Properties

Label 2175.4.a.n.1.2
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.58378\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.58378 q^{2} +3.00000 q^{3} -1.32408 q^{4} -7.75134 q^{6} +26.6398 q^{7} +24.0914 q^{8} +9.00000 q^{9} -8.03338 q^{11} -3.97225 q^{12} -49.9367 q^{13} -68.8314 q^{14} -51.6541 q^{16} -116.617 q^{17} -23.2540 q^{18} +22.6617 q^{19} +79.9195 q^{21} +20.7565 q^{22} -38.2616 q^{23} +72.2741 q^{24} +129.025 q^{26} +27.0000 q^{27} -35.2733 q^{28} +29.0000 q^{29} -8.82528 q^{31} -59.2681 q^{32} -24.1002 q^{33} +301.312 q^{34} -11.9167 q^{36} -301.022 q^{37} -58.5529 q^{38} -149.810 q^{39} +305.401 q^{41} -206.494 q^{42} -275.872 q^{43} +10.6369 q^{44} +98.8596 q^{46} +479.282 q^{47} -154.962 q^{48} +366.680 q^{49} -349.850 q^{51} +66.1204 q^{52} +496.683 q^{53} -69.7621 q^{54} +641.790 q^{56} +67.9852 q^{57} -74.9296 q^{58} -563.505 q^{59} +485.346 q^{61} +22.8026 q^{62} +239.758 q^{63} +566.369 q^{64} +62.2695 q^{66} -217.176 q^{67} +154.410 q^{68} -114.785 q^{69} +628.023 q^{71} +216.822 q^{72} +682.502 q^{73} +777.773 q^{74} -30.0060 q^{76} -214.008 q^{77} +387.076 q^{78} +1159.26 q^{79} +81.0000 q^{81} -789.089 q^{82} -668.594 q^{83} -105.820 q^{84} +712.792 q^{86} +87.0000 q^{87} -193.535 q^{88} +798.300 q^{89} -1330.31 q^{91} +50.6616 q^{92} -26.4758 q^{93} -1238.36 q^{94} -177.804 q^{96} -867.116 q^{97} -947.421 q^{98} -72.3005 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58378 −0.913504 −0.456752 0.889594i \(-0.650987\pi\)
−0.456752 + 0.889594i \(0.650987\pi\)
\(3\) 3.00000 0.577350
\(4\) −1.32408 −0.165510
\(5\) 0 0
\(6\) −7.75134 −0.527412
\(7\) 26.6398 1.43842 0.719208 0.694795i \(-0.244505\pi\)
0.719208 + 0.694795i \(0.244505\pi\)
\(8\) 24.0914 1.06470
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −8.03338 −0.220196 −0.110098 0.993921i \(-0.535116\pi\)
−0.110098 + 0.993921i \(0.535116\pi\)
\(12\) −3.97225 −0.0955574
\(13\) −49.9367 −1.06538 −0.532691 0.846310i \(-0.678819\pi\)
−0.532691 + 0.846310i \(0.678819\pi\)
\(14\) −68.8314 −1.31400
\(15\) 0 0
\(16\) −51.6541 −0.807096
\(17\) −116.617 −1.66375 −0.831874 0.554964i \(-0.812732\pi\)
−0.831874 + 0.554964i \(0.812732\pi\)
\(18\) −23.2540 −0.304501
\(19\) 22.6617 0.273629 0.136815 0.990597i \(-0.456314\pi\)
0.136815 + 0.990597i \(0.456314\pi\)
\(20\) 0 0
\(21\) 79.9195 0.830470
\(22\) 20.7565 0.201150
\(23\) −38.2616 −0.346874 −0.173437 0.984845i \(-0.555487\pi\)
−0.173437 + 0.984845i \(0.555487\pi\)
\(24\) 72.2741 0.614704
\(25\) 0 0
\(26\) 129.025 0.973230
\(27\) 27.0000 0.192450
\(28\) −35.2733 −0.238073
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −8.82528 −0.0511312 −0.0255656 0.999673i \(-0.508139\pi\)
−0.0255656 + 0.999673i \(0.508139\pi\)
\(32\) −59.2681 −0.327413
\(33\) −24.1002 −0.127130
\(34\) 301.312 1.51984
\(35\) 0 0
\(36\) −11.9167 −0.0551701
\(37\) −301.022 −1.33750 −0.668752 0.743486i \(-0.733171\pi\)
−0.668752 + 0.743486i \(0.733171\pi\)
\(38\) −58.5529 −0.249962
\(39\) −149.810 −0.615098
\(40\) 0 0
\(41\) 305.401 1.16331 0.581654 0.813436i \(-0.302406\pi\)
0.581654 + 0.813436i \(0.302406\pi\)
\(42\) −206.494 −0.758637
\(43\) −275.872 −0.978374 −0.489187 0.872179i \(-0.662706\pi\)
−0.489187 + 0.872179i \(0.662706\pi\)
\(44\) 10.6369 0.0364447
\(45\) 0 0
\(46\) 98.8596 0.316871
\(47\) 479.282 1.48746 0.743729 0.668481i \(-0.233055\pi\)
0.743729 + 0.668481i \(0.233055\pi\)
\(48\) −154.962 −0.465977
\(49\) 366.680 1.06904
\(50\) 0 0
\(51\) −349.850 −0.960566
\(52\) 66.1204 0.176332
\(53\) 496.683 1.28726 0.643629 0.765338i \(-0.277428\pi\)
0.643629 + 0.765338i \(0.277428\pi\)
\(54\) −69.7621 −0.175804
\(55\) 0 0
\(56\) 641.790 1.53148
\(57\) 67.9852 0.157980
\(58\) −74.9296 −0.169633
\(59\) −563.505 −1.24342 −0.621712 0.783246i \(-0.713563\pi\)
−0.621712 + 0.783246i \(0.713563\pi\)
\(60\) 0 0
\(61\) 485.346 1.01872 0.509362 0.860552i \(-0.329881\pi\)
0.509362 + 0.860552i \(0.329881\pi\)
\(62\) 22.8026 0.0467085
\(63\) 239.758 0.479472
\(64\) 566.369 1.10619
\(65\) 0 0
\(66\) 62.2695 0.116134
\(67\) −217.176 −0.396004 −0.198002 0.980202i \(-0.563445\pi\)
−0.198002 + 0.980202i \(0.563445\pi\)
\(68\) 154.410 0.275368
\(69\) −114.785 −0.200268
\(70\) 0 0
\(71\) 628.023 1.04975 0.524877 0.851178i \(-0.324111\pi\)
0.524877 + 0.851178i \(0.324111\pi\)
\(72\) 216.822 0.354899
\(73\) 682.502 1.09426 0.547128 0.837049i \(-0.315721\pi\)
0.547128 + 0.837049i \(0.315721\pi\)
\(74\) 777.773 1.22182
\(75\) 0 0
\(76\) −30.0060 −0.0452885
\(77\) −214.008 −0.316733
\(78\) 387.076 0.561895
\(79\) 1159.26 1.65097 0.825484 0.564425i \(-0.190902\pi\)
0.825484 + 0.564425i \(0.190902\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −789.089 −1.06269
\(83\) −668.594 −0.884189 −0.442095 0.896968i \(-0.645764\pi\)
−0.442095 + 0.896968i \(0.645764\pi\)
\(84\) −105.820 −0.137451
\(85\) 0 0
\(86\) 712.792 0.893748
\(87\) 87.0000 0.107211
\(88\) −193.535 −0.234442
\(89\) 798.300 0.950782 0.475391 0.879775i \(-0.342307\pi\)
0.475391 + 0.879775i \(0.342307\pi\)
\(90\) 0 0
\(91\) −1330.31 −1.53246
\(92\) 50.6616 0.0574112
\(93\) −26.4758 −0.0295206
\(94\) −1238.36 −1.35880
\(95\) 0 0
\(96\) −177.804 −0.189032
\(97\) −867.116 −0.907653 −0.453826 0.891090i \(-0.649941\pi\)
−0.453826 + 0.891090i \(0.649941\pi\)
\(98\) −947.421 −0.976571
\(99\) −72.3005 −0.0733987
\(100\) 0 0
\(101\) 1270.57 1.25174 0.625872 0.779926i \(-0.284743\pi\)
0.625872 + 0.779926i \(0.284743\pi\)
\(102\) 903.936 0.877481
\(103\) 884.596 0.846232 0.423116 0.906076i \(-0.360936\pi\)
0.423116 + 0.906076i \(0.360936\pi\)
\(104\) −1203.04 −1.13431
\(105\) 0 0
\(106\) −1283.32 −1.17591
\(107\) −925.937 −0.836577 −0.418288 0.908314i \(-0.637370\pi\)
−0.418288 + 0.908314i \(0.637370\pi\)
\(108\) −35.7502 −0.0318525
\(109\) 73.4989 0.0645864 0.0322932 0.999478i \(-0.489719\pi\)
0.0322932 + 0.999478i \(0.489719\pi\)
\(110\) 0 0
\(111\) −903.065 −0.772208
\(112\) −1376.06 −1.16094
\(113\) 2068.68 1.72217 0.861086 0.508459i \(-0.169785\pi\)
0.861086 + 0.508459i \(0.169785\pi\)
\(114\) −175.659 −0.144315
\(115\) 0 0
\(116\) −38.3984 −0.0307345
\(117\) −449.431 −0.355127
\(118\) 1455.97 1.13587
\(119\) −3106.65 −2.39316
\(120\) 0 0
\(121\) −1266.46 −0.951514
\(122\) −1254.03 −0.930609
\(123\) 916.204 0.671637
\(124\) 11.6854 0.00846274
\(125\) 0 0
\(126\) −619.483 −0.437999
\(127\) 708.738 0.495199 0.247600 0.968862i \(-0.420358\pi\)
0.247600 + 0.968862i \(0.420358\pi\)
\(128\) −989.228 −0.683095
\(129\) −827.616 −0.564864
\(130\) 0 0
\(131\) −2033.80 −1.35644 −0.678220 0.734859i \(-0.737248\pi\)
−0.678220 + 0.734859i \(0.737248\pi\)
\(132\) 31.9106 0.0210414
\(133\) 603.705 0.393593
\(134\) 561.135 0.361752
\(135\) 0 0
\(136\) −2809.46 −1.77139
\(137\) −2635.96 −1.64383 −0.821917 0.569608i \(-0.807095\pi\)
−0.821917 + 0.569608i \(0.807095\pi\)
\(138\) 296.579 0.182945
\(139\) −1284.05 −0.783539 −0.391769 0.920063i \(-0.628137\pi\)
−0.391769 + 0.920063i \(0.628137\pi\)
\(140\) 0 0
\(141\) 1437.85 0.858784
\(142\) −1622.67 −0.958955
\(143\) 401.161 0.234593
\(144\) −464.887 −0.269032
\(145\) 0 0
\(146\) −1763.43 −0.999608
\(147\) 1100.04 0.617210
\(148\) 398.578 0.221371
\(149\) 261.843 0.143966 0.0719832 0.997406i \(-0.477067\pi\)
0.0719832 + 0.997406i \(0.477067\pi\)
\(150\) 0 0
\(151\) 2760.20 1.48756 0.743781 0.668424i \(-0.233031\pi\)
0.743781 + 0.668424i \(0.233031\pi\)
\(152\) 545.952 0.291333
\(153\) −1049.55 −0.554583
\(154\) 552.949 0.289337
\(155\) 0 0
\(156\) 198.361 0.101805
\(157\) −1922.00 −0.977019 −0.488509 0.872559i \(-0.662459\pi\)
−0.488509 + 0.872559i \(0.662459\pi\)
\(158\) −2995.26 −1.50817
\(159\) 1490.05 0.743198
\(160\) 0 0
\(161\) −1019.28 −0.498949
\(162\) −209.286 −0.101500
\(163\) 2784.04 1.33781 0.668904 0.743349i \(-0.266764\pi\)
0.668904 + 0.743349i \(0.266764\pi\)
\(164\) −404.376 −0.192540
\(165\) 0 0
\(166\) 1727.50 0.807711
\(167\) 1669.58 0.773627 0.386814 0.922158i \(-0.373576\pi\)
0.386814 + 0.922158i \(0.373576\pi\)
\(168\) 1925.37 0.884200
\(169\) 296.677 0.135037
\(170\) 0 0
\(171\) 203.956 0.0912098
\(172\) 365.277 0.161931
\(173\) 3488.62 1.53315 0.766574 0.642156i \(-0.221960\pi\)
0.766574 + 0.642156i \(0.221960\pi\)
\(174\) −224.789 −0.0979379
\(175\) 0 0
\(176\) 414.958 0.177719
\(177\) −1690.51 −0.717892
\(178\) −2062.63 −0.868543
\(179\) 4016.48 1.67713 0.838564 0.544803i \(-0.183396\pi\)
0.838564 + 0.544803i \(0.183396\pi\)
\(180\) 0 0
\(181\) −2275.81 −0.934583 −0.467291 0.884103i \(-0.654770\pi\)
−0.467291 + 0.884103i \(0.654770\pi\)
\(182\) 3437.22 1.39991
\(183\) 1456.04 0.588161
\(184\) −921.775 −0.369316
\(185\) 0 0
\(186\) 68.4077 0.0269672
\(187\) 936.827 0.366351
\(188\) −634.610 −0.246190
\(189\) 719.275 0.276823
\(190\) 0 0
\(191\) 3204.35 1.21392 0.606961 0.794732i \(-0.292389\pi\)
0.606961 + 0.794732i \(0.292389\pi\)
\(192\) 1699.11 0.638659
\(193\) 71.0310 0.0264918 0.0132459 0.999912i \(-0.495784\pi\)
0.0132459 + 0.999912i \(0.495784\pi\)
\(194\) 2240.44 0.829144
\(195\) 0 0
\(196\) −485.515 −0.176937
\(197\) −1260.52 −0.455881 −0.227941 0.973675i \(-0.573199\pi\)
−0.227941 + 0.973675i \(0.573199\pi\)
\(198\) 186.808 0.0670500
\(199\) 2365.21 0.842539 0.421270 0.906935i \(-0.361585\pi\)
0.421270 + 0.906935i \(0.361585\pi\)
\(200\) 0 0
\(201\) −651.529 −0.228633
\(202\) −3282.87 −1.14347
\(203\) 772.555 0.267107
\(204\) 463.231 0.158984
\(205\) 0 0
\(206\) −2285.60 −0.773036
\(207\) −344.355 −0.115625
\(208\) 2579.44 0.859865
\(209\) −182.050 −0.0602521
\(210\) 0 0
\(211\) −1604.41 −0.523468 −0.261734 0.965140i \(-0.584294\pi\)
−0.261734 + 0.965140i \(0.584294\pi\)
\(212\) −657.649 −0.213054
\(213\) 1884.07 0.606076
\(214\) 2392.42 0.764216
\(215\) 0 0
\(216\) 650.467 0.204901
\(217\) −235.104 −0.0735479
\(218\) −189.905 −0.0589999
\(219\) 2047.50 0.631770
\(220\) 0 0
\(221\) 5823.46 1.77253
\(222\) 2333.32 0.705415
\(223\) 2789.26 0.837591 0.418795 0.908081i \(-0.362452\pi\)
0.418795 + 0.908081i \(0.362452\pi\)
\(224\) −1578.89 −0.470956
\(225\) 0 0
\(226\) −5345.02 −1.57321
\(227\) −3091.67 −0.903971 −0.451985 0.892025i \(-0.649284\pi\)
−0.451985 + 0.892025i \(0.649284\pi\)
\(228\) −90.0180 −0.0261473
\(229\) −6479.99 −1.86991 −0.934955 0.354766i \(-0.884561\pi\)
−0.934955 + 0.354766i \(0.884561\pi\)
\(230\) 0 0
\(231\) −642.024 −0.182866
\(232\) 698.650 0.197710
\(233\) 3647.01 1.02542 0.512712 0.858561i \(-0.328641\pi\)
0.512712 + 0.858561i \(0.328641\pi\)
\(234\) 1161.23 0.324410
\(235\) 0 0
\(236\) 746.127 0.205800
\(237\) 3477.77 0.953187
\(238\) 8026.90 2.18616
\(239\) 3863.00 1.04551 0.522754 0.852483i \(-0.324905\pi\)
0.522754 + 0.852483i \(0.324905\pi\)
\(240\) 0 0
\(241\) 6207.76 1.65924 0.829620 0.558329i \(-0.188557\pi\)
0.829620 + 0.558329i \(0.188557\pi\)
\(242\) 3272.27 0.869212
\(243\) 243.000 0.0641500
\(244\) −642.638 −0.168609
\(245\) 0 0
\(246\) −2367.27 −0.613543
\(247\) −1131.65 −0.291520
\(248\) −212.613 −0.0544393
\(249\) −2005.78 −0.510487
\(250\) 0 0
\(251\) 4942.68 1.24294 0.621472 0.783436i \(-0.286535\pi\)
0.621472 + 0.783436i \(0.286535\pi\)
\(252\) −317.460 −0.0793575
\(253\) 307.370 0.0763803
\(254\) −1831.22 −0.452367
\(255\) 0 0
\(256\) −1975.00 −0.482179
\(257\) −3343.25 −0.811465 −0.405732 0.913992i \(-0.632984\pi\)
−0.405732 + 0.913992i \(0.632984\pi\)
\(258\) 2138.38 0.516006
\(259\) −8019.16 −1.92389
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) 5254.88 1.23911
\(263\) −1053.61 −0.247027 −0.123514 0.992343i \(-0.539416\pi\)
−0.123514 + 0.992343i \(0.539416\pi\)
\(264\) −580.606 −0.135355
\(265\) 0 0
\(266\) −1559.84 −0.359549
\(267\) 2394.90 0.548934
\(268\) 287.559 0.0655428
\(269\) 2348.05 0.532205 0.266103 0.963945i \(-0.414264\pi\)
0.266103 + 0.963945i \(0.414264\pi\)
\(270\) 0 0
\(271\) 4230.65 0.948316 0.474158 0.880440i \(-0.342753\pi\)
0.474158 + 0.880440i \(0.342753\pi\)
\(272\) 6023.74 1.34280
\(273\) −3990.92 −0.884767
\(274\) 6810.74 1.50165
\(275\) 0 0
\(276\) 151.985 0.0331464
\(277\) −2146.72 −0.465647 −0.232823 0.972519i \(-0.574796\pi\)
−0.232823 + 0.972519i \(0.574796\pi\)
\(278\) 3317.71 0.715766
\(279\) −79.4275 −0.0170437
\(280\) 0 0
\(281\) −1445.80 −0.306937 −0.153469 0.988154i \(-0.549044\pi\)
−0.153469 + 0.988154i \(0.549044\pi\)
\(282\) −3715.08 −0.784503
\(283\) −3775.85 −0.793113 −0.396557 0.918010i \(-0.629795\pi\)
−0.396557 + 0.918010i \(0.629795\pi\)
\(284\) −831.554 −0.173745
\(285\) 0 0
\(286\) −1036.51 −0.214301
\(287\) 8135.83 1.67332
\(288\) −533.413 −0.109138
\(289\) 8686.48 1.76806
\(290\) 0 0
\(291\) −2601.35 −0.524033
\(292\) −903.688 −0.181111
\(293\) −6451.38 −1.28633 −0.643164 0.765729i \(-0.722378\pi\)
−0.643164 + 0.765729i \(0.722378\pi\)
\(294\) −2842.26 −0.563824
\(295\) 0 0
\(296\) −7252.02 −1.42404
\(297\) −216.901 −0.0423767
\(298\) −676.544 −0.131514
\(299\) 1910.66 0.369553
\(300\) 0 0
\(301\) −7349.18 −1.40731
\(302\) −7131.74 −1.35889
\(303\) 3811.70 0.722695
\(304\) −1170.57 −0.220845
\(305\) 0 0
\(306\) 2711.81 0.506614
\(307\) −4197.07 −0.780258 −0.390129 0.920760i \(-0.627570\pi\)
−0.390129 + 0.920760i \(0.627570\pi\)
\(308\) 283.364 0.0524227
\(309\) 2653.79 0.488572
\(310\) 0 0
\(311\) 6909.28 1.25977 0.629886 0.776687i \(-0.283102\pi\)
0.629886 + 0.776687i \(0.283102\pi\)
\(312\) −3609.13 −0.654894
\(313\) −835.311 −0.150845 −0.0754226 0.997152i \(-0.524031\pi\)
−0.0754226 + 0.997152i \(0.524031\pi\)
\(314\) 4966.01 0.892510
\(315\) 0 0
\(316\) −1534.95 −0.273252
\(317\) 454.133 0.0804626 0.0402313 0.999190i \(-0.487191\pi\)
0.0402313 + 0.999190i \(0.487191\pi\)
\(318\) −3849.96 −0.678915
\(319\) −232.968 −0.0408894
\(320\) 0 0
\(321\) −2777.81 −0.482998
\(322\) 2633.60 0.455792
\(323\) −2642.74 −0.455250
\(324\) −107.251 −0.0183900
\(325\) 0 0
\(326\) −7193.34 −1.22209
\(327\) 220.497 0.0372890
\(328\) 7357.53 1.23857
\(329\) 12768.0 2.13958
\(330\) 0 0
\(331\) −6368.25 −1.05749 −0.528747 0.848779i \(-0.677338\pi\)
−0.528747 + 0.848779i \(0.677338\pi\)
\(332\) 885.274 0.146343
\(333\) −2709.19 −0.445835
\(334\) −4313.82 −0.706712
\(335\) 0 0
\(336\) −4128.17 −0.670269
\(337\) 8096.70 1.30877 0.654384 0.756162i \(-0.272928\pi\)
0.654384 + 0.756162i \(0.272928\pi\)
\(338\) −766.547 −0.123357
\(339\) 6206.05 0.994297
\(340\) 0 0
\(341\) 70.8968 0.0112589
\(342\) −526.976 −0.0833205
\(343\) 630.841 0.0993067
\(344\) −6646.13 −1.04167
\(345\) 0 0
\(346\) −9013.82 −1.40054
\(347\) 2438.20 0.377202 0.188601 0.982054i \(-0.439605\pi\)
0.188601 + 0.982054i \(0.439605\pi\)
\(348\) −115.195 −0.0177446
\(349\) −777.284 −0.119218 −0.0596090 0.998222i \(-0.518985\pi\)
−0.0596090 + 0.998222i \(0.518985\pi\)
\(350\) 0 0
\(351\) −1348.29 −0.205033
\(352\) 476.123 0.0720950
\(353\) 9649.81 1.45498 0.727489 0.686119i \(-0.240687\pi\)
0.727489 + 0.686119i \(0.240687\pi\)
\(354\) 4367.92 0.655797
\(355\) 0 0
\(356\) −1057.02 −0.157364
\(357\) −9319.95 −1.38169
\(358\) −10377.7 −1.53206
\(359\) 9657.56 1.41980 0.709898 0.704304i \(-0.248741\pi\)
0.709898 + 0.704304i \(0.248741\pi\)
\(360\) 0 0
\(361\) −6345.45 −0.925127
\(362\) 5880.19 0.853745
\(363\) −3799.39 −0.549357
\(364\) 1761.43 0.253638
\(365\) 0 0
\(366\) −3762.08 −0.537287
\(367\) 9173.93 1.30484 0.652419 0.757859i \(-0.273754\pi\)
0.652419 + 0.757859i \(0.273754\pi\)
\(368\) 1976.37 0.279961
\(369\) 2748.61 0.387770
\(370\) 0 0
\(371\) 13231.5 1.85161
\(372\) 35.0562 0.00488597
\(373\) −2899.69 −0.402521 −0.201261 0.979538i \(-0.564504\pi\)
−0.201261 + 0.979538i \(0.564504\pi\)
\(374\) −2420.56 −0.334663
\(375\) 0 0
\(376\) 11546.6 1.58369
\(377\) −1448.17 −0.197836
\(378\) −1858.45 −0.252879
\(379\) −5819.59 −0.788739 −0.394370 0.918952i \(-0.629037\pi\)
−0.394370 + 0.918952i \(0.629037\pi\)
\(380\) 0 0
\(381\) 2126.21 0.285903
\(382\) −8279.34 −1.10892
\(383\) 5805.80 0.774576 0.387288 0.921959i \(-0.373412\pi\)
0.387288 + 0.921959i \(0.373412\pi\)
\(384\) −2967.68 −0.394385
\(385\) 0 0
\(386\) −183.528 −0.0242004
\(387\) −2482.85 −0.326125
\(388\) 1148.13 0.150226
\(389\) 7690.82 1.00242 0.501208 0.865327i \(-0.332889\pi\)
0.501208 + 0.865327i \(0.332889\pi\)
\(390\) 0 0
\(391\) 4461.95 0.577111
\(392\) 8833.83 1.13820
\(393\) −6101.39 −0.783141
\(394\) 3256.92 0.416449
\(395\) 0 0
\(396\) 95.7318 0.0121482
\(397\) 1638.24 0.207105 0.103553 0.994624i \(-0.466979\pi\)
0.103553 + 0.994624i \(0.466979\pi\)
\(398\) −6111.18 −0.769663
\(399\) 1811.11 0.227241
\(400\) 0 0
\(401\) 3780.89 0.470845 0.235422 0.971893i \(-0.424353\pi\)
0.235422 + 0.971893i \(0.424353\pi\)
\(402\) 1683.41 0.208857
\(403\) 440.705 0.0544742
\(404\) −1682.34 −0.207177
\(405\) 0 0
\(406\) −1996.11 −0.244003
\(407\) 2418.22 0.294513
\(408\) −8428.38 −1.02271
\(409\) −330.980 −0.0400145 −0.0200073 0.999800i \(-0.506369\pi\)
−0.0200073 + 0.999800i \(0.506369\pi\)
\(410\) 0 0
\(411\) −7907.88 −0.949068
\(412\) −1171.28 −0.140060
\(413\) −15011.7 −1.78856
\(414\) 889.736 0.105624
\(415\) 0 0
\(416\) 2959.65 0.348820
\(417\) −3852.16 −0.452376
\(418\) 470.378 0.0550405
\(419\) 9913.43 1.15585 0.577927 0.816089i \(-0.303862\pi\)
0.577927 + 0.816089i \(0.303862\pi\)
\(420\) 0 0
\(421\) 6286.56 0.727763 0.363881 0.931445i \(-0.381451\pi\)
0.363881 + 0.931445i \(0.381451\pi\)
\(422\) 4145.43 0.478190
\(423\) 4313.54 0.495819
\(424\) 11965.8 1.37054
\(425\) 0 0
\(426\) −4868.02 −0.553653
\(427\) 12929.5 1.46535
\(428\) 1226.02 0.138462
\(429\) 1203.48 0.135442
\(430\) 0 0
\(431\) 5798.56 0.648044 0.324022 0.946050i \(-0.394965\pi\)
0.324022 + 0.946050i \(0.394965\pi\)
\(432\) −1394.66 −0.155326
\(433\) −11476.3 −1.27371 −0.636856 0.770983i \(-0.719765\pi\)
−0.636856 + 0.770983i \(0.719765\pi\)
\(434\) 607.457 0.0671863
\(435\) 0 0
\(436\) −97.3186 −0.0106897
\(437\) −867.075 −0.0949149
\(438\) −5290.30 −0.577124
\(439\) 14429.5 1.56875 0.784377 0.620285i \(-0.212983\pi\)
0.784377 + 0.620285i \(0.212983\pi\)
\(440\) 0 0
\(441\) 3300.12 0.356346
\(442\) −15046.5 −1.61921
\(443\) 11892.0 1.27541 0.637703 0.770283i \(-0.279885\pi\)
0.637703 + 0.770283i \(0.279885\pi\)
\(444\) 1195.73 0.127808
\(445\) 0 0
\(446\) −7206.84 −0.765143
\(447\) 785.528 0.0831190
\(448\) 15088.0 1.59116
\(449\) −9881.53 −1.03862 −0.519308 0.854587i \(-0.673810\pi\)
−0.519308 + 0.854587i \(0.673810\pi\)
\(450\) 0 0
\(451\) −2453.40 −0.256156
\(452\) −2739.11 −0.285037
\(453\) 8280.59 0.858844
\(454\) 7988.20 0.825781
\(455\) 0 0
\(456\) 1637.86 0.168201
\(457\) −11641.2 −1.19158 −0.595792 0.803139i \(-0.703162\pi\)
−0.595792 + 0.803139i \(0.703162\pi\)
\(458\) 16742.9 1.70817
\(459\) −3148.65 −0.320189
\(460\) 0 0
\(461\) −8045.29 −0.812812 −0.406406 0.913693i \(-0.633218\pi\)
−0.406406 + 0.913693i \(0.633218\pi\)
\(462\) 1658.85 0.167049
\(463\) 4340.54 0.435684 0.217842 0.975984i \(-0.430098\pi\)
0.217842 + 0.975984i \(0.430098\pi\)
\(464\) −1497.97 −0.149874
\(465\) 0 0
\(466\) −9423.08 −0.936729
\(467\) 3461.65 0.343011 0.171506 0.985183i \(-0.445137\pi\)
0.171506 + 0.985183i \(0.445137\pi\)
\(468\) 595.083 0.0587772
\(469\) −5785.54 −0.569619
\(470\) 0 0
\(471\) −5765.99 −0.564082
\(472\) −13575.6 −1.32387
\(473\) 2216.18 0.215434
\(474\) −8985.79 −0.870740
\(475\) 0 0
\(476\) 4113.46 0.396093
\(477\) 4470.14 0.429086
\(478\) −9981.14 −0.955076
\(479\) 6284.62 0.599481 0.299741 0.954021i \(-0.403100\pi\)
0.299741 + 0.954021i \(0.403100\pi\)
\(480\) 0 0
\(481\) 15032.0 1.42495
\(482\) −16039.5 −1.51572
\(483\) −3057.85 −0.288068
\(484\) 1676.90 0.157485
\(485\) 0 0
\(486\) −627.858 −0.0586013
\(487\) 1809.63 0.168382 0.0841912 0.996450i \(-0.473169\pi\)
0.0841912 + 0.996450i \(0.473169\pi\)
\(488\) 11692.7 1.08463
\(489\) 8352.12 0.772384
\(490\) 0 0
\(491\) 9550.28 0.877796 0.438898 0.898537i \(-0.355369\pi\)
0.438898 + 0.898537i \(0.355369\pi\)
\(492\) −1213.13 −0.111163
\(493\) −3381.89 −0.308950
\(494\) 2923.94 0.266304
\(495\) 0 0
\(496\) 455.862 0.0412678
\(497\) 16730.4 1.50998
\(498\) 5182.50 0.466332
\(499\) −13672.9 −1.22662 −0.613309 0.789843i \(-0.710162\pi\)
−0.613309 + 0.789843i \(0.710162\pi\)
\(500\) 0 0
\(501\) 5008.73 0.446654
\(502\) −12770.8 −1.13544
\(503\) −13406.0 −1.18836 −0.594181 0.804332i \(-0.702524\pi\)
−0.594181 + 0.804332i \(0.702524\pi\)
\(504\) 5776.11 0.510493
\(505\) 0 0
\(506\) −794.177 −0.0697737
\(507\) 890.030 0.0779638
\(508\) −938.428 −0.0819606
\(509\) −13537.0 −1.17882 −0.589409 0.807835i \(-0.700639\pi\)
−0.589409 + 0.807835i \(0.700639\pi\)
\(510\) 0 0
\(511\) 18181.7 1.57400
\(512\) 13016.8 1.12357
\(513\) 611.867 0.0526600
\(514\) 8638.23 0.741276
\(515\) 0 0
\(516\) 1095.83 0.0934909
\(517\) −3850.26 −0.327532
\(518\) 20719.8 1.75748
\(519\) 10465.9 0.885163
\(520\) 0 0
\(521\) −6612.84 −0.556073 −0.278036 0.960571i \(-0.589684\pi\)
−0.278036 + 0.960571i \(0.589684\pi\)
\(522\) −674.366 −0.0565445
\(523\) 11689.8 0.977363 0.488682 0.872462i \(-0.337478\pi\)
0.488682 + 0.872462i \(0.337478\pi\)
\(524\) 2692.91 0.224505
\(525\) 0 0
\(526\) 2722.29 0.225660
\(527\) 1029.18 0.0850694
\(528\) 1244.87 0.102606
\(529\) −10703.0 −0.879678
\(530\) 0 0
\(531\) −5071.54 −0.414475
\(532\) −799.355 −0.0651437
\(533\) −15250.7 −1.23937
\(534\) −6187.89 −0.501454
\(535\) 0 0
\(536\) −5232.07 −0.421625
\(537\) 12049.4 0.968290
\(538\) −6066.85 −0.486172
\(539\) −2945.68 −0.235398
\(540\) 0 0
\(541\) −170.114 −0.0135190 −0.00675951 0.999977i \(-0.502152\pi\)
−0.00675951 + 0.999977i \(0.502152\pi\)
\(542\) −10931.1 −0.866291
\(543\) −6827.42 −0.539582
\(544\) 6911.65 0.544733
\(545\) 0 0
\(546\) 10311.7 0.808238
\(547\) 6453.08 0.504413 0.252206 0.967673i \(-0.418844\pi\)
0.252206 + 0.967673i \(0.418844\pi\)
\(548\) 3490.23 0.272071
\(549\) 4368.11 0.339575
\(550\) 0 0
\(551\) 657.190 0.0508117
\(552\) −2765.33 −0.213225
\(553\) 30882.4 2.37478
\(554\) 5546.66 0.425370
\(555\) 0 0
\(556\) 1700.19 0.129684
\(557\) 12800.7 0.973759 0.486879 0.873469i \(-0.338135\pi\)
0.486879 + 0.873469i \(0.338135\pi\)
\(558\) 205.223 0.0155695
\(559\) 13776.1 1.04234
\(560\) 0 0
\(561\) 2810.48 0.211513
\(562\) 3735.63 0.280388
\(563\) −6454.48 −0.483169 −0.241584 0.970380i \(-0.577667\pi\)
−0.241584 + 0.970380i \(0.577667\pi\)
\(564\) −1903.83 −0.142138
\(565\) 0 0
\(566\) 9755.97 0.724512
\(567\) 2157.83 0.159824
\(568\) 15129.9 1.11767
\(569\) 2900.88 0.213728 0.106864 0.994274i \(-0.465919\pi\)
0.106864 + 0.994274i \(0.465919\pi\)
\(570\) 0 0
\(571\) −13437.3 −0.984823 −0.492411 0.870363i \(-0.663884\pi\)
−0.492411 + 0.870363i \(0.663884\pi\)
\(572\) −531.170 −0.0388275
\(573\) 9613.06 0.700858
\(574\) −21021.2 −1.52859
\(575\) 0 0
\(576\) 5097.32 0.368730
\(577\) 5402.33 0.389778 0.194889 0.980825i \(-0.437565\pi\)
0.194889 + 0.980825i \(0.437565\pi\)
\(578\) −22443.9 −1.61513
\(579\) 213.093 0.0152951
\(580\) 0 0
\(581\) −17811.2 −1.27183
\(582\) 6721.31 0.478707
\(583\) −3990.04 −0.283449
\(584\) 16442.4 1.16505
\(585\) 0 0
\(586\) 16669.0 1.17507
\(587\) 17702.2 1.24471 0.622357 0.782733i \(-0.286175\pi\)
0.622357 + 0.782733i \(0.286175\pi\)
\(588\) −1456.55 −0.102155
\(589\) −199.996 −0.0139910
\(590\) 0 0
\(591\) −3781.57 −0.263203
\(592\) 15549.0 1.07949
\(593\) 13235.5 0.916558 0.458279 0.888808i \(-0.348466\pi\)
0.458279 + 0.888808i \(0.348466\pi\)
\(594\) 560.425 0.0387113
\(595\) 0 0
\(596\) −346.701 −0.0238279
\(597\) 7095.63 0.486440
\(598\) −4936.73 −0.337588
\(599\) −22931.4 −1.56419 −0.782095 0.623159i \(-0.785849\pi\)
−0.782095 + 0.623159i \(0.785849\pi\)
\(600\) 0 0
\(601\) −11714.0 −0.795051 −0.397525 0.917591i \(-0.630131\pi\)
−0.397525 + 0.917591i \(0.630131\pi\)
\(602\) 18988.7 1.28558
\(603\) −1954.59 −0.132001
\(604\) −3654.73 −0.246207
\(605\) 0 0
\(606\) −9848.60 −0.660185
\(607\) −4567.18 −0.305397 −0.152699 0.988273i \(-0.548796\pi\)
−0.152699 + 0.988273i \(0.548796\pi\)
\(608\) −1343.12 −0.0895898
\(609\) 2317.66 0.154214
\(610\) 0 0
\(611\) −23933.8 −1.58471
\(612\) 1389.69 0.0917892
\(613\) 19389.4 1.27754 0.638768 0.769399i \(-0.279444\pi\)
0.638768 + 0.769399i \(0.279444\pi\)
\(614\) 10844.3 0.712769
\(615\) 0 0
\(616\) −5155.75 −0.337226
\(617\) 1918.52 0.125181 0.0625905 0.998039i \(-0.480064\pi\)
0.0625905 + 0.998039i \(0.480064\pi\)
\(618\) −6856.81 −0.446313
\(619\) 25281.1 1.64157 0.820785 0.571237i \(-0.193536\pi\)
0.820785 + 0.571237i \(0.193536\pi\)
\(620\) 0 0
\(621\) −1033.06 −0.0667559
\(622\) −17852.1 −1.15081
\(623\) 21266.6 1.36762
\(624\) 7738.32 0.496443
\(625\) 0 0
\(626\) 2158.26 0.137798
\(627\) −546.151 −0.0347866
\(628\) 2544.88 0.161707
\(629\) 35104.2 2.22527
\(630\) 0 0
\(631\) −21718.6 −1.37022 −0.685108 0.728442i \(-0.740245\pi\)
−0.685108 + 0.728442i \(0.740245\pi\)
\(632\) 27928.1 1.75778
\(633\) −4813.22 −0.302225
\(634\) −1173.38 −0.0735029
\(635\) 0 0
\(636\) −1972.95 −0.123007
\(637\) −18310.8 −1.13893
\(638\) 601.938 0.0373526
\(639\) 5652.20 0.349918
\(640\) 0 0
\(641\) 9371.00 0.577429 0.288715 0.957415i \(-0.406772\pi\)
0.288715 + 0.957415i \(0.406772\pi\)
\(642\) 7177.25 0.441220
\(643\) 7538.94 0.462375 0.231187 0.972909i \(-0.425739\pi\)
0.231187 + 0.972909i \(0.425739\pi\)
\(644\) 1349.62 0.0825812
\(645\) 0 0
\(646\) 6828.25 0.415873
\(647\) −15345.6 −0.932455 −0.466228 0.884665i \(-0.654387\pi\)
−0.466228 + 0.884665i \(0.654387\pi\)
\(648\) 1951.40 0.118300
\(649\) 4526.85 0.273797
\(650\) 0 0
\(651\) −705.312 −0.0424629
\(652\) −3686.30 −0.221421
\(653\) 19648.0 1.17747 0.588735 0.808326i \(-0.299626\pi\)
0.588735 + 0.808326i \(0.299626\pi\)
\(654\) −569.715 −0.0340636
\(655\) 0 0
\(656\) −15775.2 −0.938902
\(657\) 6142.51 0.364752
\(658\) −32989.7 −1.95452
\(659\) −24207.8 −1.43096 −0.715481 0.698633i \(-0.753792\pi\)
−0.715481 + 0.698633i \(0.753792\pi\)
\(660\) 0 0
\(661\) 3864.20 0.227383 0.113691 0.993516i \(-0.463733\pi\)
0.113691 + 0.993516i \(0.463733\pi\)
\(662\) 16454.2 0.966026
\(663\) 17470.4 1.02337
\(664\) −16107.3 −0.941395
\(665\) 0 0
\(666\) 6999.96 0.407272
\(667\) −1109.59 −0.0644129
\(668\) −2210.66 −0.128043
\(669\) 8367.78 0.483583
\(670\) 0 0
\(671\) −3898.97 −0.224319
\(672\) −4736.67 −0.271907
\(673\) −17574.4 −1.00660 −0.503300 0.864112i \(-0.667881\pi\)
−0.503300 + 0.864112i \(0.667881\pi\)
\(674\) −20920.1 −1.19557
\(675\) 0 0
\(676\) −392.825 −0.0223501
\(677\) 26672.9 1.51421 0.757106 0.653292i \(-0.226613\pi\)
0.757106 + 0.653292i \(0.226613\pi\)
\(678\) −16035.1 −0.908294
\(679\) −23099.8 −1.30558
\(680\) 0 0
\(681\) −9275.01 −0.521908
\(682\) −183.182 −0.0102850
\(683\) −2985.36 −0.167250 −0.0836249 0.996497i \(-0.526650\pi\)
−0.0836249 + 0.996497i \(0.526650\pi\)
\(684\) −270.054 −0.0150962
\(685\) 0 0
\(686\) −1629.95 −0.0907171
\(687\) −19440.0 −1.07959
\(688\) 14249.9 0.789642
\(689\) −24802.7 −1.37142
\(690\) 0 0
\(691\) 15067.6 0.829518 0.414759 0.909931i \(-0.363866\pi\)
0.414759 + 0.909931i \(0.363866\pi\)
\(692\) −4619.22 −0.253752
\(693\) −1926.07 −0.105578
\(694\) −6299.76 −0.344576
\(695\) 0 0
\(696\) 2095.95 0.114148
\(697\) −35614.9 −1.93545
\(698\) 2008.33 0.108906
\(699\) 10941.0 0.592029
\(700\) 0 0
\(701\) 32060.7 1.72741 0.863707 0.503994i \(-0.168137\pi\)
0.863707 + 0.503994i \(0.168137\pi\)
\(702\) 3483.69 0.187298
\(703\) −6821.67 −0.365980
\(704\) −4549.86 −0.243578
\(705\) 0 0
\(706\) −24933.0 −1.32913
\(707\) 33847.7 1.80053
\(708\) 2238.38 0.118818
\(709\) −6089.76 −0.322575 −0.161288 0.986907i \(-0.551565\pi\)
−0.161288 + 0.986907i \(0.551565\pi\)
\(710\) 0 0
\(711\) 10433.3 0.550323
\(712\) 19232.1 1.01230
\(713\) 337.669 0.0177361
\(714\) 24080.7 1.26218
\(715\) 0 0
\(716\) −5318.15 −0.277582
\(717\) 11589.0 0.603625
\(718\) −24953.0 −1.29699
\(719\) 2735.79 0.141902 0.0709511 0.997480i \(-0.477397\pi\)
0.0709511 + 0.997480i \(0.477397\pi\)
\(720\) 0 0
\(721\) 23565.5 1.21723
\(722\) 16395.2 0.845107
\(723\) 18623.3 0.957963
\(724\) 3013.36 0.154683
\(725\) 0 0
\(726\) 9816.80 0.501840
\(727\) 23072.1 1.17702 0.588511 0.808489i \(-0.299714\pi\)
0.588511 + 0.808489i \(0.299714\pi\)
\(728\) −32048.9 −1.63161
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 32171.3 1.62777
\(732\) −1927.92 −0.0973467
\(733\) −2341.92 −0.118009 −0.0590047 0.998258i \(-0.518793\pi\)
−0.0590047 + 0.998258i \(0.518793\pi\)
\(734\) −23703.4 −1.19197
\(735\) 0 0
\(736\) 2267.69 0.113571
\(737\) 1744.66 0.0871986
\(738\) −7101.80 −0.354229
\(739\) 30372.4 1.51186 0.755932 0.654651i \(-0.227184\pi\)
0.755932 + 0.654651i \(0.227184\pi\)
\(740\) 0 0
\(741\) −3394.96 −0.168309
\(742\) −34187.4 −1.69145
\(743\) −16456.7 −0.812566 −0.406283 0.913747i \(-0.633175\pi\)
−0.406283 + 0.913747i \(0.633175\pi\)
\(744\) −637.839 −0.0314305
\(745\) 0 0
\(746\) 7492.17 0.367705
\(747\) −6017.35 −0.294730
\(748\) −1240.44 −0.0606349
\(749\) −24666.8 −1.20334
\(750\) 0 0
\(751\) −28265.3 −1.37339 −0.686694 0.726947i \(-0.740939\pi\)
−0.686694 + 0.726947i \(0.740939\pi\)
\(752\) −24756.9 −1.20052
\(753\) 14828.0 0.717615
\(754\) 3741.74 0.180724
\(755\) 0 0
\(756\) −952.380 −0.0458171
\(757\) −30213.7 −1.45064 −0.725320 0.688412i \(-0.758308\pi\)
−0.725320 + 0.688412i \(0.758308\pi\)
\(758\) 15036.5 0.720517
\(759\) 922.111 0.0440982
\(760\) 0 0
\(761\) 7521.30 0.358274 0.179137 0.983824i \(-0.442669\pi\)
0.179137 + 0.983824i \(0.442669\pi\)
\(762\) −5493.67 −0.261174
\(763\) 1958.00 0.0929020
\(764\) −4242.83 −0.200916
\(765\) 0 0
\(766\) −15000.9 −0.707578
\(767\) 28139.6 1.32472
\(768\) −5925.01 −0.278386
\(769\) −31256.5 −1.46572 −0.732859 0.680380i \(-0.761815\pi\)
−0.732859 + 0.680380i \(0.761815\pi\)
\(770\) 0 0
\(771\) −10029.8 −0.468499
\(772\) −94.0510 −0.00438467
\(773\) −6657.91 −0.309791 −0.154895 0.987931i \(-0.549504\pi\)
−0.154895 + 0.987931i \(0.549504\pi\)
\(774\) 6415.13 0.297916
\(775\) 0 0
\(776\) −20890.0 −0.966376
\(777\) −24057.5 −1.11076
\(778\) −19871.4 −0.915711
\(779\) 6920.92 0.318315
\(780\) 0 0
\(781\) −5045.15 −0.231152
\(782\) −11528.7 −0.527193
\(783\) 783.000 0.0357371
\(784\) −18940.6 −0.862817
\(785\) 0 0
\(786\) 15764.6 0.715402
\(787\) −18918.1 −0.856872 −0.428436 0.903572i \(-0.640935\pi\)
−0.428436 + 0.903572i \(0.640935\pi\)
\(788\) 1669.04 0.0754531
\(789\) −3160.82 −0.142621
\(790\) 0 0
\(791\) 55109.4 2.47720
\(792\) −1741.82 −0.0781475
\(793\) −24236.6 −1.08533
\(794\) −4232.84 −0.189191
\(795\) 0 0
\(796\) −3131.73 −0.139449
\(797\) 16329.2 0.725734 0.362867 0.931841i \(-0.381798\pi\)
0.362867 + 0.931841i \(0.381798\pi\)
\(798\) −4679.52 −0.207585
\(799\) −55892.4 −2.47476
\(800\) 0 0
\(801\) 7184.70 0.316927
\(802\) −9768.99 −0.430119
\(803\) −5482.80 −0.240951
\(804\) 862.678 0.0378412
\(805\) 0 0
\(806\) −1138.69 −0.0497624
\(807\) 7044.16 0.307269
\(808\) 30609.7 1.33273
\(809\) −2755.55 −0.119753 −0.0598764 0.998206i \(-0.519071\pi\)
−0.0598764 + 0.998206i \(0.519071\pi\)
\(810\) 0 0
\(811\) −8552.83 −0.370321 −0.185161 0.982708i \(-0.559281\pi\)
−0.185161 + 0.982708i \(0.559281\pi\)
\(812\) −1022.93 −0.0442090
\(813\) 12692.0 0.547511
\(814\) −6248.15 −0.269039
\(815\) 0 0
\(816\) 18071.2 0.775269
\(817\) −6251.73 −0.267712
\(818\) 855.181 0.0365534
\(819\) −11972.8 −0.510820
\(820\) 0 0
\(821\) 20670.4 0.878686 0.439343 0.898319i \(-0.355211\pi\)
0.439343 + 0.898319i \(0.355211\pi\)
\(822\) 20432.2 0.866977
\(823\) −474.045 −0.0200780 −0.0100390 0.999950i \(-0.503196\pi\)
−0.0100390 + 0.999950i \(0.503196\pi\)
\(824\) 21311.1 0.900981
\(825\) 0 0
\(826\) 38786.8 1.63386
\(827\) −25547.5 −1.07421 −0.537106 0.843515i \(-0.680483\pi\)
−0.537106 + 0.843515i \(0.680483\pi\)
\(828\) 455.954 0.0191371
\(829\) −36219.9 −1.51745 −0.758726 0.651410i \(-0.774178\pi\)
−0.758726 + 0.651410i \(0.774178\pi\)
\(830\) 0 0
\(831\) −6440.17 −0.268841
\(832\) −28282.6 −1.17851
\(833\) −42761.1 −1.77861
\(834\) 9953.13 0.413248
\(835\) 0 0
\(836\) 241.050 0.00997235
\(837\) −238.283 −0.00984020
\(838\) −25614.1 −1.05588
\(839\) −17875.0 −0.735535 −0.367767 0.929918i \(-0.619878\pi\)
−0.367767 + 0.929918i \(0.619878\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −16243.1 −0.664814
\(843\) −4337.41 −0.177210
\(844\) 2124.37 0.0866394
\(845\) 0 0
\(846\) −11145.2 −0.452933
\(847\) −33738.4 −1.36867
\(848\) −25655.7 −1.03894
\(849\) −11327.6 −0.457904
\(850\) 0 0
\(851\) 11517.6 0.463945
\(852\) −2494.66 −0.100312
\(853\) 1402.84 0.0563097 0.0281549 0.999604i \(-0.491037\pi\)
0.0281549 + 0.999604i \(0.491037\pi\)
\(854\) −33407.1 −1.33860
\(855\) 0 0
\(856\) −22307.1 −0.890702
\(857\) −32810.4 −1.30780 −0.653898 0.756582i \(-0.726868\pi\)
−0.653898 + 0.756582i \(0.726868\pi\)
\(858\) −3109.53 −0.123727
\(859\) −19007.6 −0.754982 −0.377491 0.926013i \(-0.623213\pi\)
−0.377491 + 0.926013i \(0.623213\pi\)
\(860\) 0 0
\(861\) 24407.5 0.966092
\(862\) −14982.2 −0.591991
\(863\) 6248.92 0.246484 0.123242 0.992377i \(-0.460671\pi\)
0.123242 + 0.992377i \(0.460671\pi\)
\(864\) −1600.24 −0.0630107
\(865\) 0 0
\(866\) 29652.3 1.16354
\(867\) 26059.4 1.02079
\(868\) 311.297 0.0121729
\(869\) −9312.75 −0.363537
\(870\) 0 0
\(871\) 10845.1 0.421896
\(872\) 1770.69 0.0687650
\(873\) −7804.05 −0.302551
\(874\) 2240.33 0.0867051
\(875\) 0 0
\(876\) −2711.07 −0.104564
\(877\) −18018.5 −0.693777 −0.346888 0.937906i \(-0.612762\pi\)
−0.346888 + 0.937906i \(0.612762\pi\)
\(878\) −37282.7 −1.43306
\(879\) −19354.2 −0.742661
\(880\) 0 0
\(881\) 28136.0 1.07597 0.537983 0.842956i \(-0.319186\pi\)
0.537983 + 0.842956i \(0.319186\pi\)
\(882\) −8526.79 −0.325524
\(883\) 41964.1 1.59933 0.799663 0.600450i \(-0.205012\pi\)
0.799663 + 0.600450i \(0.205012\pi\)
\(884\) −7710.74 −0.293371
\(885\) 0 0
\(886\) −30726.2 −1.16509
\(887\) −10526.5 −0.398474 −0.199237 0.979951i \(-0.563846\pi\)
−0.199237 + 0.979951i \(0.563846\pi\)
\(888\) −21756.1 −0.822169
\(889\) 18880.7 0.712302
\(890\) 0 0
\(891\) −650.704 −0.0244662
\(892\) −3693.21 −0.138630
\(893\) 10861.4 0.407012
\(894\) −2029.63 −0.0759296
\(895\) 0 0
\(896\) −26352.8 −0.982575
\(897\) 5731.98 0.213362
\(898\) 25531.7 0.948780
\(899\) −255.933 −0.00949482
\(900\) 0 0
\(901\) −57921.6 −2.14167
\(902\) 6339.06 0.233999
\(903\) −22047.5 −0.812510
\(904\) 49837.5 1.83359
\(905\) 0 0
\(906\) −21395.2 −0.784557
\(907\) 41574.7 1.52201 0.761006 0.648744i \(-0.224706\pi\)
0.761006 + 0.648744i \(0.224706\pi\)
\(908\) 4093.63 0.149617
\(909\) 11435.1 0.417248
\(910\) 0 0
\(911\) −978.851 −0.0355991 −0.0177996 0.999842i \(-0.505666\pi\)
−0.0177996 + 0.999842i \(0.505666\pi\)
\(912\) −3511.72 −0.127505
\(913\) 5371.07 0.194695
\(914\) 30078.4 1.08852
\(915\) 0 0
\(916\) 8580.04 0.309490
\(917\) −54180.0 −1.95112
\(918\) 8135.43 0.292494
\(919\) −2296.62 −0.0824358 −0.0412179 0.999150i \(-0.513124\pi\)
−0.0412179 + 0.999150i \(0.513124\pi\)
\(920\) 0 0
\(921\) −12591.2 −0.450482
\(922\) 20787.2 0.742507
\(923\) −31361.4 −1.11839
\(924\) 850.093 0.0302662
\(925\) 0 0
\(926\) −11215.0 −0.398000
\(927\) 7961.37 0.282077
\(928\) −1718.77 −0.0607991
\(929\) 29033.8 1.02537 0.512684 0.858578i \(-0.328651\pi\)
0.512684 + 0.858578i \(0.328651\pi\)
\(930\) 0 0
\(931\) 8309.61 0.292520
\(932\) −4828.95 −0.169718
\(933\) 20727.8 0.727330
\(934\) −8944.15 −0.313342
\(935\) 0 0
\(936\) −10827.4 −0.378103
\(937\) −22945.7 −0.800005 −0.400002 0.916514i \(-0.630991\pi\)
−0.400002 + 0.916514i \(0.630991\pi\)
\(938\) 14948.5 0.520349
\(939\) −2505.93 −0.0870906
\(940\) 0 0
\(941\) 31712.3 1.09861 0.549304 0.835622i \(-0.314893\pi\)
0.549304 + 0.835622i \(0.314893\pi\)
\(942\) 14898.0 0.515291
\(943\) −11685.1 −0.403521
\(944\) 29107.3 1.00356
\(945\) 0 0
\(946\) −5726.13 −0.196800
\(947\) 7050.99 0.241950 0.120975 0.992656i \(-0.461398\pi\)
0.120975 + 0.992656i \(0.461398\pi\)
\(948\) −4604.85 −0.157762
\(949\) −34081.9 −1.16580
\(950\) 0 0
\(951\) 1362.40 0.0464551
\(952\) −74843.5 −2.54800
\(953\) 12178.0 0.413938 0.206969 0.978348i \(-0.433640\pi\)
0.206969 + 0.978348i \(0.433640\pi\)
\(954\) −11549.9 −0.391972
\(955\) 0 0
\(956\) −5114.93 −0.173043
\(957\) −698.904 −0.0236075
\(958\) −16238.1 −0.547628
\(959\) −70221.5 −2.36452
\(960\) 0 0
\(961\) −29713.1 −0.997386
\(962\) −38839.5 −1.30170
\(963\) −8333.43 −0.278859
\(964\) −8219.58 −0.274621
\(965\) 0 0
\(966\) 7900.81 0.263151
\(967\) 13762.2 0.457665 0.228833 0.973466i \(-0.426509\pi\)
0.228833 + 0.973466i \(0.426509\pi\)
\(968\) −30510.9 −1.01308
\(969\) −7928.22 −0.262839
\(970\) 0 0
\(971\) −33646.0 −1.11200 −0.555999 0.831183i \(-0.687664\pi\)
−0.555999 + 0.831183i \(0.687664\pi\)
\(972\) −321.752 −0.0106175
\(973\) −34206.9 −1.12705
\(974\) −4675.69 −0.153818
\(975\) 0 0
\(976\) −25070.1 −0.822208
\(977\) 42129.5 1.37957 0.689786 0.724013i \(-0.257704\pi\)
0.689786 + 0.724013i \(0.257704\pi\)
\(978\) −21580.0 −0.705576
\(979\) −6413.05 −0.209358
\(980\) 0 0
\(981\) 661.490 0.0215288
\(982\) −24675.8 −0.801870
\(983\) 39740.6 1.28945 0.644724 0.764415i \(-0.276972\pi\)
0.644724 + 0.764415i \(0.276972\pi\)
\(984\) 22072.6 0.715090
\(985\) 0 0
\(986\) 8738.05 0.282227
\(987\) 38304.0 1.23529
\(988\) 1498.40 0.0482495
\(989\) 10555.3 0.339372
\(990\) 0 0
\(991\) 34300.8 1.09950 0.549748 0.835330i \(-0.314724\pi\)
0.549748 + 0.835330i \(0.314724\pi\)
\(992\) 523.057 0.0167410
\(993\) −19104.8 −0.610545
\(994\) −43227.7 −1.37938
\(995\) 0 0
\(996\) 2655.82 0.0844909
\(997\) 36545.8 1.16090 0.580449 0.814296i \(-0.302877\pi\)
0.580449 + 0.814296i \(0.302877\pi\)
\(998\) 35327.7 1.12052
\(999\) −8127.58 −0.257403
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.2 7
5.4 even 2 435.4.a.i.1.6 7
15.14 odd 2 1305.4.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.6 7 5.4 even 2
1305.4.a.n.1.2 7 15.14 odd 2
2175.4.a.n.1.2 7 1.1 even 1 trivial