Properties

Label 2175.4.a.n.1.1
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.88324\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.88324 q^{2} +3.00000 q^{3} +15.8460 q^{4} -14.6497 q^{6} -5.48750 q^{7} -38.3141 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-4.88324 q^{2} +3.00000 q^{3} +15.8460 q^{4} -14.6497 q^{6} -5.48750 q^{7} -38.3141 q^{8} +9.00000 q^{9} +50.1324 q^{11} +47.5381 q^{12} +20.7349 q^{13} +26.7968 q^{14} +60.3288 q^{16} +18.8027 q^{17} -43.9492 q^{18} +78.8346 q^{19} -16.4625 q^{21} -244.809 q^{22} +6.33763 q^{23} -114.942 q^{24} -101.254 q^{26} +27.0000 q^{27} -86.9552 q^{28} +29.0000 q^{29} +310.950 q^{31} +11.9130 q^{32} +150.397 q^{33} -91.8182 q^{34} +142.614 q^{36} +338.745 q^{37} -384.969 q^{38} +62.2047 q^{39} +353.526 q^{41} +80.3904 q^{42} -507.609 q^{43} +794.400 q^{44} -30.9482 q^{46} +112.771 q^{47} +180.986 q^{48} -312.887 q^{49} +56.4081 q^{51} +328.566 q^{52} +144.849 q^{53} -131.848 q^{54} +210.249 q^{56} +236.504 q^{57} -141.614 q^{58} -342.739 q^{59} +357.486 q^{61} -1518.44 q^{62} -49.3875 q^{63} -540.804 q^{64} -734.426 q^{66} +183.087 q^{67} +297.949 q^{68} +19.0129 q^{69} -594.034 q^{71} -344.827 q^{72} +622.609 q^{73} -1654.17 q^{74} +1249.22 q^{76} -275.102 q^{77} -303.761 q^{78} -1275.18 q^{79} +81.0000 q^{81} -1726.35 q^{82} +739.108 q^{83} -260.866 q^{84} +2478.78 q^{86} +87.0000 q^{87} -1920.78 q^{88} +906.113 q^{89} -113.783 q^{91} +100.426 q^{92} +932.849 q^{93} -550.688 q^{94} +35.7390 q^{96} -76.0665 q^{97} +1527.90 q^{98} +451.192 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 2 q^{2} + 21 q^{3} + 22 q^{4} + 6 q^{6} + 50 q^{7} + 33 q^{8} + 63 q^{9} + 76 q^{11} + 66 q^{12} - 30 q^{13} + 89 q^{14} + 138 q^{16} + 140 q^{17} + 18 q^{18} + 90 q^{19} + 150 q^{21} - 61 q^{22} - 34 q^{23} + 99 q^{24} - 241 q^{26} + 189 q^{27} + 57 q^{28} + 203 q^{29} + 524 q^{31} + 6 q^{32} + 228 q^{33} + 255 q^{34} + 198 q^{36} + 28 q^{37} - 222 q^{38} - 90 q^{39} + 1532 q^{41} + 267 q^{42} + 464 q^{43} + 1475 q^{44} + 72 q^{46} + 360 q^{47} + 414 q^{48} + 569 q^{49} + 420 q^{51} + 205 q^{52} - 282 q^{53} + 54 q^{54} + 1102 q^{56} + 270 q^{57} + 58 q^{58} + 766 q^{59} + 1200 q^{61} - 2856 q^{62} + 450 q^{63} + 701 q^{64} - 183 q^{66} - 1546 q^{67} - 1801 q^{68} - 102 q^{69} + 1802 q^{71} + 297 q^{72} + 220 q^{73} + 1594 q^{74} + 1960 q^{76} - 3222 q^{77} - 723 q^{78} + 1298 q^{79} + 567 q^{81} - 856 q^{82} - 1652 q^{83} + 171 q^{84} + 7628 q^{86} + 609 q^{87} - 550 q^{88} + 2846 q^{89} - 816 q^{91} - 472 q^{92} + 1572 q^{93} + 745 q^{94} + 18 q^{96} - 1110 q^{97} + 761 q^{98} + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.88324 −1.72649 −0.863243 0.504788i \(-0.831571\pi\)
−0.863243 + 0.504788i \(0.831571\pi\)
\(3\) 3.00000 0.577350
\(4\) 15.8460 1.98076
\(5\) 0 0
\(6\) −14.6497 −0.996787
\(7\) −5.48750 −0.296297 −0.148149 0.988965i \(-0.547331\pi\)
−0.148149 + 0.988965i \(0.547331\pi\)
\(8\) −38.3141 −1.69326
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 50.1324 1.37413 0.687067 0.726594i \(-0.258898\pi\)
0.687067 + 0.726594i \(0.258898\pi\)
\(12\) 47.5381 1.14359
\(13\) 20.7349 0.442371 0.221186 0.975232i \(-0.429007\pi\)
0.221186 + 0.975232i \(0.429007\pi\)
\(14\) 26.7968 0.511553
\(15\) 0 0
\(16\) 60.3288 0.942637
\(17\) 18.8027 0.268255 0.134127 0.990964i \(-0.457177\pi\)
0.134127 + 0.990964i \(0.457177\pi\)
\(18\) −43.9492 −0.575496
\(19\) 78.8346 0.951890 0.475945 0.879475i \(-0.342106\pi\)
0.475945 + 0.879475i \(0.342106\pi\)
\(20\) 0 0
\(21\) −16.4625 −0.171067
\(22\) −244.809 −2.37243
\(23\) 6.33763 0.0574559 0.0287280 0.999587i \(-0.490854\pi\)
0.0287280 + 0.999587i \(0.490854\pi\)
\(24\) −114.942 −0.977605
\(25\) 0 0
\(26\) −101.254 −0.763748
\(27\) 27.0000 0.192450
\(28\) −86.9552 −0.586892
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 310.950 1.80156 0.900778 0.434280i \(-0.142997\pi\)
0.900778 + 0.434280i \(0.142997\pi\)
\(32\) 11.9130 0.0658106
\(33\) 150.397 0.793357
\(34\) −91.8182 −0.463138
\(35\) 0 0
\(36\) 142.614 0.660252
\(37\) 338.745 1.50512 0.752558 0.658525i \(-0.228820\pi\)
0.752558 + 0.658525i \(0.228820\pi\)
\(38\) −384.969 −1.64343
\(39\) 62.2047 0.255403
\(40\) 0 0
\(41\) 353.526 1.34662 0.673312 0.739359i \(-0.264871\pi\)
0.673312 + 0.739359i \(0.264871\pi\)
\(42\) 80.3904 0.295345
\(43\) −507.609 −1.80022 −0.900112 0.435658i \(-0.856516\pi\)
−0.900112 + 0.435658i \(0.856516\pi\)
\(44\) 794.400 2.72183
\(45\) 0 0
\(46\) −30.9482 −0.0991969
\(47\) 112.771 0.349986 0.174993 0.984570i \(-0.444010\pi\)
0.174993 + 0.984570i \(0.444010\pi\)
\(48\) 180.986 0.544232
\(49\) −312.887 −0.912208
\(50\) 0 0
\(51\) 56.4081 0.154877
\(52\) 328.566 0.876230
\(53\) 144.849 0.375406 0.187703 0.982226i \(-0.439896\pi\)
0.187703 + 0.982226i \(0.439896\pi\)
\(54\) −131.848 −0.332262
\(55\) 0 0
\(56\) 210.249 0.501709
\(57\) 236.504 0.549574
\(58\) −141.614 −0.320600
\(59\) −342.739 −0.756285 −0.378142 0.925747i \(-0.623437\pi\)
−0.378142 + 0.925747i \(0.623437\pi\)
\(60\) 0 0
\(61\) 357.486 0.750350 0.375175 0.926954i \(-0.377583\pi\)
0.375175 + 0.926954i \(0.377583\pi\)
\(62\) −1518.44 −3.11036
\(63\) −49.3875 −0.0987657
\(64\) −540.804 −1.05626
\(65\) 0 0
\(66\) −734.426 −1.36972
\(67\) 183.087 0.333844 0.166922 0.985970i \(-0.446617\pi\)
0.166922 + 0.985970i \(0.446617\pi\)
\(68\) 297.949 0.531347
\(69\) 19.0129 0.0331722
\(70\) 0 0
\(71\) −594.034 −0.992942 −0.496471 0.868053i \(-0.665371\pi\)
−0.496471 + 0.868053i \(0.665371\pi\)
\(72\) −344.827 −0.564421
\(73\) 622.609 0.998231 0.499115 0.866536i \(-0.333658\pi\)
0.499115 + 0.866536i \(0.333658\pi\)
\(74\) −1654.17 −2.59856
\(75\) 0 0
\(76\) 1249.22 1.88546
\(77\) −275.102 −0.407152
\(78\) −303.761 −0.440950
\(79\) −1275.18 −1.81607 −0.908034 0.418897i \(-0.862417\pi\)
−0.908034 + 0.418897i \(0.862417\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −1726.35 −2.32493
\(83\) 739.108 0.977441 0.488720 0.872440i \(-0.337464\pi\)
0.488720 + 0.872440i \(0.337464\pi\)
\(84\) −260.866 −0.338842
\(85\) 0 0
\(86\) 2478.78 3.10806
\(87\) 87.0000 0.107211
\(88\) −1920.78 −2.32677
\(89\) 906.113 1.07919 0.539594 0.841925i \(-0.318578\pi\)
0.539594 + 0.841925i \(0.318578\pi\)
\(90\) 0 0
\(91\) −113.783 −0.131073
\(92\) 100.426 0.113806
\(93\) 932.849 1.04013
\(94\) −550.688 −0.604246
\(95\) 0 0
\(96\) 35.7390 0.0379958
\(97\) −76.0665 −0.0796225 −0.0398112 0.999207i \(-0.512676\pi\)
−0.0398112 + 0.999207i \(0.512676\pi\)
\(98\) 1527.90 1.57491
\(99\) 451.192 0.458045
\(100\) 0 0
\(101\) 653.553 0.643871 0.321935 0.946762i \(-0.395667\pi\)
0.321935 + 0.946762i \(0.395667\pi\)
\(102\) −275.455 −0.267393
\(103\) −969.801 −0.927741 −0.463871 0.885903i \(-0.653540\pi\)
−0.463871 + 0.885903i \(0.653540\pi\)
\(104\) −794.440 −0.749050
\(105\) 0 0
\(106\) −707.332 −0.648133
\(107\) 1267.53 1.14520 0.572601 0.819835i \(-0.305935\pi\)
0.572601 + 0.819835i \(0.305935\pi\)
\(108\) 427.843 0.381197
\(109\) −808.142 −0.710146 −0.355073 0.934838i \(-0.615544\pi\)
−0.355073 + 0.934838i \(0.615544\pi\)
\(110\) 0 0
\(111\) 1016.23 0.868980
\(112\) −331.054 −0.279301
\(113\) 1220.10 1.01572 0.507862 0.861438i \(-0.330436\pi\)
0.507862 + 0.861438i \(0.330436\pi\)
\(114\) −1154.91 −0.948832
\(115\) 0 0
\(116\) 459.535 0.367817
\(117\) 186.614 0.147457
\(118\) 1673.68 1.30572
\(119\) −103.180 −0.0794831
\(120\) 0 0
\(121\) 1182.26 0.888247
\(122\) −1745.69 −1.29547
\(123\) 1060.58 0.777473
\(124\) 4927.32 3.56844
\(125\) 0 0
\(126\) 241.171 0.170518
\(127\) −814.733 −0.569258 −0.284629 0.958638i \(-0.591870\pi\)
−0.284629 + 0.958638i \(0.591870\pi\)
\(128\) 2545.57 1.75781
\(129\) −1522.83 −1.03936
\(130\) 0 0
\(131\) −1493.91 −0.996363 −0.498181 0.867073i \(-0.665999\pi\)
−0.498181 + 0.867073i \(0.665999\pi\)
\(132\) 2383.20 1.57145
\(133\) −432.605 −0.282042
\(134\) −894.056 −0.576378
\(135\) 0 0
\(136\) −720.410 −0.454225
\(137\) 1608.72 1.00323 0.501615 0.865091i \(-0.332739\pi\)
0.501615 + 0.865091i \(0.332739\pi\)
\(138\) −92.8445 −0.0572714
\(139\) 51.5725 0.0314700 0.0157350 0.999876i \(-0.494991\pi\)
0.0157350 + 0.999876i \(0.494991\pi\)
\(140\) 0 0
\(141\) 338.313 0.202064
\(142\) 2900.81 1.71430
\(143\) 1039.49 0.607878
\(144\) 542.959 0.314212
\(145\) 0 0
\(146\) −3040.35 −1.72343
\(147\) −938.662 −0.526664
\(148\) 5367.77 2.98127
\(149\) −608.330 −0.334472 −0.167236 0.985917i \(-0.553484\pi\)
−0.167236 + 0.985917i \(0.553484\pi\)
\(150\) 0 0
\(151\) −341.568 −0.184082 −0.0920412 0.995755i \(-0.529339\pi\)
−0.0920412 + 0.995755i \(0.529339\pi\)
\(152\) −3020.48 −1.61180
\(153\) 169.224 0.0894182
\(154\) 1343.39 0.702943
\(155\) 0 0
\(156\) 985.699 0.505891
\(157\) 358.378 0.182176 0.0910882 0.995843i \(-0.470965\pi\)
0.0910882 + 0.995843i \(0.470965\pi\)
\(158\) 6227.03 3.13542
\(159\) 434.547 0.216741
\(160\) 0 0
\(161\) −34.7777 −0.0170240
\(162\) −395.543 −0.191832
\(163\) 1667.36 0.801213 0.400606 0.916250i \(-0.368799\pi\)
0.400606 + 0.916250i \(0.368799\pi\)
\(164\) 5602.00 2.66733
\(165\) 0 0
\(166\) −3609.24 −1.68754
\(167\) 1832.30 0.849029 0.424514 0.905421i \(-0.360445\pi\)
0.424514 + 0.905421i \(0.360445\pi\)
\(168\) 630.746 0.289662
\(169\) −1767.06 −0.804308
\(170\) 0 0
\(171\) 709.512 0.317297
\(172\) −8043.60 −3.56580
\(173\) −2034.77 −0.894224 −0.447112 0.894478i \(-0.647547\pi\)
−0.447112 + 0.894478i \(0.647547\pi\)
\(174\) −424.842 −0.185099
\(175\) 0 0
\(176\) 3024.43 1.29531
\(177\) −1028.22 −0.436641
\(178\) −4424.77 −1.86320
\(179\) −332.198 −0.138713 −0.0693566 0.997592i \(-0.522095\pi\)
−0.0693566 + 0.997592i \(0.522095\pi\)
\(180\) 0 0
\(181\) −843.391 −0.346347 −0.173173 0.984891i \(-0.555402\pi\)
−0.173173 + 0.984891i \(0.555402\pi\)
\(182\) 555.629 0.226296
\(183\) 1072.46 0.433215
\(184\) −242.821 −0.0972879
\(185\) 0 0
\(186\) −4555.33 −1.79577
\(187\) 942.625 0.368618
\(188\) 1786.97 0.693236
\(189\) −148.163 −0.0570224
\(190\) 0 0
\(191\) 2438.81 0.923908 0.461954 0.886904i \(-0.347148\pi\)
0.461954 + 0.886904i \(0.347148\pi\)
\(192\) −1622.41 −0.609831
\(193\) −4095.03 −1.52729 −0.763645 0.645637i \(-0.776592\pi\)
−0.763645 + 0.645637i \(0.776592\pi\)
\(194\) 371.451 0.137467
\(195\) 0 0
\(196\) −4958.03 −1.80686
\(197\) −3226.76 −1.16699 −0.583495 0.812117i \(-0.698315\pi\)
−0.583495 + 0.812117i \(0.698315\pi\)
\(198\) −2203.28 −0.790809
\(199\) −4218.74 −1.50281 −0.751404 0.659842i \(-0.770623\pi\)
−0.751404 + 0.659842i \(0.770623\pi\)
\(200\) 0 0
\(201\) 549.260 0.192745
\(202\) −3191.46 −1.11163
\(203\) −159.138 −0.0550210
\(204\) 893.846 0.306773
\(205\) 0 0
\(206\) 4735.77 1.60173
\(207\) 57.0387 0.0191520
\(208\) 1250.91 0.416996
\(209\) 3952.17 1.30803
\(210\) 0 0
\(211\) −2798.33 −0.913010 −0.456505 0.889721i \(-0.650899\pi\)
−0.456505 + 0.889721i \(0.650899\pi\)
\(212\) 2295.28 0.743588
\(213\) −1782.10 −0.573276
\(214\) −6189.64 −1.97717
\(215\) 0 0
\(216\) −1034.48 −0.325868
\(217\) −1706.34 −0.533796
\(218\) 3946.35 1.22606
\(219\) 1867.83 0.576329
\(220\) 0 0
\(221\) 389.872 0.118668
\(222\) −4962.52 −1.50028
\(223\) −2496.01 −0.749529 −0.374764 0.927120i \(-0.622276\pi\)
−0.374764 + 0.927120i \(0.622276\pi\)
\(224\) −65.3725 −0.0194995
\(225\) 0 0
\(226\) −5958.02 −1.75364
\(227\) −3409.57 −0.996920 −0.498460 0.866913i \(-0.666101\pi\)
−0.498460 + 0.866913i \(0.666101\pi\)
\(228\) 3747.65 1.08857
\(229\) 4794.47 1.38353 0.691763 0.722125i \(-0.256834\pi\)
0.691763 + 0.722125i \(0.256834\pi\)
\(230\) 0 0
\(231\) −825.305 −0.235069
\(232\) −1111.11 −0.314431
\(233\) −1989.36 −0.559345 −0.279672 0.960095i \(-0.590226\pi\)
−0.279672 + 0.960095i \(0.590226\pi\)
\(234\) −911.282 −0.254583
\(235\) 0 0
\(236\) −5431.06 −1.49802
\(237\) −3825.55 −1.04851
\(238\) 503.852 0.137226
\(239\) 2574.69 0.696832 0.348416 0.937340i \(-0.386720\pi\)
0.348416 + 0.937340i \(0.386720\pi\)
\(240\) 0 0
\(241\) −3683.44 −0.984528 −0.492264 0.870446i \(-0.663831\pi\)
−0.492264 + 0.870446i \(0.663831\pi\)
\(242\) −5773.24 −1.53355
\(243\) 243.000 0.0641500
\(244\) 5664.73 1.48626
\(245\) 0 0
\(246\) −5179.06 −1.34230
\(247\) 1634.63 0.421089
\(248\) −11913.8 −3.05050
\(249\) 2217.32 0.564326
\(250\) 0 0
\(251\) 4631.27 1.16463 0.582317 0.812962i \(-0.302146\pi\)
0.582317 + 0.812962i \(0.302146\pi\)
\(252\) −782.597 −0.195631
\(253\) 317.720 0.0789522
\(254\) 3978.54 0.982817
\(255\) 0 0
\(256\) −8104.22 −1.97857
\(257\) 1609.98 0.390770 0.195385 0.980727i \(-0.437404\pi\)
0.195385 + 0.980727i \(0.437404\pi\)
\(258\) 7436.33 1.79444
\(259\) −1858.86 −0.445962
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) 7295.12 1.72021
\(263\) 2868.22 0.672479 0.336239 0.941777i \(-0.390845\pi\)
0.336239 + 0.941777i \(0.390845\pi\)
\(264\) −5762.34 −1.34336
\(265\) 0 0
\(266\) 2112.52 0.486942
\(267\) 2718.34 0.623070
\(268\) 2901.20 0.661264
\(269\) −554.047 −0.125579 −0.0627896 0.998027i \(-0.520000\pi\)
−0.0627896 + 0.998027i \(0.520000\pi\)
\(270\) 0 0
\(271\) −1826.02 −0.409309 −0.204655 0.978834i \(-0.565607\pi\)
−0.204655 + 0.978834i \(0.565607\pi\)
\(272\) 1134.35 0.252867
\(273\) −341.348 −0.0756752
\(274\) −7855.79 −1.73206
\(275\) 0 0
\(276\) 301.279 0.0657060
\(277\) −1470.00 −0.318859 −0.159429 0.987209i \(-0.550965\pi\)
−0.159429 + 0.987209i \(0.550965\pi\)
\(278\) −251.841 −0.0543325
\(279\) 2798.55 0.600519
\(280\) 0 0
\(281\) 7826.43 1.66151 0.830757 0.556635i \(-0.187908\pi\)
0.830757 + 0.556635i \(0.187908\pi\)
\(282\) −1652.06 −0.348861
\(283\) 6796.87 1.42767 0.713837 0.700312i \(-0.246956\pi\)
0.713837 + 0.700312i \(0.246956\pi\)
\(284\) −9413.10 −1.96678
\(285\) 0 0
\(286\) −5076.08 −1.04949
\(287\) −1939.98 −0.399001
\(288\) 107.217 0.0219369
\(289\) −4559.46 −0.928039
\(290\) 0 0
\(291\) −228.199 −0.0459701
\(292\) 9865.89 1.97725
\(293\) −3631.49 −0.724074 −0.362037 0.932164i \(-0.617919\pi\)
−0.362037 + 0.932164i \(0.617919\pi\)
\(294\) 4583.71 0.909277
\(295\) 0 0
\(296\) −12978.7 −2.54856
\(297\) 1353.57 0.264452
\(298\) 2970.62 0.577461
\(299\) 131.410 0.0254169
\(300\) 0 0
\(301\) 2785.50 0.533401
\(302\) 1667.96 0.317816
\(303\) 1960.66 0.371739
\(304\) 4756.00 0.897287
\(305\) 0 0
\(306\) −826.364 −0.154379
\(307\) 9080.77 1.68817 0.844083 0.536213i \(-0.180146\pi\)
0.844083 + 0.536213i \(0.180146\pi\)
\(308\) −4359.27 −0.806469
\(309\) −2909.40 −0.535632
\(310\) 0 0
\(311\) 2657.69 0.484577 0.242289 0.970204i \(-0.422102\pi\)
0.242289 + 0.970204i \(0.422102\pi\)
\(312\) −2383.32 −0.432464
\(313\) 530.474 0.0957960 0.0478980 0.998852i \(-0.484748\pi\)
0.0478980 + 0.998852i \(0.484748\pi\)
\(314\) −1750.05 −0.314525
\(315\) 0 0
\(316\) −20206.6 −3.59719
\(317\) −2393.66 −0.424106 −0.212053 0.977258i \(-0.568015\pi\)
−0.212053 + 0.977258i \(0.568015\pi\)
\(318\) −2122.00 −0.374200
\(319\) 1453.84 0.255170
\(320\) 0 0
\(321\) 3802.58 0.661182
\(322\) 169.828 0.0293918
\(323\) 1482.31 0.255349
\(324\) 1283.53 0.220084
\(325\) 0 0
\(326\) −8142.12 −1.38328
\(327\) −2424.43 −0.410003
\(328\) −13545.1 −2.28019
\(329\) −618.830 −0.103700
\(330\) 0 0
\(331\) −7984.54 −1.32589 −0.662945 0.748668i \(-0.730694\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(332\) 11711.9 1.93607
\(333\) 3048.70 0.501706
\(334\) −8947.57 −1.46584
\(335\) 0 0
\(336\) −993.163 −0.161254
\(337\) −9704.45 −1.56865 −0.784325 0.620350i \(-0.786990\pi\)
−0.784325 + 0.620350i \(0.786990\pi\)
\(338\) 8629.00 1.38863
\(339\) 3660.29 0.586429
\(340\) 0 0
\(341\) 15588.7 2.47558
\(342\) −3464.72 −0.547808
\(343\) 3599.18 0.566582
\(344\) 19448.6 3.04825
\(345\) 0 0
\(346\) 9936.27 1.54387
\(347\) −5514.04 −0.853053 −0.426526 0.904475i \(-0.640263\pi\)
−0.426526 + 0.904475i \(0.640263\pi\)
\(348\) 1378.61 0.212359
\(349\) 2521.06 0.386674 0.193337 0.981132i \(-0.438069\pi\)
0.193337 + 0.981132i \(0.438069\pi\)
\(350\) 0 0
\(351\) 559.842 0.0851344
\(352\) 597.227 0.0904326
\(353\) −5721.03 −0.862606 −0.431303 0.902207i \(-0.641946\pi\)
−0.431303 + 0.902207i \(0.641946\pi\)
\(354\) 5021.03 0.753855
\(355\) 0 0
\(356\) 14358.3 2.13761
\(357\) −309.540 −0.0458896
\(358\) 1622.20 0.239486
\(359\) 6403.95 0.941470 0.470735 0.882275i \(-0.343989\pi\)
0.470735 + 0.882275i \(0.343989\pi\)
\(360\) 0 0
\(361\) −644.098 −0.0939055
\(362\) 4118.48 0.597963
\(363\) 3546.77 0.512830
\(364\) −1803.01 −0.259624
\(365\) 0 0
\(366\) −5237.06 −0.747939
\(367\) −13350.7 −1.89891 −0.949456 0.313899i \(-0.898365\pi\)
−0.949456 + 0.313899i \(0.898365\pi\)
\(368\) 382.341 0.0541601
\(369\) 3181.74 0.448874
\(370\) 0 0
\(371\) −794.858 −0.111232
\(372\) 14782.0 2.06024
\(373\) 1367.05 0.189767 0.0948837 0.995488i \(-0.469752\pi\)
0.0948837 + 0.995488i \(0.469752\pi\)
\(374\) −4603.07 −0.636414
\(375\) 0 0
\(376\) −4320.72 −0.592617
\(377\) 601.312 0.0821463
\(378\) 723.513 0.0984484
\(379\) 9882.96 1.33945 0.669727 0.742607i \(-0.266411\pi\)
0.669727 + 0.742607i \(0.266411\pi\)
\(380\) 0 0
\(381\) −2444.20 −0.328662
\(382\) −11909.3 −1.59511
\(383\) −13225.8 −1.76450 −0.882252 0.470777i \(-0.843974\pi\)
−0.882252 + 0.470777i \(0.843974\pi\)
\(384\) 7636.72 1.01487
\(385\) 0 0
\(386\) 19997.0 2.63684
\(387\) −4568.48 −0.600075
\(388\) −1205.35 −0.157713
\(389\) −8442.16 −1.10035 −0.550173 0.835051i \(-0.685438\pi\)
−0.550173 + 0.835051i \(0.685438\pi\)
\(390\) 0 0
\(391\) 119.165 0.0154128
\(392\) 11988.0 1.54461
\(393\) −4481.73 −0.575250
\(394\) 15757.0 2.01479
\(395\) 0 0
\(396\) 7149.60 0.907275
\(397\) 2268.55 0.286789 0.143394 0.989666i \(-0.454198\pi\)
0.143394 + 0.989666i \(0.454198\pi\)
\(398\) 20601.1 2.59458
\(399\) −1297.82 −0.162837
\(400\) 0 0
\(401\) 8294.00 1.03287 0.516437 0.856325i \(-0.327258\pi\)
0.516437 + 0.856325i \(0.327258\pi\)
\(402\) −2682.17 −0.332772
\(403\) 6447.51 0.796957
\(404\) 10356.2 1.27535
\(405\) 0 0
\(406\) 777.107 0.0949930
\(407\) 16982.1 2.06823
\(408\) −2161.23 −0.262247
\(409\) 9913.01 1.19845 0.599226 0.800580i \(-0.295475\pi\)
0.599226 + 0.800580i \(0.295475\pi\)
\(410\) 0 0
\(411\) 4826.17 0.579216
\(412\) −15367.5 −1.83763
\(413\) 1880.78 0.224085
\(414\) −278.534 −0.0330656
\(415\) 0 0
\(416\) 247.015 0.0291127
\(417\) 154.718 0.0181692
\(418\) −19299.4 −2.25829
\(419\) −13332.1 −1.55446 −0.777228 0.629219i \(-0.783375\pi\)
−0.777228 + 0.629219i \(0.783375\pi\)
\(420\) 0 0
\(421\) −2848.13 −0.329714 −0.164857 0.986317i \(-0.552716\pi\)
−0.164857 + 0.986317i \(0.552716\pi\)
\(422\) 13664.9 1.57630
\(423\) 1014.94 0.116662
\(424\) −5549.76 −0.635661
\(425\) 0 0
\(426\) 8702.44 0.989752
\(427\) −1961.70 −0.222326
\(428\) 20085.3 2.26836
\(429\) 3118.47 0.350958
\(430\) 0 0
\(431\) 12669.7 1.41595 0.707977 0.706235i \(-0.249608\pi\)
0.707977 + 0.706235i \(0.249608\pi\)
\(432\) 1628.88 0.181411
\(433\) 14545.6 1.61436 0.807178 0.590308i \(-0.200994\pi\)
0.807178 + 0.590308i \(0.200994\pi\)
\(434\) 8332.45 0.921591
\(435\) 0 0
\(436\) −12805.9 −1.40663
\(437\) 499.625 0.0546917
\(438\) −9121.05 −0.995024
\(439\) 11489.4 1.24911 0.624557 0.780979i \(-0.285280\pi\)
0.624557 + 0.780979i \(0.285280\pi\)
\(440\) 0 0
\(441\) −2815.99 −0.304069
\(442\) −1903.84 −0.204879
\(443\) 11125.7 1.19322 0.596611 0.802531i \(-0.296514\pi\)
0.596611 + 0.802531i \(0.296514\pi\)
\(444\) 16103.3 1.72124
\(445\) 0 0
\(446\) 12188.6 1.29405
\(447\) −1824.99 −0.193107
\(448\) 2967.66 0.312966
\(449\) −6676.79 −0.701776 −0.350888 0.936418i \(-0.614120\pi\)
−0.350888 + 0.936418i \(0.614120\pi\)
\(450\) 0 0
\(451\) 17723.1 1.85044
\(452\) 19333.7 2.01190
\(453\) −1024.70 −0.106280
\(454\) 16649.7 1.72117
\(455\) 0 0
\(456\) −9061.44 −0.930572
\(457\) 10826.9 1.10823 0.554114 0.832441i \(-0.313057\pi\)
0.554114 + 0.832441i \(0.313057\pi\)
\(458\) −23412.6 −2.38864
\(459\) 507.673 0.0516256
\(460\) 0 0
\(461\) −4114.21 −0.415657 −0.207829 0.978165i \(-0.566640\pi\)
−0.207829 + 0.978165i \(0.566640\pi\)
\(462\) 4030.16 0.405844
\(463\) 6107.19 0.613014 0.306507 0.951868i \(-0.400840\pi\)
0.306507 + 0.951868i \(0.400840\pi\)
\(464\) 1749.54 0.175043
\(465\) 0 0
\(466\) 9714.53 0.965701
\(467\) 1409.31 0.139647 0.0698235 0.997559i \(-0.477756\pi\)
0.0698235 + 0.997559i \(0.477756\pi\)
\(468\) 2957.10 0.292077
\(469\) −1004.69 −0.0989172
\(470\) 0 0
\(471\) 1075.13 0.105180
\(472\) 13131.7 1.28059
\(473\) −25447.7 −2.47375
\(474\) 18681.1 1.81023
\(475\) 0 0
\(476\) −1634.99 −0.157437
\(477\) 1303.64 0.125135
\(478\) −12572.8 −1.20307
\(479\) 12633.9 1.20513 0.602566 0.798069i \(-0.294145\pi\)
0.602566 + 0.798069i \(0.294145\pi\)
\(480\) 0 0
\(481\) 7023.84 0.665821
\(482\) 17987.1 1.69977
\(483\) −104.333 −0.00982883
\(484\) 18734.1 1.75940
\(485\) 0 0
\(486\) −1186.63 −0.110754
\(487\) 17024.7 1.58411 0.792056 0.610449i \(-0.209011\pi\)
0.792056 + 0.610449i \(0.209011\pi\)
\(488\) −13696.7 −1.27054
\(489\) 5002.08 0.462580
\(490\) 0 0
\(491\) −3792.47 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(492\) 16806.0 1.53998
\(493\) 545.279 0.0498136
\(494\) −7982.29 −0.727004
\(495\) 0 0
\(496\) 18759.2 1.69821
\(497\) 3259.76 0.294206
\(498\) −10827.7 −0.974301
\(499\) 6484.19 0.581708 0.290854 0.956767i \(-0.406061\pi\)
0.290854 + 0.956767i \(0.406061\pi\)
\(500\) 0 0
\(501\) 5496.91 0.490187
\(502\) −22615.6 −2.01073
\(503\) 8781.60 0.778434 0.389217 0.921146i \(-0.372746\pi\)
0.389217 + 0.921146i \(0.372746\pi\)
\(504\) 1892.24 0.167236
\(505\) 0 0
\(506\) −1551.51 −0.136310
\(507\) −5301.19 −0.464367
\(508\) −12910.3 −1.12756
\(509\) 21343.3 1.85860 0.929299 0.369328i \(-0.120412\pi\)
0.929299 + 0.369328i \(0.120412\pi\)
\(510\) 0 0
\(511\) −3416.57 −0.295773
\(512\) 19210.3 1.65817
\(513\) 2128.54 0.183191
\(514\) −7861.93 −0.674659
\(515\) 0 0
\(516\) −24130.8 −2.05872
\(517\) 5653.48 0.480928
\(518\) 9077.28 0.769947
\(519\) −6104.31 −0.516280
\(520\) 0 0
\(521\) 7007.06 0.589223 0.294611 0.955617i \(-0.404810\pi\)
0.294611 + 0.955617i \(0.404810\pi\)
\(522\) −1274.53 −0.106867
\(523\) 5901.85 0.493441 0.246721 0.969087i \(-0.420647\pi\)
0.246721 + 0.969087i \(0.420647\pi\)
\(524\) −23672.6 −1.97355
\(525\) 0 0
\(526\) −14006.2 −1.16103
\(527\) 5846.70 0.483276
\(528\) 9073.28 0.747848
\(529\) −12126.8 −0.996699
\(530\) 0 0
\(531\) −3084.65 −0.252095
\(532\) −6855.08 −0.558657
\(533\) 7330.34 0.595707
\(534\) −13274.3 −1.07572
\(535\) 0 0
\(536\) −7014.80 −0.565286
\(537\) −996.595 −0.0800861
\(538\) 2705.54 0.216811
\(539\) −15685.8 −1.25350
\(540\) 0 0
\(541\) 7826.71 0.621990 0.310995 0.950412i \(-0.399338\pi\)
0.310995 + 0.950412i \(0.399338\pi\)
\(542\) 8916.90 0.706667
\(543\) −2530.17 −0.199963
\(544\) 223.997 0.0176540
\(545\) 0 0
\(546\) 1666.89 0.130652
\(547\) −4256.78 −0.332737 −0.166368 0.986064i \(-0.553204\pi\)
−0.166368 + 0.986064i \(0.553204\pi\)
\(548\) 25491.9 1.98716
\(549\) 3217.37 0.250117
\(550\) 0 0
\(551\) 2286.20 0.176762
\(552\) −728.462 −0.0561692
\(553\) 6997.57 0.538096
\(554\) 7178.38 0.550506
\(555\) 0 0
\(556\) 817.221 0.0623343
\(557\) 11138.6 0.847324 0.423662 0.905820i \(-0.360744\pi\)
0.423662 + 0.905820i \(0.360744\pi\)
\(558\) −13666.0 −1.03679
\(559\) −10525.2 −0.796368
\(560\) 0 0
\(561\) 2827.88 0.212822
\(562\) −38218.3 −2.86858
\(563\) −16458.1 −1.23202 −0.616009 0.787739i \(-0.711252\pi\)
−0.616009 + 0.787739i \(0.711252\pi\)
\(564\) 5360.92 0.400240
\(565\) 0 0
\(566\) −33190.7 −2.46486
\(567\) −444.488 −0.0329219
\(568\) 22759.9 1.68131
\(569\) 2449.68 0.180485 0.0902423 0.995920i \(-0.471236\pi\)
0.0902423 + 0.995920i \(0.471236\pi\)
\(570\) 0 0
\(571\) 156.880 0.0114978 0.00574888 0.999983i \(-0.498170\pi\)
0.00574888 + 0.999983i \(0.498170\pi\)
\(572\) 16471.8 1.20406
\(573\) 7316.44 0.533419
\(574\) 9473.37 0.688869
\(575\) 0 0
\(576\) −4867.24 −0.352086
\(577\) 20318.3 1.46597 0.732984 0.680246i \(-0.238127\pi\)
0.732984 + 0.680246i \(0.238127\pi\)
\(578\) 22264.9 1.60225
\(579\) −12285.1 −0.881781
\(580\) 0 0
\(581\) −4055.85 −0.289613
\(582\) 1114.35 0.0793667
\(583\) 7261.62 0.515859
\(584\) −23854.7 −1.69027
\(585\) 0 0
\(586\) 17733.4 1.25010
\(587\) 9510.91 0.668752 0.334376 0.942440i \(-0.391475\pi\)
0.334376 + 0.942440i \(0.391475\pi\)
\(588\) −14874.1 −1.04319
\(589\) 24513.6 1.71488
\(590\) 0 0
\(591\) −9680.27 −0.673762
\(592\) 20436.1 1.41878
\(593\) 15977.2 1.10641 0.553207 0.833044i \(-0.313404\pi\)
0.553207 + 0.833044i \(0.313404\pi\)
\(594\) −6609.83 −0.456574
\(595\) 0 0
\(596\) −9639.62 −0.662507
\(597\) −12656.2 −0.867647
\(598\) −641.707 −0.0438819
\(599\) −4002.17 −0.272995 −0.136498 0.990640i \(-0.543585\pi\)
−0.136498 + 0.990640i \(0.543585\pi\)
\(600\) 0 0
\(601\) −1574.81 −0.106885 −0.0534425 0.998571i \(-0.517019\pi\)
−0.0534425 + 0.998571i \(0.517019\pi\)
\(602\) −13602.3 −0.920910
\(603\) 1647.78 0.111281
\(604\) −5412.51 −0.364622
\(605\) 0 0
\(606\) −9574.37 −0.641802
\(607\) 8803.52 0.588672 0.294336 0.955702i \(-0.404902\pi\)
0.294336 + 0.955702i \(0.404902\pi\)
\(608\) 939.156 0.0626444
\(609\) −477.413 −0.0317664
\(610\) 0 0
\(611\) 2338.29 0.154824
\(612\) 2681.54 0.177116
\(613\) −16874.2 −1.11181 −0.555907 0.831245i \(-0.687629\pi\)
−0.555907 + 0.831245i \(0.687629\pi\)
\(614\) −44343.6 −2.91460
\(615\) 0 0
\(616\) 10540.3 0.689415
\(617\) −4592.02 −0.299624 −0.149812 0.988715i \(-0.547867\pi\)
−0.149812 + 0.988715i \(0.547867\pi\)
\(618\) 14207.3 0.924761
\(619\) 4982.48 0.323526 0.161763 0.986830i \(-0.448282\pi\)
0.161763 + 0.986830i \(0.448282\pi\)
\(620\) 0 0
\(621\) 171.116 0.0110574
\(622\) −12978.1 −0.836616
\(623\) −4972.30 −0.319761
\(624\) 3752.74 0.240753
\(625\) 0 0
\(626\) −2590.43 −0.165391
\(627\) 11856.5 0.755189
\(628\) 5678.88 0.360847
\(629\) 6369.32 0.403755
\(630\) 0 0
\(631\) 20584.3 1.29865 0.649325 0.760511i \(-0.275051\pi\)
0.649325 + 0.760511i \(0.275051\pi\)
\(632\) 48857.6 3.07508
\(633\) −8394.99 −0.527126
\(634\) 11688.8 0.732213
\(635\) 0 0
\(636\) 6885.84 0.429310
\(637\) −6487.69 −0.403535
\(638\) −7099.45 −0.440548
\(639\) −5346.31 −0.330981
\(640\) 0 0
\(641\) 4840.03 0.298237 0.149118 0.988819i \(-0.452356\pi\)
0.149118 + 0.988819i \(0.452356\pi\)
\(642\) −18568.9 −1.14152
\(643\) −1340.16 −0.0821941 −0.0410970 0.999155i \(-0.513085\pi\)
−0.0410970 + 0.999155i \(0.513085\pi\)
\(644\) −551.090 −0.0337205
\(645\) 0 0
\(646\) −7238.46 −0.440856
\(647\) −15752.3 −0.957169 −0.478585 0.878041i \(-0.658850\pi\)
−0.478585 + 0.878041i \(0.658850\pi\)
\(648\) −3103.44 −0.188140
\(649\) −17182.3 −1.03924
\(650\) 0 0
\(651\) −5119.01 −0.308187
\(652\) 26421.1 1.58701
\(653\) −2290.66 −0.137275 −0.0686373 0.997642i \(-0.521865\pi\)
−0.0686373 + 0.997642i \(0.521865\pi\)
\(654\) 11839.1 0.707865
\(655\) 0 0
\(656\) 21327.8 1.26938
\(657\) 5603.48 0.332744
\(658\) 3021.90 0.179036
\(659\) −3003.49 −0.177541 −0.0887704 0.996052i \(-0.528294\pi\)
−0.0887704 + 0.996052i \(0.528294\pi\)
\(660\) 0 0
\(661\) 8104.71 0.476909 0.238454 0.971154i \(-0.423359\pi\)
0.238454 + 0.971154i \(0.423359\pi\)
\(662\) 38990.4 2.28913
\(663\) 1169.62 0.0685131
\(664\) −28318.3 −1.65506
\(665\) 0 0
\(666\) −14887.6 −0.866188
\(667\) 183.791 0.0106693
\(668\) 29034.7 1.68172
\(669\) −7488.02 −0.432741
\(670\) 0 0
\(671\) 17921.6 1.03108
\(672\) −196.118 −0.0112580
\(673\) −5747.03 −0.329170 −0.164585 0.986363i \(-0.552629\pi\)
−0.164585 + 0.986363i \(0.552629\pi\)
\(674\) 47389.2 2.70825
\(675\) 0 0
\(676\) −28001.0 −1.59314
\(677\) −25714.2 −1.45979 −0.729895 0.683559i \(-0.760431\pi\)
−0.729895 + 0.683559i \(0.760431\pi\)
\(678\) −17874.1 −1.01246
\(679\) 417.415 0.0235919
\(680\) 0 0
\(681\) −10228.7 −0.575572
\(682\) −76123.2 −4.27406
\(683\) −4007.09 −0.224490 −0.112245 0.993681i \(-0.535804\pi\)
−0.112245 + 0.993681i \(0.535804\pi\)
\(684\) 11243.0 0.628487
\(685\) 0 0
\(686\) −17575.7 −0.978196
\(687\) 14383.4 0.798779
\(688\) −30623.4 −1.69696
\(689\) 3003.43 0.166069
\(690\) 0 0
\(691\) −27863.7 −1.53399 −0.766993 0.641655i \(-0.778248\pi\)
−0.766993 + 0.641655i \(0.778248\pi\)
\(692\) −32243.1 −1.77124
\(693\) −2475.91 −0.135717
\(694\) 26926.4 1.47278
\(695\) 0 0
\(696\) −3333.33 −0.181537
\(697\) 6647.26 0.361238
\(698\) −12311.0 −0.667588
\(699\) −5968.08 −0.322938
\(700\) 0 0
\(701\) 12916.0 0.695906 0.347953 0.937512i \(-0.386877\pi\)
0.347953 + 0.937512i \(0.386877\pi\)
\(702\) −2733.85 −0.146983
\(703\) 26704.8 1.43271
\(704\) −27111.8 −1.45144
\(705\) 0 0
\(706\) 27937.2 1.48928
\(707\) −3586.37 −0.190777
\(708\) −16293.2 −0.864880
\(709\) −30250.8 −1.60239 −0.801193 0.598406i \(-0.795801\pi\)
−0.801193 + 0.598406i \(0.795801\pi\)
\(710\) 0 0
\(711\) −11476.7 −0.605356
\(712\) −34716.9 −1.82735
\(713\) 1970.68 0.103510
\(714\) 1511.56 0.0792277
\(715\) 0 0
\(716\) −5264.03 −0.274757
\(717\) 7724.07 0.402316
\(718\) −31272.1 −1.62544
\(719\) 6161.35 0.319582 0.159791 0.987151i \(-0.448918\pi\)
0.159791 + 0.987151i \(0.448918\pi\)
\(720\) 0 0
\(721\) 5321.78 0.274887
\(722\) 3145.29 0.162127
\(723\) −11050.3 −0.568417
\(724\) −13364.4 −0.686029
\(725\) 0 0
\(726\) −17319.7 −0.885393
\(727\) 35454.3 1.80870 0.904352 0.426786i \(-0.140354\pi\)
0.904352 + 0.426786i \(0.140354\pi\)
\(728\) 4359.49 0.221941
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9544.43 −0.482919
\(732\) 16994.2 0.858092
\(733\) 26681.1 1.34446 0.672231 0.740342i \(-0.265336\pi\)
0.672231 + 0.740342i \(0.265336\pi\)
\(734\) 65194.7 3.27845
\(735\) 0 0
\(736\) 75.5001 0.00378121
\(737\) 9178.57 0.458747
\(738\) −15537.2 −0.774976
\(739\) −28886.6 −1.43791 −0.718953 0.695059i \(-0.755378\pi\)
−0.718953 + 0.695059i \(0.755378\pi\)
\(740\) 0 0
\(741\) 4903.89 0.243116
\(742\) 3881.48 0.192040
\(743\) 16398.0 0.809669 0.404834 0.914390i \(-0.367329\pi\)
0.404834 + 0.914390i \(0.367329\pi\)
\(744\) −35741.3 −1.76121
\(745\) 0 0
\(746\) −6675.64 −0.327631
\(747\) 6651.97 0.325814
\(748\) 14936.9 0.730142
\(749\) −6955.56 −0.339320
\(750\) 0 0
\(751\) −5905.21 −0.286930 −0.143465 0.989655i \(-0.545824\pi\)
−0.143465 + 0.989655i \(0.545824\pi\)
\(752\) 6803.33 0.329910
\(753\) 13893.8 0.672402
\(754\) −2936.35 −0.141824
\(755\) 0 0
\(756\) −2347.79 −0.112947
\(757\) 12439.0 0.597229 0.298614 0.954374i \(-0.403476\pi\)
0.298614 + 0.954374i \(0.403476\pi\)
\(758\) −48260.9 −2.31255
\(759\) 953.161 0.0455831
\(760\) 0 0
\(761\) 14270.0 0.679748 0.339874 0.940471i \(-0.389616\pi\)
0.339874 + 0.940471i \(0.389616\pi\)
\(762\) 11935.6 0.567430
\(763\) 4434.68 0.210414
\(764\) 38645.6 1.83004
\(765\) 0 0
\(766\) 64584.6 3.04639
\(767\) −7106.66 −0.334559
\(768\) −24312.7 −1.14233
\(769\) −15143.9 −0.710147 −0.355074 0.934838i \(-0.615544\pi\)
−0.355074 + 0.934838i \(0.615544\pi\)
\(770\) 0 0
\(771\) 4829.95 0.225611
\(772\) −64890.1 −3.02519
\(773\) 40617.2 1.88991 0.944955 0.327202i \(-0.106106\pi\)
0.944955 + 0.327202i \(0.106106\pi\)
\(774\) 22309.0 1.03602
\(775\) 0 0
\(776\) 2914.42 0.134822
\(777\) −5576.59 −0.257476
\(778\) 41225.1 1.89973
\(779\) 27870.1 1.28184
\(780\) 0 0
\(781\) −29780.4 −1.36444
\(782\) −581.910 −0.0266100
\(783\) 783.000 0.0357371
\(784\) −18876.1 −0.859881
\(785\) 0 0
\(786\) 21885.4 0.993162
\(787\) −43878.2 −1.98741 −0.993703 0.112048i \(-0.964259\pi\)
−0.993703 + 0.112048i \(0.964259\pi\)
\(788\) −51131.3 −2.31152
\(789\) 8604.66 0.388256
\(790\) 0 0
\(791\) −6695.27 −0.300956
\(792\) −17287.0 −0.775590
\(793\) 7412.43 0.331933
\(794\) −11077.9 −0.495137
\(795\) 0 0
\(796\) −66850.4 −2.97670
\(797\) −14556.0 −0.646925 −0.323463 0.946241i \(-0.604847\pi\)
−0.323463 + 0.946241i \(0.604847\pi\)
\(798\) 6337.55 0.281136
\(799\) 2120.40 0.0938853
\(800\) 0 0
\(801\) 8155.02 0.359730
\(802\) −40501.6 −1.78324
\(803\) 31212.9 1.37170
\(804\) 8703.59 0.381781
\(805\) 0 0
\(806\) −31484.8 −1.37593
\(807\) −1662.14 −0.0725032
\(808\) −25040.3 −1.09024
\(809\) −14030.7 −0.609755 −0.304878 0.952392i \(-0.598616\pi\)
−0.304878 + 0.952392i \(0.598616\pi\)
\(810\) 0 0
\(811\) 30195.7 1.30741 0.653707 0.756747i \(-0.273213\pi\)
0.653707 + 0.756747i \(0.273213\pi\)
\(812\) −2521.70 −0.108983
\(813\) −5478.06 −0.236315
\(814\) −82927.7 −3.57078
\(815\) 0 0
\(816\) 3403.04 0.145993
\(817\) −40017.2 −1.71362
\(818\) −48407.6 −2.06911
\(819\) −1024.05 −0.0436911
\(820\) 0 0
\(821\) 31237.5 1.32789 0.663944 0.747782i \(-0.268881\pi\)
0.663944 + 0.747782i \(0.268881\pi\)
\(822\) −23567.4 −1.00001
\(823\) 22306.9 0.944798 0.472399 0.881385i \(-0.343388\pi\)
0.472399 + 0.881385i \(0.343388\pi\)
\(824\) 37157.1 1.57091
\(825\) 0 0
\(826\) −9184.30 −0.386880
\(827\) −41561.9 −1.74758 −0.873790 0.486304i \(-0.838345\pi\)
−0.873790 + 0.486304i \(0.838345\pi\)
\(828\) 903.837 0.0379354
\(829\) 42423.6 1.77736 0.888681 0.458527i \(-0.151623\pi\)
0.888681 + 0.458527i \(0.151623\pi\)
\(830\) 0 0
\(831\) −4410.01 −0.184093
\(832\) −11213.5 −0.467259
\(833\) −5883.13 −0.244704
\(834\) −755.524 −0.0313689
\(835\) 0 0
\(836\) 62626.3 2.59088
\(837\) 8395.64 0.346710
\(838\) 65104.0 2.68375
\(839\) −31547.4 −1.29814 −0.649068 0.760730i \(-0.724841\pi\)
−0.649068 + 0.760730i \(0.724841\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 13908.1 0.569247
\(843\) 23479.3 0.959276
\(844\) −44342.5 −1.80845
\(845\) 0 0
\(846\) −4956.19 −0.201415
\(847\) −6487.63 −0.263185
\(848\) 8738.56 0.353872
\(849\) 20390.6 0.824268
\(850\) 0 0
\(851\) 2146.84 0.0864779
\(852\) −28239.3 −1.13552
\(853\) 5030.77 0.201935 0.100967 0.994890i \(-0.467806\pi\)
0.100967 + 0.994890i \(0.467806\pi\)
\(854\) 9579.46 0.383844
\(855\) 0 0
\(856\) −48564.2 −1.93912
\(857\) 16655.5 0.663875 0.331937 0.943301i \(-0.392298\pi\)
0.331937 + 0.943301i \(0.392298\pi\)
\(858\) −15228.2 −0.605925
\(859\) 33206.7 1.31897 0.659486 0.751717i \(-0.270774\pi\)
0.659486 + 0.751717i \(0.270774\pi\)
\(860\) 0 0
\(861\) −5819.93 −0.230363
\(862\) −61869.0 −2.44463
\(863\) 12156.5 0.479504 0.239752 0.970834i \(-0.422934\pi\)
0.239752 + 0.970834i \(0.422934\pi\)
\(864\) 321.651 0.0126653
\(865\) 0 0
\(866\) −71029.6 −2.78716
\(867\) −13678.4 −0.535804
\(868\) −27038.7 −1.05732
\(869\) −63928.0 −2.49552
\(870\) 0 0
\(871\) 3796.28 0.147683
\(872\) 30963.3 1.20246
\(873\) −684.598 −0.0265408
\(874\) −2439.79 −0.0944246
\(875\) 0 0
\(876\) 29597.7 1.14157
\(877\) −10910.0 −0.420075 −0.210037 0.977693i \(-0.567359\pi\)
−0.210037 + 0.977693i \(0.567359\pi\)
\(878\) −56105.7 −2.15658
\(879\) −10894.5 −0.418044
\(880\) 0 0
\(881\) −10796.4 −0.412871 −0.206435 0.978460i \(-0.566186\pi\)
−0.206435 + 0.978460i \(0.566186\pi\)
\(882\) 13751.1 0.524972
\(883\) 23778.3 0.906232 0.453116 0.891452i \(-0.350312\pi\)
0.453116 + 0.891452i \(0.350312\pi\)
\(884\) 6177.94 0.235053
\(885\) 0 0
\(886\) −54329.4 −2.06008
\(887\) 26229.5 0.992897 0.496449 0.868066i \(-0.334637\pi\)
0.496449 + 0.868066i \(0.334637\pi\)
\(888\) −38936.2 −1.47141
\(889\) 4470.85 0.168670
\(890\) 0 0
\(891\) 4060.72 0.152682
\(892\) −39551.8 −1.48463
\(893\) 8890.26 0.333148
\(894\) 8911.86 0.333397
\(895\) 0 0
\(896\) −13968.8 −0.520833
\(897\) 394.230 0.0146744
\(898\) 32604.4 1.21161
\(899\) 9017.54 0.334540
\(900\) 0 0
\(901\) 2723.55 0.100704
\(902\) −86546.3 −3.19476
\(903\) 8356.51 0.307959
\(904\) −46746.9 −1.71989
\(905\) 0 0
\(906\) 5003.88 0.183491
\(907\) −53019.1 −1.94098 −0.970491 0.241136i \(-0.922480\pi\)
−0.970491 + 0.241136i \(0.922480\pi\)
\(908\) −54028.1 −1.97465
\(909\) 5881.98 0.214624
\(910\) 0 0
\(911\) −16886.9 −0.614147 −0.307074 0.951686i \(-0.599350\pi\)
−0.307074 + 0.951686i \(0.599350\pi\)
\(912\) 14268.0 0.518049
\(913\) 37053.2 1.34314
\(914\) −52870.3 −1.91334
\(915\) 0 0
\(916\) 75973.4 2.74043
\(917\) 8197.83 0.295219
\(918\) −2479.09 −0.0891309
\(919\) −54865.8 −1.96937 −0.984687 0.174330i \(-0.944224\pi\)
−0.984687 + 0.174330i \(0.944224\pi\)
\(920\) 0 0
\(921\) 27242.3 0.974663
\(922\) 20090.7 0.717626
\(923\) −12317.2 −0.439249
\(924\) −13077.8 −0.465615
\(925\) 0 0
\(926\) −29822.9 −1.05836
\(927\) −8728.21 −0.309247
\(928\) 345.477 0.0122207
\(929\) 27835.6 0.983053 0.491527 0.870863i \(-0.336439\pi\)
0.491527 + 0.870863i \(0.336439\pi\)
\(930\) 0 0
\(931\) −24666.4 −0.868322
\(932\) −31523.5 −1.10793
\(933\) 7973.06 0.279771
\(934\) −6882.01 −0.241099
\(935\) 0 0
\(936\) −7149.96 −0.249683
\(937\) 38996.7 1.35962 0.679811 0.733387i \(-0.262062\pi\)
0.679811 + 0.733387i \(0.262062\pi\)
\(938\) 4906.13 0.170779
\(939\) 1591.42 0.0553079
\(940\) 0 0
\(941\) 15686.8 0.543437 0.271718 0.962377i \(-0.412408\pi\)
0.271718 + 0.962377i \(0.412408\pi\)
\(942\) −5250.14 −0.181591
\(943\) 2240.52 0.0773715
\(944\) −20677.0 −0.712902
\(945\) 0 0
\(946\) 124267. 4.27090
\(947\) 54527.1 1.87106 0.935530 0.353248i \(-0.114923\pi\)
0.935530 + 0.353248i \(0.114923\pi\)
\(948\) −60619.8 −2.07684
\(949\) 12909.7 0.441589
\(950\) 0 0
\(951\) −7180.99 −0.244858
\(952\) 3953.25 0.134586
\(953\) −48998.7 −1.66550 −0.832752 0.553647i \(-0.813236\pi\)
−0.832752 + 0.553647i \(0.813236\pi\)
\(954\) −6365.99 −0.216044
\(955\) 0 0
\(956\) 40798.6 1.38025
\(957\) 4361.52 0.147323
\(958\) −61694.4 −2.08064
\(959\) −8827.88 −0.297254
\(960\) 0 0
\(961\) 66898.8 2.24560
\(962\) −34299.1 −1.14953
\(963\) 11407.7 0.381734
\(964\) −58368.0 −1.95011
\(965\) 0 0
\(966\) 509.484 0.0169693
\(967\) 18866.1 0.627395 0.313698 0.949523i \(-0.398432\pi\)
0.313698 + 0.949523i \(0.398432\pi\)
\(968\) −45297.1 −1.50403
\(969\) 4446.92 0.147426
\(970\) 0 0
\(971\) 49921.4 1.64990 0.824950 0.565205i \(-0.191203\pi\)
0.824950 + 0.565205i \(0.191203\pi\)
\(972\) 3850.59 0.127066
\(973\) −283.004 −0.00932446
\(974\) −83135.6 −2.73495
\(975\) 0 0
\(976\) 21566.7 0.707308
\(977\) 2591.52 0.0848618 0.0424309 0.999099i \(-0.486490\pi\)
0.0424309 + 0.999099i \(0.486490\pi\)
\(978\) −24426.4 −0.798639
\(979\) 45425.6 1.48295
\(980\) 0 0
\(981\) −7273.28 −0.236715
\(982\) 18519.6 0.601815
\(983\) −18566.6 −0.602423 −0.301211 0.953557i \(-0.597391\pi\)
−0.301211 + 0.953557i \(0.597391\pi\)
\(984\) −40635.2 −1.31647
\(985\) 0 0
\(986\) −2662.73 −0.0860026
\(987\) −1856.49 −0.0598711
\(988\) 25902.4 0.834074
\(989\) −3217.04 −0.103434
\(990\) 0 0
\(991\) −34558.3 −1.10775 −0.553875 0.832600i \(-0.686851\pi\)
−0.553875 + 0.832600i \(0.686851\pi\)
\(992\) 3704.34 0.118561
\(993\) −23953.6 −0.765503
\(994\) −15918.2 −0.507943
\(995\) 0 0
\(996\) 35135.8 1.11779
\(997\) 11238.6 0.357000 0.178500 0.983940i \(-0.442876\pi\)
0.178500 + 0.983940i \(0.442876\pi\)
\(998\) −31663.9 −1.00431
\(999\) 9146.11 0.289660
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.n.1.1 7
5.4 even 2 435.4.a.i.1.7 7
15.14 odd 2 1305.4.a.n.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.7 7 5.4 even 2
1305.4.a.n.1.1 7 15.14 odd 2
2175.4.a.n.1.1 7 1.1 even 1 trivial