Properties

Label 2175.4.a.n.1.3
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.40909\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.40909 q^{2} +3.00000 q^{3} -6.01448 q^{4} -4.22726 q^{6} -22.4156 q^{7} +19.7476 q^{8} +9.00000 q^{9} +11.9568 q^{11} -18.0434 q^{12} +24.3982 q^{13} +31.5855 q^{14} +20.2898 q^{16} +57.0575 q^{17} -12.6818 q^{18} -101.555 q^{19} -67.2467 q^{21} -16.8481 q^{22} -133.400 q^{23} +59.2428 q^{24} -34.3792 q^{26} +27.0000 q^{27} +134.818 q^{28} +29.0000 q^{29} +292.953 q^{31} -186.571 q^{32} +35.8703 q^{33} -80.3989 q^{34} -54.1303 q^{36} -393.581 q^{37} +143.100 q^{38} +73.1947 q^{39} +237.918 q^{41} +94.7564 q^{42} +82.3986 q^{43} -71.9137 q^{44} +187.972 q^{46} -490.781 q^{47} +60.8693 q^{48} +159.458 q^{49} +171.173 q^{51} -146.743 q^{52} +416.624 q^{53} -38.0453 q^{54} -442.654 q^{56} -304.666 q^{57} -40.8635 q^{58} +320.424 q^{59} +612.103 q^{61} -412.796 q^{62} -201.740 q^{63} +100.576 q^{64} -50.5443 q^{66} -569.634 q^{67} -343.171 q^{68} -400.199 q^{69} -689.224 q^{71} +177.728 q^{72} -125.224 q^{73} +554.589 q^{74} +610.801 q^{76} -268.018 q^{77} -103.138 q^{78} -356.958 q^{79} +81.0000 q^{81} -335.247 q^{82} -947.383 q^{83} +404.454 q^{84} -116.107 q^{86} +87.0000 q^{87} +236.117 q^{88} -1212.05 q^{89} -546.901 q^{91} +802.330 q^{92} +878.858 q^{93} +691.553 q^{94} -559.712 q^{96} +597.340 q^{97} -224.690 q^{98} +107.611 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40909 −0.498187 −0.249094 0.968479i \(-0.580133\pi\)
−0.249094 + 0.968479i \(0.580133\pi\)
\(3\) 3.00000 0.577350
\(4\) −6.01448 −0.751810
\(5\) 0 0
\(6\) −4.22726 −0.287628
\(7\) −22.4156 −1.21033 −0.605164 0.796101i \(-0.706892\pi\)
−0.605164 + 0.796101i \(0.706892\pi\)
\(8\) 19.7476 0.872729
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.9568 0.327736 0.163868 0.986482i \(-0.447603\pi\)
0.163868 + 0.986482i \(0.447603\pi\)
\(12\) −18.0434 −0.434058
\(13\) 24.3982 0.520527 0.260264 0.965538i \(-0.416190\pi\)
0.260264 + 0.965538i \(0.416190\pi\)
\(14\) 31.5855 0.602969
\(15\) 0 0
\(16\) 20.2898 0.317027
\(17\) 57.0575 0.814028 0.407014 0.913422i \(-0.366570\pi\)
0.407014 + 0.913422i \(0.366570\pi\)
\(18\) −12.6818 −0.166062
\(19\) −101.555 −1.22623 −0.613115 0.789994i \(-0.710084\pi\)
−0.613115 + 0.789994i \(0.710084\pi\)
\(20\) 0 0
\(21\) −67.2467 −0.698783
\(22\) −16.8481 −0.163274
\(23\) −133.400 −1.20938 −0.604691 0.796460i \(-0.706703\pi\)
−0.604691 + 0.796460i \(0.706703\pi\)
\(24\) 59.2428 0.503870
\(25\) 0 0
\(26\) −34.3792 −0.259320
\(27\) 27.0000 0.192450
\(28\) 134.818 0.909936
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 292.953 1.69729 0.848643 0.528966i \(-0.177420\pi\)
0.848643 + 0.528966i \(0.177420\pi\)
\(32\) −186.571 −1.03067
\(33\) 35.8703 0.189219
\(34\) −80.3989 −0.405538
\(35\) 0 0
\(36\) −54.1303 −0.250603
\(37\) −393.581 −1.74876 −0.874382 0.485238i \(-0.838733\pi\)
−0.874382 + 0.485238i \(0.838733\pi\)
\(38\) 143.100 0.610892
\(39\) 73.1947 0.300527
\(40\) 0 0
\(41\) 237.918 0.906257 0.453128 0.891445i \(-0.350308\pi\)
0.453128 + 0.891445i \(0.350308\pi\)
\(42\) 94.7564 0.348125
\(43\) 82.3986 0.292225 0.146112 0.989268i \(-0.453324\pi\)
0.146112 + 0.989268i \(0.453324\pi\)
\(44\) −71.9137 −0.246395
\(45\) 0 0
\(46\) 187.972 0.602498
\(47\) −490.781 −1.52314 −0.761572 0.648080i \(-0.775572\pi\)
−0.761572 + 0.648080i \(0.775572\pi\)
\(48\) 60.8693 0.183036
\(49\) 159.458 0.464893
\(50\) 0 0
\(51\) 171.173 0.469979
\(52\) −146.743 −0.391338
\(53\) 416.624 1.07977 0.539885 0.841739i \(-0.318468\pi\)
0.539885 + 0.841739i \(0.318468\pi\)
\(54\) −38.0453 −0.0958761
\(55\) 0 0
\(56\) −442.654 −1.05629
\(57\) −304.666 −0.707964
\(58\) −40.8635 −0.0925110
\(59\) 320.424 0.707046 0.353523 0.935426i \(-0.384984\pi\)
0.353523 + 0.935426i \(0.384984\pi\)
\(60\) 0 0
\(61\) 612.103 1.28478 0.642392 0.766376i \(-0.277942\pi\)
0.642392 + 0.766376i \(0.277942\pi\)
\(62\) −412.796 −0.845566
\(63\) −201.740 −0.403442
\(64\) 100.576 0.196438
\(65\) 0 0
\(66\) −50.5443 −0.0942663
\(67\) −569.634 −1.03868 −0.519342 0.854567i \(-0.673823\pi\)
−0.519342 + 0.854567i \(0.673823\pi\)
\(68\) −343.171 −0.611994
\(69\) −400.199 −0.698237
\(70\) 0 0
\(71\) −689.224 −1.15205 −0.576027 0.817431i \(-0.695398\pi\)
−0.576027 + 0.817431i \(0.695398\pi\)
\(72\) 177.728 0.290910
\(73\) −125.224 −0.200772 −0.100386 0.994949i \(-0.532008\pi\)
−0.100386 + 0.994949i \(0.532008\pi\)
\(74\) 554.589 0.871212
\(75\) 0 0
\(76\) 610.801 0.921891
\(77\) −268.018 −0.396668
\(78\) −103.138 −0.149718
\(79\) −356.958 −0.508366 −0.254183 0.967156i \(-0.581807\pi\)
−0.254183 + 0.967156i \(0.581807\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −335.247 −0.451485
\(83\) −947.383 −1.25288 −0.626439 0.779471i \(-0.715488\pi\)
−0.626439 + 0.779471i \(0.715488\pi\)
\(84\) 404.454 0.525352
\(85\) 0 0
\(86\) −116.107 −0.145583
\(87\) 87.0000 0.107211
\(88\) 236.117 0.286025
\(89\) −1212.05 −1.44356 −0.721779 0.692123i \(-0.756675\pi\)
−0.721779 + 0.692123i \(0.756675\pi\)
\(90\) 0 0
\(91\) −546.901 −0.630009
\(92\) 802.330 0.909224
\(93\) 878.858 0.979929
\(94\) 691.553 0.758811
\(95\) 0 0
\(96\) −559.712 −0.595056
\(97\) 597.340 0.625265 0.312633 0.949874i \(-0.398789\pi\)
0.312633 + 0.949874i \(0.398789\pi\)
\(98\) −224.690 −0.231603
\(99\) 107.611 0.109245
\(100\) 0 0
\(101\) −318.168 −0.313455 −0.156727 0.987642i \(-0.550094\pi\)
−0.156727 + 0.987642i \(0.550094\pi\)
\(102\) −241.197 −0.234138
\(103\) 629.601 0.602295 0.301148 0.953577i \(-0.402630\pi\)
0.301148 + 0.953577i \(0.402630\pi\)
\(104\) 481.807 0.454279
\(105\) 0 0
\(106\) −587.059 −0.537927
\(107\) −716.131 −0.647019 −0.323509 0.946225i \(-0.604863\pi\)
−0.323509 + 0.946225i \(0.604863\pi\)
\(108\) −162.391 −0.144686
\(109\) 1969.57 1.73074 0.865371 0.501132i \(-0.167083\pi\)
0.865371 + 0.501132i \(0.167083\pi\)
\(110\) 0 0
\(111\) −1180.74 −1.00965
\(112\) −454.807 −0.383707
\(113\) −1106.67 −0.921295 −0.460647 0.887583i \(-0.652383\pi\)
−0.460647 + 0.887583i \(0.652383\pi\)
\(114\) 429.300 0.352698
\(115\) 0 0
\(116\) −174.420 −0.139608
\(117\) 219.584 0.173509
\(118\) −451.505 −0.352241
\(119\) −1278.98 −0.985241
\(120\) 0 0
\(121\) −1188.04 −0.892589
\(122\) −862.506 −0.640063
\(123\) 713.753 0.523228
\(124\) −1761.96 −1.27604
\(125\) 0 0
\(126\) 284.269 0.200990
\(127\) 2496.52 1.74433 0.872167 0.489207i \(-0.162714\pi\)
0.872167 + 0.489207i \(0.162714\pi\)
\(128\) 1350.85 0.932805
\(129\) 247.196 0.168716
\(130\) 0 0
\(131\) 2155.49 1.43760 0.718800 0.695216i \(-0.244691\pi\)
0.718800 + 0.695216i \(0.244691\pi\)
\(132\) −215.741 −0.142256
\(133\) 2276.42 1.48414
\(134\) 802.663 0.517459
\(135\) 0 0
\(136\) 1126.75 0.710426
\(137\) −1128.30 −0.703628 −0.351814 0.936070i \(-0.614435\pi\)
−0.351814 + 0.936070i \(0.614435\pi\)
\(138\) 563.915 0.347852
\(139\) 1331.04 0.812212 0.406106 0.913826i \(-0.366886\pi\)
0.406106 + 0.913826i \(0.366886\pi\)
\(140\) 0 0
\(141\) −1472.34 −0.879388
\(142\) 971.176 0.573938
\(143\) 291.724 0.170596
\(144\) 182.608 0.105676
\(145\) 0 0
\(146\) 176.451 0.100022
\(147\) 478.374 0.268406
\(148\) 2367.18 1.31474
\(149\) 2689.78 1.47890 0.739448 0.673214i \(-0.235087\pi\)
0.739448 + 0.673214i \(0.235087\pi\)
\(150\) 0 0
\(151\) −1784.39 −0.961667 −0.480834 0.876812i \(-0.659666\pi\)
−0.480834 + 0.876812i \(0.659666\pi\)
\(152\) −2005.47 −1.07017
\(153\) 513.518 0.271343
\(154\) 377.660 0.197615
\(155\) 0 0
\(156\) −440.228 −0.225939
\(157\) 984.642 0.500529 0.250264 0.968178i \(-0.419482\pi\)
0.250264 + 0.968178i \(0.419482\pi\)
\(158\) 502.984 0.253261
\(159\) 1249.87 0.623405
\(160\) 0 0
\(161\) 2990.23 1.46375
\(162\) −114.136 −0.0553541
\(163\) 646.272 0.310552 0.155276 0.987871i \(-0.450373\pi\)
0.155276 + 0.987871i \(0.450373\pi\)
\(164\) −1430.95 −0.681333
\(165\) 0 0
\(166\) 1334.94 0.624167
\(167\) 160.346 0.0742993 0.0371496 0.999310i \(-0.488172\pi\)
0.0371496 + 0.999310i \(0.488172\pi\)
\(168\) −1327.96 −0.609848
\(169\) −1601.73 −0.729051
\(170\) 0 0
\(171\) −913.997 −0.408743
\(172\) −495.585 −0.219698
\(173\) −2583.11 −1.13520 −0.567602 0.823303i \(-0.692129\pi\)
−0.567602 + 0.823303i \(0.692129\pi\)
\(174\) −122.590 −0.0534113
\(175\) 0 0
\(176\) 242.600 0.103901
\(177\) 961.273 0.408213
\(178\) 1707.88 0.719162
\(179\) 3663.85 1.52988 0.764941 0.644100i \(-0.222768\pi\)
0.764941 + 0.644100i \(0.222768\pi\)
\(180\) 0 0
\(181\) 3394.16 1.39384 0.696922 0.717147i \(-0.254553\pi\)
0.696922 + 0.717147i \(0.254553\pi\)
\(182\) 770.630 0.313862
\(183\) 1836.31 0.741770
\(184\) −2634.32 −1.05546
\(185\) 0 0
\(186\) −1238.39 −0.488188
\(187\) 682.223 0.266787
\(188\) 2951.79 1.14511
\(189\) −605.221 −0.232928
\(190\) 0 0
\(191\) −634.977 −0.240551 −0.120276 0.992741i \(-0.538378\pi\)
−0.120276 + 0.992741i \(0.538378\pi\)
\(192\) 301.729 0.113413
\(193\) 2438.75 0.909559 0.454780 0.890604i \(-0.349718\pi\)
0.454780 + 0.890604i \(0.349718\pi\)
\(194\) −841.704 −0.311499
\(195\) 0 0
\(196\) −959.057 −0.349511
\(197\) 4985.61 1.80310 0.901549 0.432677i \(-0.142431\pi\)
0.901549 + 0.432677i \(0.142431\pi\)
\(198\) −151.633 −0.0544247
\(199\) 1111.42 0.395913 0.197957 0.980211i \(-0.436569\pi\)
0.197957 + 0.980211i \(0.436569\pi\)
\(200\) 0 0
\(201\) −1708.90 −0.599684
\(202\) 448.326 0.156159
\(203\) −650.052 −0.224752
\(204\) −1029.51 −0.353335
\(205\) 0 0
\(206\) −887.162 −0.300056
\(207\) −1200.60 −0.403127
\(208\) 495.035 0.165021
\(209\) −1214.27 −0.401880
\(210\) 0 0
\(211\) −4654.76 −1.51870 −0.759352 0.650680i \(-0.774484\pi\)
−0.759352 + 0.650680i \(0.774484\pi\)
\(212\) −2505.78 −0.811781
\(213\) −2067.67 −0.665139
\(214\) 1009.09 0.322336
\(215\) 0 0
\(216\) 533.185 0.167957
\(217\) −6566.71 −2.05427
\(218\) −2775.30 −0.862233
\(219\) −375.672 −0.115916
\(220\) 0 0
\(221\) 1392.10 0.423724
\(222\) 1663.77 0.502994
\(223\) 751.947 0.225803 0.112901 0.993606i \(-0.463986\pi\)
0.112901 + 0.993606i \(0.463986\pi\)
\(224\) 4182.09 1.24745
\(225\) 0 0
\(226\) 1559.39 0.458977
\(227\) 1076.59 0.314784 0.157392 0.987536i \(-0.449691\pi\)
0.157392 + 0.987536i \(0.449691\pi\)
\(228\) 1832.40 0.532254
\(229\) −3048.93 −0.879822 −0.439911 0.898041i \(-0.644990\pi\)
−0.439911 + 0.898041i \(0.644990\pi\)
\(230\) 0 0
\(231\) −804.053 −0.229017
\(232\) 572.680 0.162062
\(233\) −20.2258 −0.00568686 −0.00284343 0.999996i \(-0.500905\pi\)
−0.00284343 + 0.999996i \(0.500905\pi\)
\(234\) −309.413 −0.0864400
\(235\) 0 0
\(236\) −1927.19 −0.531564
\(237\) −1070.87 −0.293505
\(238\) 1802.19 0.490834
\(239\) 307.893 0.0833303 0.0416651 0.999132i \(-0.486734\pi\)
0.0416651 + 0.999132i \(0.486734\pi\)
\(240\) 0 0
\(241\) 4530.44 1.21092 0.605459 0.795877i \(-0.292990\pi\)
0.605459 + 0.795877i \(0.292990\pi\)
\(242\) 1674.04 0.444676
\(243\) 243.000 0.0641500
\(244\) −3681.48 −0.965913
\(245\) 0 0
\(246\) −1005.74 −0.260665
\(247\) −2477.77 −0.638286
\(248\) 5785.12 1.48127
\(249\) −2842.15 −0.723349
\(250\) 0 0
\(251\) −1320.51 −0.332070 −0.166035 0.986120i \(-0.553096\pi\)
−0.166035 + 0.986120i \(0.553096\pi\)
\(252\) 1213.36 0.303312
\(253\) −1595.03 −0.396358
\(254\) −3517.81 −0.869005
\(255\) 0 0
\(256\) −2708.07 −0.661149
\(257\) 2205.98 0.535430 0.267715 0.963498i \(-0.413731\pi\)
0.267715 + 0.963498i \(0.413731\pi\)
\(258\) −348.320 −0.0840522
\(259\) 8822.34 2.11658
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −3037.26 −0.716194
\(263\) 6630.48 1.55457 0.777286 0.629147i \(-0.216596\pi\)
0.777286 + 0.629147i \(0.216596\pi\)
\(264\) 708.352 0.165137
\(265\) 0 0
\(266\) −3207.67 −0.739379
\(267\) −3636.14 −0.833439
\(268\) 3426.05 0.780893
\(269\) 4744.31 1.07534 0.537669 0.843156i \(-0.319305\pi\)
0.537669 + 0.843156i \(0.319305\pi\)
\(270\) 0 0
\(271\) −5641.82 −1.26464 −0.632318 0.774709i \(-0.717896\pi\)
−0.632318 + 0.774709i \(0.717896\pi\)
\(272\) 1157.68 0.258069
\(273\) −1640.70 −0.363736
\(274\) 1589.87 0.350538
\(275\) 0 0
\(276\) 2406.99 0.524941
\(277\) 5431.05 1.17805 0.589025 0.808115i \(-0.299512\pi\)
0.589025 + 0.808115i \(0.299512\pi\)
\(278\) −1875.55 −0.404634
\(279\) 2636.58 0.565762
\(280\) 0 0
\(281\) 9392.01 1.99388 0.996940 0.0781664i \(-0.0249065\pi\)
0.996940 + 0.0781664i \(0.0249065\pi\)
\(282\) 2074.66 0.438100
\(283\) 6584.64 1.38310 0.691548 0.722331i \(-0.256929\pi\)
0.691548 + 0.722331i \(0.256929\pi\)
\(284\) 4145.32 0.866125
\(285\) 0 0
\(286\) −411.064 −0.0849886
\(287\) −5333.07 −1.09687
\(288\) −1679.14 −0.343556
\(289\) −1657.44 −0.337358
\(290\) 0 0
\(291\) 1792.02 0.360997
\(292\) 753.157 0.150942
\(293\) 1391.13 0.277374 0.138687 0.990336i \(-0.455712\pi\)
0.138687 + 0.990336i \(0.455712\pi\)
\(294\) −674.071 −0.133716
\(295\) 0 0
\(296\) −7772.27 −1.52620
\(297\) 322.833 0.0630729
\(298\) −3790.13 −0.736766
\(299\) −3254.72 −0.629516
\(300\) 0 0
\(301\) −1847.01 −0.353688
\(302\) 2514.36 0.479090
\(303\) −954.505 −0.180973
\(304\) −2060.53 −0.388748
\(305\) 0 0
\(306\) −723.590 −0.135179
\(307\) 5027.84 0.934704 0.467352 0.884071i \(-0.345208\pi\)
0.467352 + 0.884071i \(0.345208\pi\)
\(308\) 1611.99 0.298219
\(309\) 1888.80 0.347735
\(310\) 0 0
\(311\) 939.987 0.171388 0.0856942 0.996321i \(-0.472689\pi\)
0.0856942 + 0.996321i \(0.472689\pi\)
\(312\) 1445.42 0.262278
\(313\) 9028.02 1.63033 0.815166 0.579228i \(-0.196646\pi\)
0.815166 + 0.579228i \(0.196646\pi\)
\(314\) −1387.45 −0.249357
\(315\) 0 0
\(316\) 2146.91 0.382194
\(317\) 2461.43 0.436112 0.218056 0.975936i \(-0.430028\pi\)
0.218056 + 0.975936i \(0.430028\pi\)
\(318\) −1761.18 −0.310572
\(319\) 346.746 0.0608591
\(320\) 0 0
\(321\) −2148.39 −0.373556
\(322\) −4213.49 −0.729220
\(323\) −5794.49 −0.998185
\(324\) −487.173 −0.0835344
\(325\) 0 0
\(326\) −910.652 −0.154713
\(327\) 5908.72 0.999244
\(328\) 4698.31 0.790916
\(329\) 11001.1 1.84350
\(330\) 0 0
\(331\) 4350.92 0.722502 0.361251 0.932469i \(-0.382350\pi\)
0.361251 + 0.932469i \(0.382350\pi\)
\(332\) 5698.01 0.941925
\(333\) −3542.23 −0.582921
\(334\) −225.942 −0.0370149
\(335\) 0 0
\(336\) −1364.42 −0.221533
\(337\) −2324.77 −0.375781 −0.187890 0.982190i \(-0.560165\pi\)
−0.187890 + 0.982190i \(0.560165\pi\)
\(338\) 2256.97 0.363204
\(339\) −3320.00 −0.531910
\(340\) 0 0
\(341\) 3502.77 0.556262
\(342\) 1287.90 0.203631
\(343\) 4114.20 0.647655
\(344\) 1627.18 0.255033
\(345\) 0 0
\(346\) 3639.82 0.565543
\(347\) −3384.11 −0.523541 −0.261770 0.965130i \(-0.584306\pi\)
−0.261770 + 0.965130i \(0.584306\pi\)
\(348\) −523.260 −0.0806025
\(349\) 3876.35 0.594545 0.297273 0.954793i \(-0.403923\pi\)
0.297273 + 0.954793i \(0.403923\pi\)
\(350\) 0 0
\(351\) 658.753 0.100176
\(352\) −2230.78 −0.337787
\(353\) −7741.90 −1.16731 −0.583654 0.812003i \(-0.698377\pi\)
−0.583654 + 0.812003i \(0.698377\pi\)
\(354\) −1354.52 −0.203366
\(355\) 0 0
\(356\) 7289.83 1.08528
\(357\) −3836.93 −0.568829
\(358\) −5162.68 −0.762168
\(359\) −6553.34 −0.963432 −0.481716 0.876327i \(-0.659986\pi\)
−0.481716 + 0.876327i \(0.659986\pi\)
\(360\) 0 0
\(361\) 3454.46 0.503639
\(362\) −4782.66 −0.694395
\(363\) −3564.11 −0.515336
\(364\) 3289.32 0.473647
\(365\) 0 0
\(366\) −2587.52 −0.369540
\(367\) 5.48077 0.000779547 0 0.000389774 1.00000i \(-0.499876\pi\)
0.000389774 1.00000i \(0.499876\pi\)
\(368\) −2706.65 −0.383407
\(369\) 2141.26 0.302086
\(370\) 0 0
\(371\) −9338.88 −1.30687
\(372\) −5285.87 −0.736720
\(373\) −12616.7 −1.75139 −0.875696 0.482862i \(-0.839597\pi\)
−0.875696 + 0.482862i \(0.839597\pi\)
\(374\) −961.311 −0.132910
\(375\) 0 0
\(376\) −9691.75 −1.32929
\(377\) 707.549 0.0966595
\(378\) 852.808 0.116042
\(379\) −7220.33 −0.978585 −0.489292 0.872120i \(-0.662745\pi\)
−0.489292 + 0.872120i \(0.662745\pi\)
\(380\) 0 0
\(381\) 7489.57 1.00709
\(382\) 894.737 0.119840
\(383\) −3257.70 −0.434624 −0.217312 0.976102i \(-0.569729\pi\)
−0.217312 + 0.976102i \(0.569729\pi\)
\(384\) 4052.54 0.538555
\(385\) 0 0
\(386\) −3436.41 −0.453131
\(387\) 741.588 0.0974083
\(388\) −3592.69 −0.470080
\(389\) 12382.6 1.61395 0.806973 0.590588i \(-0.201104\pi\)
0.806973 + 0.590588i \(0.201104\pi\)
\(390\) 0 0
\(391\) −7611.46 −0.984470
\(392\) 3148.92 0.405725
\(393\) 6466.46 0.829999
\(394\) −7025.16 −0.898280
\(395\) 0 0
\(396\) −647.223 −0.0821318
\(397\) −9539.00 −1.20592 −0.602958 0.797773i \(-0.706011\pi\)
−0.602958 + 0.797773i \(0.706011\pi\)
\(398\) −1566.09 −0.197239
\(399\) 6829.26 0.856868
\(400\) 0 0
\(401\) 460.813 0.0573863 0.0286932 0.999588i \(-0.490865\pi\)
0.0286932 + 0.999588i \(0.490865\pi\)
\(402\) 2407.99 0.298755
\(403\) 7147.54 0.883484
\(404\) 1913.62 0.235658
\(405\) 0 0
\(406\) 915.979 0.111969
\(407\) −4705.95 −0.573133
\(408\) 3380.25 0.410165
\(409\) 12769.1 1.54374 0.771871 0.635780i \(-0.219321\pi\)
0.771871 + 0.635780i \(0.219321\pi\)
\(410\) 0 0
\(411\) −3384.89 −0.406240
\(412\) −3786.72 −0.452812
\(413\) −7182.50 −0.855757
\(414\) 1691.74 0.200833
\(415\) 0 0
\(416\) −4552.00 −0.536491
\(417\) 3993.13 0.468931
\(418\) 1711.01 0.200211
\(419\) 4192.84 0.488863 0.244432 0.969667i \(-0.421399\pi\)
0.244432 + 0.969667i \(0.421399\pi\)
\(420\) 0 0
\(421\) −9960.32 −1.15306 −0.576528 0.817078i \(-0.695593\pi\)
−0.576528 + 0.817078i \(0.695593\pi\)
\(422\) 6558.95 0.756599
\(423\) −4417.03 −0.507715
\(424\) 8227.33 0.942346
\(425\) 0 0
\(426\) 2913.53 0.331364
\(427\) −13720.7 −1.55501
\(428\) 4307.15 0.486435
\(429\) 875.172 0.0984935
\(430\) 0 0
\(431\) −898.036 −0.100364 −0.0501820 0.998740i \(-0.515980\pi\)
−0.0501820 + 0.998740i \(0.515980\pi\)
\(432\) 547.823 0.0610120
\(433\) 13076.0 1.45126 0.725629 0.688086i \(-0.241549\pi\)
0.725629 + 0.688086i \(0.241549\pi\)
\(434\) 9253.05 1.02341
\(435\) 0 0
\(436\) −11845.9 −1.30119
\(437\) 13547.4 1.48298
\(438\) 529.354 0.0577477
\(439\) −64.6529 −0.00702897 −0.00351448 0.999994i \(-0.501119\pi\)
−0.00351448 + 0.999994i \(0.501119\pi\)
\(440\) 0 0
\(441\) 1435.12 0.154964
\(442\) −1961.59 −0.211094
\(443\) −101.758 −0.0109135 −0.00545676 0.999985i \(-0.501737\pi\)
−0.00545676 + 0.999985i \(0.501737\pi\)
\(444\) 7101.55 0.759064
\(445\) 0 0
\(446\) −1059.56 −0.112492
\(447\) 8069.34 0.853841
\(448\) −2254.47 −0.237754
\(449\) 12597.0 1.32403 0.662016 0.749489i \(-0.269701\pi\)
0.662016 + 0.749489i \(0.269701\pi\)
\(450\) 0 0
\(451\) 2844.73 0.297013
\(452\) 6656.01 0.692638
\(453\) −5353.18 −0.555219
\(454\) −1517.01 −0.156821
\(455\) 0 0
\(456\) −6016.41 −0.617861
\(457\) −4595.05 −0.470344 −0.235172 0.971954i \(-0.575565\pi\)
−0.235172 + 0.971954i \(0.575565\pi\)
\(458\) 4296.21 0.438316
\(459\) 1540.55 0.156660
\(460\) 0 0
\(461\) 3826.24 0.386564 0.193282 0.981143i \(-0.438087\pi\)
0.193282 + 0.981143i \(0.438087\pi\)
\(462\) 1132.98 0.114093
\(463\) −14390.6 −1.44447 −0.722233 0.691650i \(-0.756884\pi\)
−0.722233 + 0.691650i \(0.756884\pi\)
\(464\) 588.403 0.0588705
\(465\) 0 0
\(466\) 28.4999 0.00283312
\(467\) 11750.2 1.16431 0.582156 0.813077i \(-0.302209\pi\)
0.582156 + 0.813077i \(0.302209\pi\)
\(468\) −1320.68 −0.130446
\(469\) 12768.7 1.25715
\(470\) 0 0
\(471\) 2953.93 0.288980
\(472\) 6327.61 0.617059
\(473\) 985.221 0.0957727
\(474\) 1508.95 0.146220
\(475\) 0 0
\(476\) 7692.38 0.740714
\(477\) 3749.62 0.359923
\(478\) −433.848 −0.0415141
\(479\) −2420.75 −0.230912 −0.115456 0.993313i \(-0.536833\pi\)
−0.115456 + 0.993313i \(0.536833\pi\)
\(480\) 0 0
\(481\) −9602.68 −0.910280
\(482\) −6383.78 −0.603264
\(483\) 8970.70 0.845095
\(484\) 7145.41 0.671057
\(485\) 0 0
\(486\) −342.408 −0.0319587
\(487\) −5597.36 −0.520822 −0.260411 0.965498i \(-0.583858\pi\)
−0.260411 + 0.965498i \(0.583858\pi\)
\(488\) 12087.6 1.12127
\(489\) 1938.81 0.179297
\(490\) 0 0
\(491\) 7787.76 0.715797 0.357899 0.933760i \(-0.383493\pi\)
0.357899 + 0.933760i \(0.383493\pi\)
\(492\) −4292.85 −0.393368
\(493\) 1654.67 0.151161
\(494\) 3491.39 0.317986
\(495\) 0 0
\(496\) 5943.94 0.538086
\(497\) 15449.4 1.39436
\(498\) 4004.83 0.360363
\(499\) 758.279 0.0680265 0.0340133 0.999421i \(-0.489171\pi\)
0.0340133 + 0.999421i \(0.489171\pi\)
\(500\) 0 0
\(501\) 481.039 0.0428967
\(502\) 1860.71 0.165433
\(503\) 9841.58 0.872394 0.436197 0.899851i \(-0.356325\pi\)
0.436197 + 0.899851i \(0.356325\pi\)
\(504\) −3983.88 −0.352096
\(505\) 0 0
\(506\) 2247.53 0.197460
\(507\) −4805.18 −0.420918
\(508\) −15015.3 −1.31141
\(509\) 10862.8 0.945947 0.472974 0.881077i \(-0.343181\pi\)
0.472974 + 0.881077i \(0.343181\pi\)
\(510\) 0 0
\(511\) 2806.97 0.243000
\(512\) −6990.87 −0.603429
\(513\) −2741.99 −0.235988
\(514\) −3108.42 −0.266744
\(515\) 0 0
\(516\) −1486.75 −0.126842
\(517\) −5868.15 −0.499190
\(518\) −12431.4 −1.05445
\(519\) −7749.33 −0.655410
\(520\) 0 0
\(521\) 16027.8 1.34777 0.673886 0.738836i \(-0.264624\pi\)
0.673886 + 0.738836i \(0.264624\pi\)
\(522\) −367.771 −0.0308370
\(523\) −3028.25 −0.253186 −0.126593 0.991955i \(-0.540404\pi\)
−0.126593 + 0.991955i \(0.540404\pi\)
\(524\) −12964.1 −1.08080
\(525\) 0 0
\(526\) −9342.91 −0.774468
\(527\) 16715.2 1.38164
\(528\) 727.799 0.0599875
\(529\) 5628.49 0.462603
\(530\) 0 0
\(531\) 2883.82 0.235682
\(532\) −13691.5 −1.11579
\(533\) 5804.78 0.471731
\(534\) 5123.63 0.415208
\(535\) 0 0
\(536\) −11248.9 −0.906489
\(537\) 10991.5 0.883278
\(538\) −6685.14 −0.535719
\(539\) 1906.60 0.152362
\(540\) 0 0
\(541\) −5465.05 −0.434308 −0.217154 0.976137i \(-0.569677\pi\)
−0.217154 + 0.976137i \(0.569677\pi\)
\(542\) 7949.81 0.630025
\(543\) 10182.5 0.804736
\(544\) −10645.3 −0.838993
\(545\) 0 0
\(546\) 2311.89 0.181208
\(547\) −5025.89 −0.392855 −0.196427 0.980518i \(-0.562934\pi\)
−0.196427 + 0.980518i \(0.562934\pi\)
\(548\) 6786.12 0.528994
\(549\) 5508.93 0.428261
\(550\) 0 0
\(551\) −2945.10 −0.227705
\(552\) −7902.97 −0.609371
\(553\) 8001.42 0.615289
\(554\) −7652.81 −0.586890
\(555\) 0 0
\(556\) −8005.52 −0.610629
\(557\) 13090.4 0.995794 0.497897 0.867236i \(-0.334106\pi\)
0.497897 + 0.867236i \(0.334106\pi\)
\(558\) −3715.16 −0.281855
\(559\) 2010.38 0.152111
\(560\) 0 0
\(561\) 2046.67 0.154029
\(562\) −13234.1 −0.993325
\(563\) 18020.8 1.34900 0.674501 0.738274i \(-0.264359\pi\)
0.674501 + 0.738274i \(0.264359\pi\)
\(564\) 8855.38 0.661132
\(565\) 0 0
\(566\) −9278.32 −0.689040
\(567\) −1815.66 −0.134481
\(568\) −13610.5 −1.00543
\(569\) 1614.50 0.118951 0.0594755 0.998230i \(-0.481057\pi\)
0.0594755 + 0.998230i \(0.481057\pi\)
\(570\) 0 0
\(571\) 20589.2 1.50899 0.754493 0.656308i \(-0.227883\pi\)
0.754493 + 0.656308i \(0.227883\pi\)
\(572\) −1754.57 −0.128256
\(573\) −1904.93 −0.138882
\(574\) 7514.75 0.546445
\(575\) 0 0
\(576\) 905.186 0.0654793
\(577\) 7402.23 0.534071 0.267035 0.963687i \(-0.413956\pi\)
0.267035 + 0.963687i \(0.413956\pi\)
\(578\) 2335.47 0.168067
\(579\) 7316.25 0.525134
\(580\) 0 0
\(581\) 21236.1 1.51639
\(582\) −2525.11 −0.179844
\(583\) 4981.48 0.353880
\(584\) −2472.87 −0.175220
\(585\) 0 0
\(586\) −1960.22 −0.138184
\(587\) 3667.75 0.257895 0.128947 0.991651i \(-0.458840\pi\)
0.128947 + 0.991651i \(0.458840\pi\)
\(588\) −2877.17 −0.201790
\(589\) −29750.9 −2.08126
\(590\) 0 0
\(591\) 14956.8 1.04102
\(592\) −7985.66 −0.554406
\(593\) 5461.87 0.378233 0.189116 0.981955i \(-0.439438\pi\)
0.189116 + 0.981955i \(0.439438\pi\)
\(594\) −454.899 −0.0314221
\(595\) 0 0
\(596\) −16177.6 −1.11185
\(597\) 3334.27 0.228581
\(598\) 4586.18 0.313617
\(599\) −20067.3 −1.36883 −0.684415 0.729092i \(-0.739942\pi\)
−0.684415 + 0.729092i \(0.739942\pi\)
\(600\) 0 0
\(601\) 15179.5 1.03026 0.515130 0.857112i \(-0.327744\pi\)
0.515130 + 0.857112i \(0.327744\pi\)
\(602\) 2602.60 0.176203
\(603\) −5126.70 −0.346228
\(604\) 10732.2 0.722991
\(605\) 0 0
\(606\) 1344.98 0.0901585
\(607\) 28792.4 1.92528 0.962642 0.270777i \(-0.0872805\pi\)
0.962642 + 0.270777i \(0.0872805\pi\)
\(608\) 18947.2 1.26384
\(609\) −1950.16 −0.129761
\(610\) 0 0
\(611\) −11974.2 −0.792838
\(612\) −3088.54 −0.203998
\(613\) 8519.17 0.561315 0.280657 0.959808i \(-0.409448\pi\)
0.280657 + 0.959808i \(0.409448\pi\)
\(614\) −7084.66 −0.465657
\(615\) 0 0
\(616\) −5292.71 −0.346184
\(617\) 2412.39 0.157405 0.0787026 0.996898i \(-0.474922\pi\)
0.0787026 + 0.996898i \(0.474922\pi\)
\(618\) −2661.49 −0.173237
\(619\) 3151.33 0.204625 0.102312 0.994752i \(-0.467376\pi\)
0.102312 + 0.994752i \(0.467376\pi\)
\(620\) 0 0
\(621\) −3601.79 −0.232746
\(622\) −1324.52 −0.0853835
\(623\) 27168.7 1.74718
\(624\) 1485.10 0.0952752
\(625\) 0 0
\(626\) −12721.2 −0.812210
\(627\) −3642.81 −0.232025
\(628\) −5922.11 −0.376302
\(629\) −22456.7 −1.42354
\(630\) 0 0
\(631\) −21769.1 −1.37340 −0.686700 0.726941i \(-0.740942\pi\)
−0.686700 + 0.726941i \(0.740942\pi\)
\(632\) −7049.06 −0.443665
\(633\) −13964.3 −0.876824
\(634\) −3468.36 −0.217265
\(635\) 0 0
\(636\) −7517.33 −0.468682
\(637\) 3890.50 0.241989
\(638\) −488.595 −0.0303192
\(639\) −6203.02 −0.384018
\(640\) 0 0
\(641\) 12175.8 0.750260 0.375130 0.926972i \(-0.377598\pi\)
0.375130 + 0.926972i \(0.377598\pi\)
\(642\) 3027.27 0.186101
\(643\) 25531.4 1.56588 0.782938 0.622100i \(-0.213720\pi\)
0.782938 + 0.622100i \(0.213720\pi\)
\(644\) −17984.7 −1.10046
\(645\) 0 0
\(646\) 8164.93 0.497283
\(647\) −15379.5 −0.934512 −0.467256 0.884122i \(-0.654757\pi\)
−0.467256 + 0.884122i \(0.654757\pi\)
\(648\) 1599.56 0.0969699
\(649\) 3831.24 0.231725
\(650\) 0 0
\(651\) −19700.1 −1.18603
\(652\) −3886.99 −0.233476
\(653\) 23529.2 1.41006 0.705029 0.709179i \(-0.250934\pi\)
0.705029 + 0.709179i \(0.250934\pi\)
\(654\) −8325.89 −0.497810
\(655\) 0 0
\(656\) 4827.30 0.287308
\(657\) −1127.02 −0.0669240
\(658\) −15501.6 −0.918409
\(659\) −5060.62 −0.299141 −0.149570 0.988751i \(-0.547789\pi\)
−0.149570 + 0.988751i \(0.547789\pi\)
\(660\) 0 0
\(661\) −17178.7 −1.01085 −0.505426 0.862870i \(-0.668665\pi\)
−0.505426 + 0.862870i \(0.668665\pi\)
\(662\) −6130.82 −0.359941
\(663\) 4176.31 0.244637
\(664\) −18708.5 −1.09342
\(665\) 0 0
\(666\) 4991.30 0.290404
\(667\) −3868.59 −0.224576
\(668\) −964.400 −0.0558589
\(669\) 2255.84 0.130367
\(670\) 0 0
\(671\) 7318.77 0.421070
\(672\) 12546.3 0.720213
\(673\) 31040.4 1.77789 0.888944 0.458016i \(-0.151440\pi\)
0.888944 + 0.458016i \(0.151440\pi\)
\(674\) 3275.80 0.187209
\(675\) 0 0
\(676\) 9633.54 0.548108
\(677\) −11484.3 −0.651960 −0.325980 0.945377i \(-0.605694\pi\)
−0.325980 + 0.945377i \(0.605694\pi\)
\(678\) 4678.16 0.264991
\(679\) −13389.7 −0.756775
\(680\) 0 0
\(681\) 3229.77 0.181740
\(682\) −4935.70 −0.277123
\(683\) −9670.23 −0.541758 −0.270879 0.962613i \(-0.587314\pi\)
−0.270879 + 0.962613i \(0.587314\pi\)
\(684\) 5497.21 0.307297
\(685\) 0 0
\(686\) −5797.26 −0.322653
\(687\) −9146.80 −0.507965
\(688\) 1671.85 0.0926433
\(689\) 10164.9 0.562049
\(690\) 0 0
\(691\) 32367.9 1.78196 0.890979 0.454045i \(-0.150019\pi\)
0.890979 + 0.454045i \(0.150019\pi\)
\(692\) 15536.1 0.853457
\(693\) −2412.16 −0.132223
\(694\) 4768.50 0.260821
\(695\) 0 0
\(696\) 1718.04 0.0935664
\(697\) 13575.0 0.737719
\(698\) −5462.11 −0.296195
\(699\) −60.6775 −0.00328331
\(700\) 0 0
\(701\) 10458.3 0.563489 0.281744 0.959490i \(-0.409087\pi\)
0.281744 + 0.959490i \(0.409087\pi\)
\(702\) −928.239 −0.0499062
\(703\) 39970.2 2.14439
\(704\) 1202.57 0.0643798
\(705\) 0 0
\(706\) 10909.0 0.581537
\(707\) 7131.93 0.379383
\(708\) −5781.56 −0.306899
\(709\) −12021.8 −0.636794 −0.318397 0.947958i \(-0.603144\pi\)
−0.318397 + 0.947958i \(0.603144\pi\)
\(710\) 0 0
\(711\) −3212.62 −0.169455
\(712\) −23935.0 −1.25983
\(713\) −39079.8 −2.05267
\(714\) 5406.57 0.283383
\(715\) 0 0
\(716\) −22036.1 −1.15018
\(717\) 923.679 0.0481108
\(718\) 9234.22 0.479969
\(719\) −18959.8 −0.983421 −0.491711 0.870759i \(-0.663628\pi\)
−0.491711 + 0.870759i \(0.663628\pi\)
\(720\) 0 0
\(721\) −14112.9 −0.728975
\(722\) −4867.63 −0.250906
\(723\) 13591.3 0.699124
\(724\) −20414.1 −1.04790
\(725\) 0 0
\(726\) 5022.13 0.256734
\(727\) −20821.5 −1.06221 −0.531105 0.847306i \(-0.678223\pi\)
−0.531105 + 0.847306i \(0.678223\pi\)
\(728\) −10800.0 −0.549827
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 4701.46 0.237879
\(732\) −11044.4 −0.557670
\(733\) −24886.4 −1.25403 −0.627013 0.779009i \(-0.715723\pi\)
−0.627013 + 0.779009i \(0.715723\pi\)
\(734\) −7.72287 −0.000388360 0
\(735\) 0 0
\(736\) 24888.5 1.24647
\(737\) −6810.97 −0.340414
\(738\) −3017.22 −0.150495
\(739\) −23608.7 −1.17518 −0.587591 0.809158i \(-0.699923\pi\)
−0.587591 + 0.809158i \(0.699923\pi\)
\(740\) 0 0
\(741\) −7433.31 −0.368515
\(742\) 13159.3 0.651068
\(743\) −27341.5 −1.35002 −0.675008 0.737810i \(-0.735860\pi\)
−0.675008 + 0.737810i \(0.735860\pi\)
\(744\) 17355.3 0.855212
\(745\) 0 0
\(746\) 17778.1 0.872521
\(747\) −8526.45 −0.417626
\(748\) −4103.22 −0.200573
\(749\) 16052.5 0.783104
\(750\) 0 0
\(751\) −13630.9 −0.662313 −0.331156 0.943576i \(-0.607439\pi\)
−0.331156 + 0.943576i \(0.607439\pi\)
\(752\) −9957.83 −0.482879
\(753\) −3961.52 −0.191721
\(754\) −996.997 −0.0481545
\(755\) 0 0
\(756\) 3640.09 0.175117
\(757\) −30623.7 −1.47033 −0.735164 0.677890i \(-0.762895\pi\)
−0.735164 + 0.677890i \(0.762895\pi\)
\(758\) 10174.1 0.487518
\(759\) −4785.09 −0.228837
\(760\) 0 0
\(761\) 1659.21 0.0790358 0.0395179 0.999219i \(-0.487418\pi\)
0.0395179 + 0.999219i \(0.487418\pi\)
\(762\) −10553.4 −0.501720
\(763\) −44149.1 −2.09476
\(764\) 3819.06 0.180849
\(765\) 0 0
\(766\) 4590.38 0.216524
\(767\) 7817.79 0.368037
\(768\) −8124.20 −0.381715
\(769\) 37688.8 1.76735 0.883676 0.468098i \(-0.155061\pi\)
0.883676 + 0.468098i \(0.155061\pi\)
\(770\) 0 0
\(771\) 6617.95 0.309131
\(772\) −14667.8 −0.683816
\(773\) −29767.0 −1.38505 −0.692526 0.721393i \(-0.743502\pi\)
−0.692526 + 0.721393i \(0.743502\pi\)
\(774\) −1044.96 −0.0485276
\(775\) 0 0
\(776\) 11796.0 0.545687
\(777\) 26467.0 1.22201
\(778\) −17448.2 −0.804047
\(779\) −24161.8 −1.11128
\(780\) 0 0
\(781\) −8240.89 −0.377570
\(782\) 10725.2 0.490450
\(783\) 783.000 0.0357371
\(784\) 3235.37 0.147384
\(785\) 0 0
\(786\) −9111.79 −0.413495
\(787\) −3381.10 −0.153142 −0.0765712 0.997064i \(-0.524397\pi\)
−0.0765712 + 0.997064i \(0.524397\pi\)
\(788\) −29985.9 −1.35559
\(789\) 19891.4 0.897533
\(790\) 0 0
\(791\) 24806.5 1.11507
\(792\) 2125.06 0.0953416
\(793\) 14934.2 0.668765
\(794\) 13441.3 0.600772
\(795\) 0 0
\(796\) −6684.64 −0.297652
\(797\) 40041.9 1.77962 0.889810 0.456331i \(-0.150837\pi\)
0.889810 + 0.456331i \(0.150837\pi\)
\(798\) −9623.01 −0.426881
\(799\) −28002.8 −1.23988
\(800\) 0 0
\(801\) −10908.4 −0.481186
\(802\) −649.325 −0.0285891
\(803\) −1497.27 −0.0658003
\(804\) 10278.1 0.450849
\(805\) 0 0
\(806\) −10071.5 −0.440140
\(807\) 14232.9 0.620846
\(808\) −6283.06 −0.273561
\(809\) −37278.9 −1.62010 −0.810048 0.586364i \(-0.800559\pi\)
−0.810048 + 0.586364i \(0.800559\pi\)
\(810\) 0 0
\(811\) 4707.22 0.203814 0.101907 0.994794i \(-0.467506\pi\)
0.101907 + 0.994794i \(0.467506\pi\)
\(812\) 3909.72 0.168971
\(813\) −16925.5 −0.730138
\(814\) 6631.09 0.285528
\(815\) 0 0
\(816\) 3473.05 0.148996
\(817\) −8368.01 −0.358335
\(818\) −17992.7 −0.769072
\(819\) −4922.11 −0.210003
\(820\) 0 0
\(821\) −36716.3 −1.56079 −0.780394 0.625289i \(-0.784981\pi\)
−0.780394 + 0.625289i \(0.784981\pi\)
\(822\) 4769.60 0.202383
\(823\) 24668.7 1.04483 0.522415 0.852691i \(-0.325031\pi\)
0.522415 + 0.852691i \(0.325031\pi\)
\(824\) 12433.1 0.525641
\(825\) 0 0
\(826\) 10120.8 0.426327
\(827\) −4400.44 −0.185028 −0.0925140 0.995711i \(-0.529490\pi\)
−0.0925140 + 0.995711i \(0.529490\pi\)
\(828\) 7220.97 0.303075
\(829\) −25354.0 −1.06222 −0.531111 0.847302i \(-0.678225\pi\)
−0.531111 + 0.847302i \(0.678225\pi\)
\(830\) 0 0
\(831\) 16293.1 0.680148
\(832\) 2453.88 0.102251
\(833\) 9098.29 0.378436
\(834\) −5626.66 −0.233615
\(835\) 0 0
\(836\) 7303.21 0.302137
\(837\) 7909.73 0.326643
\(838\) −5908.07 −0.243545
\(839\) 25121.5 1.03372 0.516860 0.856070i \(-0.327101\pi\)
0.516860 + 0.856070i \(0.327101\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 14034.9 0.574437
\(843\) 28176.0 1.15117
\(844\) 27995.9 1.14178
\(845\) 0 0
\(846\) 6223.97 0.252937
\(847\) 26630.5 1.08032
\(848\) 8453.21 0.342316
\(849\) 19753.9 0.798530
\(850\) 0 0
\(851\) 52503.6 2.11492
\(852\) 12436.0 0.500058
\(853\) −26685.4 −1.07115 −0.535575 0.844488i \(-0.679905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(854\) 19333.6 0.774685
\(855\) 0 0
\(856\) −14141.9 −0.564672
\(857\) −3968.30 −0.158173 −0.0790866 0.996868i \(-0.525200\pi\)
−0.0790866 + 0.996868i \(0.525200\pi\)
\(858\) −1233.19 −0.0490682
\(859\) −8041.36 −0.319403 −0.159702 0.987165i \(-0.551053\pi\)
−0.159702 + 0.987165i \(0.551053\pi\)
\(860\) 0 0
\(861\) −15999.2 −0.633277
\(862\) 1265.41 0.0500001
\(863\) −20859.3 −0.822780 −0.411390 0.911459i \(-0.634957\pi\)
−0.411390 + 0.911459i \(0.634957\pi\)
\(864\) −5037.41 −0.198352
\(865\) 0 0
\(866\) −18425.3 −0.722998
\(867\) −4972.32 −0.194774
\(868\) 39495.3 1.54442
\(869\) −4268.06 −0.166610
\(870\) 0 0
\(871\) −13898.1 −0.540663
\(872\) 38894.3 1.51047
\(873\) 5376.06 0.208422
\(874\) −19089.5 −0.738801
\(875\) 0 0
\(876\) 2259.47 0.0871466
\(877\) 3538.07 0.136228 0.0681141 0.997678i \(-0.478302\pi\)
0.0681141 + 0.997678i \(0.478302\pi\)
\(878\) 91.1015 0.00350174
\(879\) 4173.39 0.160142
\(880\) 0 0
\(881\) 37143.5 1.42043 0.710213 0.703987i \(-0.248599\pi\)
0.710213 + 0.703987i \(0.248599\pi\)
\(882\) −2022.21 −0.0772012
\(883\) −37855.2 −1.44273 −0.721364 0.692556i \(-0.756485\pi\)
−0.721364 + 0.692556i \(0.756485\pi\)
\(884\) −8372.77 −0.318560
\(885\) 0 0
\(886\) 143.386 0.00543697
\(887\) −6236.28 −0.236070 −0.118035 0.993009i \(-0.537659\pi\)
−0.118035 + 0.993009i \(0.537659\pi\)
\(888\) −23316.8 −0.881150
\(889\) −55961.0 −2.11122
\(890\) 0 0
\(891\) 968.498 0.0364151
\(892\) −4522.57 −0.169761
\(893\) 49841.4 1.86772
\(894\) −11370.4 −0.425372
\(895\) 0 0
\(896\) −30280.0 −1.12900
\(897\) −9764.16 −0.363451
\(898\) −17750.3 −0.659616
\(899\) 8495.63 0.315178
\(900\) 0 0
\(901\) 23771.6 0.878963
\(902\) −4008.46 −0.147968
\(903\) −5541.04 −0.204202
\(904\) −21854.0 −0.804041
\(905\) 0 0
\(906\) 7543.08 0.276603
\(907\) 13383.7 0.489965 0.244982 0.969528i \(-0.421218\pi\)
0.244982 + 0.969528i \(0.421218\pi\)
\(908\) −6475.14 −0.236657
\(909\) −2863.52 −0.104485
\(910\) 0 0
\(911\) 31847.2 1.15823 0.579114 0.815247i \(-0.303399\pi\)
0.579114 + 0.815247i \(0.303399\pi\)
\(912\) −6181.59 −0.224444
\(913\) −11327.6 −0.410613
\(914\) 6474.82 0.234319
\(915\) 0 0
\(916\) 18337.7 0.661459
\(917\) −48316.5 −1.73997
\(918\) −2170.77 −0.0780459
\(919\) −41399.0 −1.48599 −0.742996 0.669296i \(-0.766596\pi\)
−0.742996 + 0.669296i \(0.766596\pi\)
\(920\) 0 0
\(921\) 15083.5 0.539651
\(922\) −5391.50 −0.192581
\(923\) −16815.9 −0.599676
\(924\) 4835.96 0.172177
\(925\) 0 0
\(926\) 20277.6 0.719614
\(927\) 5666.41 0.200765
\(928\) −5410.55 −0.191390
\(929\) −36789.2 −1.29926 −0.649632 0.760249i \(-0.725077\pi\)
−0.649632 + 0.760249i \(0.725077\pi\)
\(930\) 0 0
\(931\) −16193.8 −0.570065
\(932\) 121.648 0.00427543
\(933\) 2819.96 0.0989512
\(934\) −16557.0 −0.580045
\(935\) 0 0
\(936\) 4336.26 0.151426
\(937\) −24811.5 −0.865055 −0.432528 0.901621i \(-0.642378\pi\)
−0.432528 + 0.901621i \(0.642378\pi\)
\(938\) −17992.1 −0.626295
\(939\) 27084.0 0.941272
\(940\) 0 0
\(941\) −24449.4 −0.847002 −0.423501 0.905896i \(-0.639199\pi\)
−0.423501 + 0.905896i \(0.639199\pi\)
\(942\) −4162.34 −0.143966
\(943\) −31738.2 −1.09601
\(944\) 6501.33 0.224153
\(945\) 0 0
\(946\) −1388.26 −0.0477127
\(947\) 30170.8 1.03529 0.517644 0.855596i \(-0.326809\pi\)
0.517644 + 0.855596i \(0.326809\pi\)
\(948\) 6440.74 0.220660
\(949\) −3055.25 −0.104507
\(950\) 0 0
\(951\) 7384.28 0.251789
\(952\) −25256.7 −0.859848
\(953\) −35385.1 −1.20277 −0.601383 0.798961i \(-0.705383\pi\)
−0.601383 + 0.798961i \(0.705383\pi\)
\(954\) −5283.54 −0.179309
\(955\) 0 0
\(956\) −1851.82 −0.0626485
\(957\) 1040.24 0.0351370
\(958\) 3411.04 0.115037
\(959\) 25291.4 0.851620
\(960\) 0 0
\(961\) 56030.4 1.88078
\(962\) 13531.0 0.453489
\(963\) −6445.18 −0.215673
\(964\) −27248.2 −0.910380
\(965\) 0 0
\(966\) −12640.5 −0.421015
\(967\) −4813.01 −0.160058 −0.0800289 0.996793i \(-0.525501\pi\)
−0.0800289 + 0.996793i \(0.525501\pi\)
\(968\) −23460.9 −0.778988
\(969\) −17383.5 −0.576303
\(970\) 0 0
\(971\) 6312.62 0.208632 0.104316 0.994544i \(-0.466735\pi\)
0.104316 + 0.994544i \(0.466735\pi\)
\(972\) −1461.52 −0.0482286
\(973\) −29836.1 −0.983043
\(974\) 7887.16 0.259467
\(975\) 0 0
\(976\) 12419.4 0.407312
\(977\) −49628.0 −1.62512 −0.812560 0.582878i \(-0.801927\pi\)
−0.812560 + 0.582878i \(0.801927\pi\)
\(978\) −2731.96 −0.0893234
\(979\) −14492.2 −0.473106
\(980\) 0 0
\(981\) 17726.2 0.576914
\(982\) −10973.6 −0.356601
\(983\) 41462.3 1.34531 0.672657 0.739955i \(-0.265153\pi\)
0.672657 + 0.739955i \(0.265153\pi\)
\(984\) 14094.9 0.456636
\(985\) 0 0
\(986\) −2331.57 −0.0753066
\(987\) 33003.4 1.06435
\(988\) 14902.5 0.479870
\(989\) −10992.0 −0.353411
\(990\) 0 0
\(991\) −36195.5 −1.16023 −0.580114 0.814535i \(-0.696992\pi\)
−0.580114 + 0.814535i \(0.696992\pi\)
\(992\) −54656.4 −1.74934
\(993\) 13052.8 0.417137
\(994\) −21769.5 −0.694653
\(995\) 0 0
\(996\) 17094.0 0.543821
\(997\) −8511.65 −0.270378 −0.135189 0.990820i \(-0.543164\pi\)
−0.135189 + 0.990820i \(0.543164\pi\)
\(998\) −1068.48 −0.0338899
\(999\) −10626.7 −0.336550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.3 7
5.4 even 2 435.4.a.i.1.5 7
15.14 odd 2 1305.4.a.n.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.5 7 5.4 even 2
1305.4.a.n.1.3 7 15.14 odd 2
2175.4.a.n.1.3 7 1.1 even 1 trivial