0.416816
\(928\) 3497.22 0.123709
\(929\) −42691.9 −1.50772 −0.753862 0.657033i \(-0.771811\pi\)
−0.753862 + 0.657033i \(0.771811\pi\)
\(930\) 0 0
\(931\) −56396.8 −1.98532
\(932\) 1917.24 0.0673832
\(933\) 21641.0 0.759372
\(934\) 19703.4 0.690272
\(935\) 0 0
\(936\) 17040.2 0.595061
\(937\) 6284.51 0.219110 0.109555 0.993981i \(-0.465057\pi\)
0.109555 + 0.993981i \(0.465057\pi\)
\(938\) −47049.4 −1.63776
\(939\) −5325.52 −0.185082
\(940\) 0 0
\(941\) 32542.5 1.12737 0.563684 0.825990i \(-0.309383\pi\)
0.563684 + 0.825990i \(0.309383\pi\)
\(942\) 12513.1 0.432801
\(943\) 1023.16 0.0353326
\(944\) −15404.3 −0.531111
\(945\) 0 0
\(946\) −55868.2 −1.92012
\(947\) −19841.4 −0.680845 −0.340423 0.940273i \(-0.610570\pi\)
−0.340423 + 0.940273i \(0.610570\pi\)
\(948\) −1231.19 −0.0421806
\(949\) −69854.1 −2.38942
\(950\) 0 0
\(951\) −13568.8 −0.462671
\(952\) −78600.5 −2.67590
\(953\) 3705.36 0.125948 0.0629739 0.998015i \(-0.479942\pi\)
0.0629739 + 0.998015i \(0.479942\pi\)
\(954\) −9633.82 −0.326946
\(955\) 0 0
\(956\) −10868.6 −0.367695
\(957\) −5129.05 −0.173248
\(958\) −21345.6 −0.719881
\(959\) 40664.6 1.36927
\(960\) 0 0
\(961\) −6710.48 −0.225252
\(962\) −57646.9 −1.93203
\(963\) −6609.24 −0.221163
\(964\) 3759.23 0.125598
\(965\) 0 0
\(966\) 1485.90 0.0494906
\(967\) 42598.6 1.41663 0.708314 0.705898i \(-0.249456\pi\)
0.708314 + 0.705898i \(0.249456\pi\)
\(968\) −52814.9 −1.75365
\(969\) −53275.9 −1.76622
\(970\) 0 0
\(971\) −10608.8 −0.350620 −0.175310 0.984513i \(-0.556093\pi\)
−0.175310 + 0.984513i \(0.556093\pi\)
\(972\) −683.986 −0.0225709
\(973\) −31531.8 −1.03892
\(974\) 14759.7 0.485555
\(975\) 0 0
\(976\) −20234.4 −0.663614
\(977\) 45196.3 1.48000 0.739998 0.672609i \(-0.234826\pi\)
0.739998 + 0.672609i \(0.234826\pi\)
\(978\) −12240.8 −0.400222
\(979\) −79068.6 −2.58125
\(980\) 0 0
\(981\) 6615.59 0.215311
\(982\) −2523.22 −0.0819951
\(983\) −30853.1 −1.00108 −0.500540 0.865713i \(-0.666865\pi\)
−0.500540 + 0.865713i \(0.666865\pi\)
\(984\) −9328.86 −0.302229
\(985\) 0 0
\(986\) 7851.66 0.253598
\(987\) 19069.5 0.614985
\(988\) −32322.3 −1.04080
\(989\) 3372.10 0.108419
\(990\) 0 0
\(991\) 1333.81 0.0427547 0.0213774 0.999771i \(-0.493195\pi\)
0.0213774 + 0.999771i \(0.493195\pi\)
\(992\) 18320.9 0.586381
\(993\) −14453.0 −0.461884
\(994\) 30207.6 0.963912
\(995\) 0 0
\(996\) 3078.12 0.0979257
\(997\) −41309.6 −1.31222 −0.656112 0.754664i \(-0.727800\pi\)
−0.656112 + 0.754664i \(0.727800\pi\)
\(998\) 9231.41 0.292801
\(999\) 8890.46 0.281563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.5 7
5.4 even 2 435.4.a.i.1.3 7
15.14 odd 2 1305.4.a.n.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.3 7 5.4 even 2
1305.4.a.n.1.5 7 15.14 odd 2
2175.4.a.n.1.5 7 1.1 even 1 trivial