Properties

Label 2175.4.a.m.1.7
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.12367\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.12367 q^{2} -3.00000 q^{3} +18.2520 q^{4} -15.3710 q^{6} +21.7657 q^{7} +52.5281 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+5.12367 q^{2} -3.00000 q^{3} +18.2520 q^{4} -15.3710 q^{6} +21.7657 q^{7} +52.5281 q^{8} +9.00000 q^{9} +57.1430 q^{11} -54.7561 q^{12} +41.2271 q^{13} +111.520 q^{14} +123.120 q^{16} -73.0149 q^{17} +46.1131 q^{18} -0.658616 q^{19} -65.2970 q^{21} +292.782 q^{22} +96.1672 q^{23} -157.584 q^{24} +211.234 q^{26} -27.0000 q^{27} +397.267 q^{28} -29.0000 q^{29} -2.01051 q^{31} +210.604 q^{32} -171.429 q^{33} -374.104 q^{34} +164.268 q^{36} +315.774 q^{37} -3.37453 q^{38} -123.681 q^{39} +219.873 q^{41} -334.560 q^{42} -81.2960 q^{43} +1042.98 q^{44} +492.730 q^{46} -440.820 q^{47} -369.361 q^{48} +130.744 q^{49} +219.045 q^{51} +752.479 q^{52} -65.8584 q^{53} -138.339 q^{54} +1143.31 q^{56} +1.97585 q^{57} -148.587 q^{58} -551.520 q^{59} -149.536 q^{61} -10.3012 q^{62} +195.891 q^{63} +94.1041 q^{64} -878.346 q^{66} +888.233 q^{67} -1332.67 q^{68} -288.502 q^{69} -570.702 q^{71} +472.753 q^{72} -664.264 q^{73} +1617.92 q^{74} -12.0211 q^{76} +1243.75 q^{77} -633.703 q^{78} +221.956 q^{79} +81.0000 q^{81} +1126.56 q^{82} +740.432 q^{83} -1191.80 q^{84} -416.534 q^{86} +87.0000 q^{87} +3001.61 q^{88} -895.415 q^{89} +897.336 q^{91} +1755.25 q^{92} +6.03152 q^{93} -2258.62 q^{94} -631.813 q^{96} +705.666 q^{97} +669.888 q^{98} +514.287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9} - 11 q^{11} - 45 q^{12} + 133 q^{13} - 75 q^{14} - 53 q^{16} - 21 q^{17} + 9 q^{18} - 170 q^{19} - 111 q^{21} + 369 q^{22} + 68 q^{23} - 108 q^{24} + 181 q^{26} - 189 q^{27} + 637 q^{28} - 203 q^{29} - 480 q^{31} + 779 q^{32} + 33 q^{33} - 897 q^{34} + 135 q^{36} + 1032 q^{37} + 194 q^{38} - 399 q^{39} - 638 q^{41} + 225 q^{42} + 512 q^{43} + 625 q^{44} + 16 q^{46} + 111 q^{47} + 159 q^{48} + 178 q^{49} + 63 q^{51} + 1263 q^{52} - 410 q^{53} - 27 q^{54} + 1174 q^{56} + 510 q^{57} - 29 q^{58} - 426 q^{59} - 1192 q^{61} - 460 q^{62} + 333 q^{63} + 390 q^{64} - 1107 q^{66} + 1671 q^{67} - 1509 q^{68} - 204 q^{69} - 1324 q^{71} + 324 q^{72} + 852 q^{73} + 1780 q^{74} - 564 q^{76} + 2107 q^{77} - 543 q^{78} + 366 q^{79} + 567 q^{81} + 318 q^{82} - 470 q^{83} - 1911 q^{84} - 2196 q^{86} + 609 q^{87} + 2518 q^{88} + 51 q^{89} - 1297 q^{91} + 684 q^{92} + 1440 q^{93} - 1837 q^{94} - 2337 q^{96} + 3322 q^{97} - 1068 q^{98} - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.12367 1.81149 0.905746 0.423821i \(-0.139311\pi\)
0.905746 + 0.423821i \(0.139311\pi\)
\(3\) −3.00000 −0.577350
\(4\) 18.2520 2.28150
\(5\) 0 0
\(6\) −15.3710 −1.04587
\(7\) 21.7657 1.17523 0.587617 0.809139i \(-0.300066\pi\)
0.587617 + 0.809139i \(0.300066\pi\)
\(8\) 52.5281 2.32143
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 57.1430 1.56630 0.783148 0.621835i \(-0.213613\pi\)
0.783148 + 0.621835i \(0.213613\pi\)
\(12\) −54.7561 −1.31723
\(13\) 41.2271 0.879565 0.439783 0.898104i \(-0.355055\pi\)
0.439783 + 0.898104i \(0.355055\pi\)
\(14\) 111.520 2.12893
\(15\) 0 0
\(16\) 123.120 1.92376
\(17\) −73.0149 −1.04169 −0.520844 0.853652i \(-0.674383\pi\)
−0.520844 + 0.853652i \(0.674383\pi\)
\(18\) 46.1131 0.603831
\(19\) −0.658616 −0.00795246 −0.00397623 0.999992i \(-0.501266\pi\)
−0.00397623 + 0.999992i \(0.501266\pi\)
\(20\) 0 0
\(21\) −65.2970 −0.678522
\(22\) 292.782 2.83733
\(23\) 96.1672 0.871837 0.435919 0.899986i \(-0.356424\pi\)
0.435919 + 0.899986i \(0.356424\pi\)
\(24\) −157.584 −1.34028
\(25\) 0 0
\(26\) 211.234 1.59333
\(27\) −27.0000 −0.192450
\(28\) 397.267 2.68130
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −2.01051 −0.0116483 −0.00582415 0.999983i \(-0.501854\pi\)
−0.00582415 + 0.999983i \(0.501854\pi\)
\(32\) 210.604 1.16343
\(33\) −171.429 −0.904301
\(34\) −374.104 −1.88701
\(35\) 0 0
\(36\) 164.268 0.760501
\(37\) 315.774 1.40305 0.701526 0.712644i \(-0.252502\pi\)
0.701526 + 0.712644i \(0.252502\pi\)
\(38\) −3.37453 −0.0144058
\(39\) −123.681 −0.507817
\(40\) 0 0
\(41\) 219.873 0.837522 0.418761 0.908097i \(-0.362465\pi\)
0.418761 + 0.908097i \(0.362465\pi\)
\(42\) −334.560 −1.22914
\(43\) −81.2960 −0.288315 −0.144157 0.989555i \(-0.546047\pi\)
−0.144157 + 0.989555i \(0.546047\pi\)
\(44\) 1042.98 3.57351
\(45\) 0 0
\(46\) 492.730 1.57933
\(47\) −440.820 −1.36809 −0.684044 0.729441i \(-0.739780\pi\)
−0.684044 + 0.729441i \(0.739780\pi\)
\(48\) −369.361 −1.11068
\(49\) 130.744 0.381177
\(50\) 0 0
\(51\) 219.045 0.601419
\(52\) 752.479 2.00673
\(53\) −65.8584 −0.170686 −0.0853429 0.996352i \(-0.527199\pi\)
−0.0853429 + 0.996352i \(0.527199\pi\)
\(54\) −138.339 −0.348622
\(55\) 0 0
\(56\) 1143.31 2.72823
\(57\) 1.97585 0.00459136
\(58\) −148.587 −0.336386
\(59\) −551.520 −1.21698 −0.608489 0.793562i \(-0.708224\pi\)
−0.608489 + 0.793562i \(0.708224\pi\)
\(60\) 0 0
\(61\) −149.536 −0.313871 −0.156936 0.987609i \(-0.550161\pi\)
−0.156936 + 0.987609i \(0.550161\pi\)
\(62\) −10.3012 −0.0211008
\(63\) 195.891 0.391745
\(64\) 94.1041 0.183797
\(65\) 0 0
\(66\) −878.346 −1.63814
\(67\) 888.233 1.61963 0.809813 0.586689i \(-0.199569\pi\)
0.809813 + 0.586689i \(0.199569\pi\)
\(68\) −1332.67 −2.37662
\(69\) −288.502 −0.503355
\(70\) 0 0
\(71\) −570.702 −0.953942 −0.476971 0.878919i \(-0.658265\pi\)
−0.476971 + 0.878919i \(0.658265\pi\)
\(72\) 472.753 0.773811
\(73\) −664.264 −1.06502 −0.532509 0.846425i \(-0.678751\pi\)
−0.532509 + 0.846425i \(0.678751\pi\)
\(74\) 1617.92 2.54162
\(75\) 0 0
\(76\) −12.0211 −0.0181436
\(77\) 1243.75 1.84077
\(78\) −633.703 −0.919907
\(79\) 221.956 0.316102 0.158051 0.987431i \(-0.449479\pi\)
0.158051 + 0.987431i \(0.449479\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1126.56 1.51716
\(83\) 740.432 0.979192 0.489596 0.871949i \(-0.337144\pi\)
0.489596 + 0.871949i \(0.337144\pi\)
\(84\) −1191.80 −1.54805
\(85\) 0 0
\(86\) −416.534 −0.522280
\(87\) 87.0000 0.107211
\(88\) 3001.61 3.63605
\(89\) −895.415 −1.06645 −0.533224 0.845974i \(-0.679020\pi\)
−0.533224 + 0.845974i \(0.679020\pi\)
\(90\) 0 0
\(91\) 897.336 1.03370
\(92\) 1755.25 1.98910
\(93\) 6.03152 0.00672515
\(94\) −2258.62 −2.47828
\(95\) 0 0
\(96\) −631.813 −0.671709
\(97\) 705.666 0.738655 0.369327 0.929299i \(-0.379588\pi\)
0.369327 + 0.929299i \(0.379588\pi\)
\(98\) 669.888 0.690499
\(99\) 514.287 0.522099
\(100\) 0 0
\(101\) −1290.41 −1.27129 −0.635647 0.771980i \(-0.719266\pi\)
−0.635647 + 0.771980i \(0.719266\pi\)
\(102\) 1122.31 1.08947
\(103\) −897.912 −0.858970 −0.429485 0.903074i \(-0.641305\pi\)
−0.429485 + 0.903074i \(0.641305\pi\)
\(104\) 2165.58 2.04185
\(105\) 0 0
\(106\) −337.437 −0.309196
\(107\) 2080.08 1.87934 0.939669 0.342086i \(-0.111133\pi\)
0.939669 + 0.342086i \(0.111133\pi\)
\(108\) −492.805 −0.439076
\(109\) −1386.38 −1.21827 −0.609133 0.793068i \(-0.708482\pi\)
−0.609133 + 0.793068i \(0.708482\pi\)
\(110\) 0 0
\(111\) −947.322 −0.810052
\(112\) 2679.80 2.26087
\(113\) −477.103 −0.397187 −0.198593 0.980082i \(-0.563637\pi\)
−0.198593 + 0.980082i \(0.563637\pi\)
\(114\) 10.1236 0.00831721
\(115\) 0 0
\(116\) −529.309 −0.423665
\(117\) 371.044 0.293188
\(118\) −2825.81 −2.20455
\(119\) −1589.22 −1.22423
\(120\) 0 0
\(121\) 1934.32 1.45328
\(122\) −766.174 −0.568575
\(123\) −659.619 −0.483543
\(124\) −36.6958 −0.0265757
\(125\) 0 0
\(126\) 1003.68 0.709643
\(127\) 1357.50 0.948495 0.474247 0.880392i \(-0.342720\pi\)
0.474247 + 0.880392i \(0.342720\pi\)
\(128\) −1202.67 −0.830488
\(129\) 243.888 0.166459
\(130\) 0 0
\(131\) 2994.84 1.99741 0.998704 0.0508962i \(-0.0162078\pi\)
0.998704 + 0.0508962i \(0.0162078\pi\)
\(132\) −3128.93 −2.06317
\(133\) −14.3352 −0.00934601
\(134\) 4551.01 2.93394
\(135\) 0 0
\(136\) −3835.33 −2.41821
\(137\) 1067.77 0.665878 0.332939 0.942948i \(-0.391960\pi\)
0.332939 + 0.942948i \(0.391960\pi\)
\(138\) −1478.19 −0.911824
\(139\) −843.314 −0.514597 −0.257298 0.966332i \(-0.582832\pi\)
−0.257298 + 0.966332i \(0.582832\pi\)
\(140\) 0 0
\(141\) 1322.46 0.789866
\(142\) −2924.09 −1.72806
\(143\) 2355.84 1.37766
\(144\) 1108.08 0.641252
\(145\) 0 0
\(146\) −3403.47 −1.92927
\(147\) −392.231 −0.220073
\(148\) 5763.52 3.20107
\(149\) 1273.71 0.700313 0.350157 0.936691i \(-0.386128\pi\)
0.350157 + 0.936691i \(0.386128\pi\)
\(150\) 0 0
\(151\) −3030.58 −1.63328 −0.816639 0.577149i \(-0.804165\pi\)
−0.816639 + 0.577149i \(0.804165\pi\)
\(152\) −34.5958 −0.0184611
\(153\) −657.134 −0.347230
\(154\) 6372.59 3.33453
\(155\) 0 0
\(156\) −2257.44 −1.15859
\(157\) 1513.57 0.769399 0.384700 0.923042i \(-0.374305\pi\)
0.384700 + 0.923042i \(0.374305\pi\)
\(158\) 1137.23 0.572616
\(159\) 197.575 0.0985455
\(160\) 0 0
\(161\) 2093.14 1.02461
\(162\) 415.018 0.201277
\(163\) 3134.88 1.50640 0.753200 0.657792i \(-0.228509\pi\)
0.753200 + 0.657792i \(0.228509\pi\)
\(164\) 4013.13 1.91081
\(165\) 0 0
\(166\) 3793.73 1.77380
\(167\) −703.416 −0.325940 −0.162970 0.986631i \(-0.552107\pi\)
−0.162970 + 0.986631i \(0.552107\pi\)
\(168\) −3429.92 −1.57514
\(169\) −497.323 −0.226365
\(170\) 0 0
\(171\) −5.92754 −0.00265082
\(172\) −1483.82 −0.657791
\(173\) 1699.75 0.746993 0.373497 0.927632i \(-0.378159\pi\)
0.373497 + 0.927632i \(0.378159\pi\)
\(174\) 445.760 0.194212
\(175\) 0 0
\(176\) 7035.47 3.01317
\(177\) 1654.56 0.702623
\(178\) −4587.81 −1.93186
\(179\) −1616.87 −0.675143 −0.337572 0.941300i \(-0.609606\pi\)
−0.337572 + 0.941300i \(0.609606\pi\)
\(180\) 0 0
\(181\) 790.412 0.324590 0.162295 0.986742i \(-0.448110\pi\)
0.162295 + 0.986742i \(0.448110\pi\)
\(182\) 4597.65 1.87253
\(183\) 448.608 0.181214
\(184\) 5051.48 2.02391
\(185\) 0 0
\(186\) 30.9035 0.0121826
\(187\) −4172.29 −1.63159
\(188\) −8045.85 −3.12130
\(189\) −587.673 −0.226174
\(190\) 0 0
\(191\) −2966.34 −1.12375 −0.561877 0.827221i \(-0.689921\pi\)
−0.561877 + 0.827221i \(0.689921\pi\)
\(192\) −282.312 −0.106115
\(193\) 1871.55 0.698018 0.349009 0.937119i \(-0.386518\pi\)
0.349009 + 0.937119i \(0.386518\pi\)
\(194\) 3615.60 1.33807
\(195\) 0 0
\(196\) 2386.34 0.869656
\(197\) 1765.75 0.638603 0.319301 0.947653i \(-0.396552\pi\)
0.319301 + 0.947653i \(0.396552\pi\)
\(198\) 2635.04 0.945778
\(199\) −153.070 −0.0545268 −0.0272634 0.999628i \(-0.508679\pi\)
−0.0272634 + 0.999628i \(0.508679\pi\)
\(200\) 0 0
\(201\) −2664.70 −0.935091
\(202\) −6611.64 −2.30294
\(203\) −631.204 −0.218236
\(204\) 3998.01 1.37214
\(205\) 0 0
\(206\) −4600.61 −1.55602
\(207\) 865.505 0.290612
\(208\) 5075.90 1.69207
\(209\) −37.6353 −0.0124559
\(210\) 0 0
\(211\) 5632.85 1.83783 0.918913 0.394460i \(-0.129068\pi\)
0.918913 + 0.394460i \(0.129068\pi\)
\(212\) −1202.05 −0.389420
\(213\) 1712.11 0.550758
\(214\) 10657.7 3.40440
\(215\) 0 0
\(216\) −1418.26 −0.446760
\(217\) −43.7600 −0.0136895
\(218\) −7103.35 −2.20688
\(219\) 1992.79 0.614888
\(220\) 0 0
\(221\) −3010.19 −0.916233
\(222\) −4853.77 −1.46740
\(223\) 2962.89 0.889730 0.444865 0.895598i \(-0.353252\pi\)
0.444865 + 0.895598i \(0.353252\pi\)
\(224\) 4583.94 1.36731
\(225\) 0 0
\(226\) −2444.52 −0.719501
\(227\) 1006.81 0.294381 0.147190 0.989108i \(-0.452977\pi\)
0.147190 + 0.989108i \(0.452977\pi\)
\(228\) 36.0632 0.0104752
\(229\) −1297.30 −0.374359 −0.187179 0.982326i \(-0.559935\pi\)
−0.187179 + 0.982326i \(0.559935\pi\)
\(230\) 0 0
\(231\) −3731.26 −1.06277
\(232\) −1523.31 −0.431080
\(233\) 1649.87 0.463891 0.231946 0.972729i \(-0.425491\pi\)
0.231946 + 0.972729i \(0.425491\pi\)
\(234\) 1901.11 0.531109
\(235\) 0 0
\(236\) −10066.4 −2.77654
\(237\) −665.869 −0.182501
\(238\) −8142.63 −2.21768
\(239\) 5704.40 1.54388 0.771939 0.635696i \(-0.219287\pi\)
0.771939 + 0.635696i \(0.219287\pi\)
\(240\) 0 0
\(241\) 7233.99 1.93354 0.966768 0.255657i \(-0.0822916\pi\)
0.966768 + 0.255657i \(0.0822916\pi\)
\(242\) 9910.83 2.63261
\(243\) −243.000 −0.0641500
\(244\) −2729.34 −0.716098
\(245\) 0 0
\(246\) −3379.67 −0.875935
\(247\) −27.1528 −0.00699471
\(248\) −105.608 −0.0270408
\(249\) −2221.30 −0.565337
\(250\) 0 0
\(251\) 5887.94 1.48065 0.740326 0.672248i \(-0.234671\pi\)
0.740326 + 0.672248i \(0.234671\pi\)
\(252\) 3575.41 0.893768
\(253\) 5495.28 1.36556
\(254\) 6955.40 1.71819
\(255\) 0 0
\(256\) −6914.95 −1.68822
\(257\) −5751.33 −1.39595 −0.697973 0.716124i \(-0.745914\pi\)
−0.697973 + 0.716124i \(0.745914\pi\)
\(258\) 1249.60 0.301538
\(259\) 6873.03 1.64892
\(260\) 0 0
\(261\) −261.000 −0.0618984
\(262\) 15344.6 3.61829
\(263\) −5196.53 −1.21837 −0.609186 0.793027i \(-0.708504\pi\)
−0.609186 + 0.793027i \(0.708504\pi\)
\(264\) −9004.83 −2.09928
\(265\) 0 0
\(266\) −73.4489 −0.0169302
\(267\) 2686.24 0.615713
\(268\) 16212.1 3.69518
\(269\) −7201.66 −1.63232 −0.816158 0.577829i \(-0.803900\pi\)
−0.816158 + 0.577829i \(0.803900\pi\)
\(270\) 0 0
\(271\) −1510.97 −0.338690 −0.169345 0.985557i \(-0.554165\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(272\) −8989.62 −2.00396
\(273\) −2692.01 −0.596805
\(274\) 5470.88 1.20623
\(275\) 0 0
\(276\) −5265.74 −1.14841
\(277\) −6906.59 −1.49811 −0.749056 0.662507i \(-0.769493\pi\)
−0.749056 + 0.662507i \(0.769493\pi\)
\(278\) −4320.87 −0.932188
\(279\) −18.0946 −0.00388277
\(280\) 0 0
\(281\) −5553.49 −1.17898 −0.589490 0.807776i \(-0.700671\pi\)
−0.589490 + 0.807776i \(0.700671\pi\)
\(282\) 6775.85 1.43084
\(283\) 906.811 0.190475 0.0952373 0.995455i \(-0.469639\pi\)
0.0952373 + 0.995455i \(0.469639\pi\)
\(284\) −10416.5 −2.17642
\(285\) 0 0
\(286\) 12070.6 2.49562
\(287\) 4785.68 0.984285
\(288\) 1895.44 0.387812
\(289\) 418.172 0.0851154
\(290\) 0 0
\(291\) −2117.00 −0.426462
\(292\) −12124.2 −2.42984
\(293\) −478.454 −0.0953979 −0.0476989 0.998862i \(-0.515189\pi\)
−0.0476989 + 0.998862i \(0.515189\pi\)
\(294\) −2009.66 −0.398660
\(295\) 0 0
\(296\) 16587.0 3.25709
\(297\) −1542.86 −0.301434
\(298\) 6526.09 1.26861
\(299\) 3964.70 0.766838
\(300\) 0 0
\(301\) −1769.46 −0.338837
\(302\) −15527.7 −2.95867
\(303\) 3871.23 0.733982
\(304\) −81.0890 −0.0152986
\(305\) 0 0
\(306\) −3366.94 −0.629004
\(307\) 8071.13 1.50047 0.750235 0.661172i \(-0.229941\pi\)
0.750235 + 0.661172i \(0.229941\pi\)
\(308\) 22701.0 4.19971
\(309\) 2693.74 0.495926
\(310\) 0 0
\(311\) −2191.99 −0.399667 −0.199834 0.979830i \(-0.564040\pi\)
−0.199834 + 0.979830i \(0.564040\pi\)
\(312\) −6496.74 −1.17886
\(313\) −10935.0 −1.97471 −0.987353 0.158535i \(-0.949323\pi\)
−0.987353 + 0.158535i \(0.949323\pi\)
\(314\) 7755.02 1.39376
\(315\) 0 0
\(316\) 4051.15 0.721187
\(317\) −8640.32 −1.53088 −0.765440 0.643508i \(-0.777478\pi\)
−0.765440 + 0.643508i \(0.777478\pi\)
\(318\) 1012.31 0.178514
\(319\) −1657.15 −0.290854
\(320\) 0 0
\(321\) −6240.25 −1.08504
\(322\) 10724.6 1.85608
\(323\) 48.0887 0.00828399
\(324\) 1478.41 0.253500
\(325\) 0 0
\(326\) 16062.1 2.72883
\(327\) 4159.14 0.703366
\(328\) 11549.5 1.94425
\(329\) −9594.72 −1.60782
\(330\) 0 0
\(331\) −10031.0 −1.66571 −0.832857 0.553488i \(-0.813297\pi\)
−0.832857 + 0.553488i \(0.813297\pi\)
\(332\) 13514.4 2.23403
\(333\) 2841.97 0.467684
\(334\) −3604.07 −0.590437
\(335\) 0 0
\(336\) −8039.39 −1.30531
\(337\) −2538.16 −0.410274 −0.205137 0.978733i \(-0.565764\pi\)
−0.205137 + 0.978733i \(0.565764\pi\)
\(338\) −2548.12 −0.410058
\(339\) 1431.31 0.229316
\(340\) 0 0
\(341\) −114.886 −0.0182447
\(342\) −30.3708 −0.00480194
\(343\) −4619.90 −0.727263
\(344\) −4270.32 −0.669304
\(345\) 0 0
\(346\) 8708.98 1.35317
\(347\) −8139.07 −1.25916 −0.629579 0.776936i \(-0.716773\pi\)
−0.629579 + 0.776936i \(0.716773\pi\)
\(348\) 1587.93 0.244603
\(349\) 3054.95 0.468561 0.234280 0.972169i \(-0.424727\pi\)
0.234280 + 0.972169i \(0.424727\pi\)
\(350\) 0 0
\(351\) −1113.13 −0.169272
\(352\) 12034.6 1.82228
\(353\) 4993.98 0.752982 0.376491 0.926420i \(-0.377131\pi\)
0.376491 + 0.926420i \(0.377131\pi\)
\(354\) 8477.42 1.27280
\(355\) 0 0
\(356\) −16343.1 −2.43310
\(357\) 4767.65 0.706809
\(358\) −8284.32 −1.22302
\(359\) −3701.99 −0.544245 −0.272122 0.962263i \(-0.587726\pi\)
−0.272122 + 0.962263i \(0.587726\pi\)
\(360\) 0 0
\(361\) −6858.57 −0.999937
\(362\) 4049.81 0.587993
\(363\) −5802.96 −0.839054
\(364\) 16378.2 2.35838
\(365\) 0 0
\(366\) 2298.52 0.328267
\(367\) 1936.81 0.275478 0.137739 0.990469i \(-0.456016\pi\)
0.137739 + 0.990469i \(0.456016\pi\)
\(368\) 11840.1 1.67720
\(369\) 1978.86 0.279174
\(370\) 0 0
\(371\) −1433.45 −0.200596
\(372\) 110.087 0.0153435
\(373\) −12540.1 −1.74075 −0.870376 0.492387i \(-0.836124\pi\)
−0.870376 + 0.492387i \(0.836124\pi\)
\(374\) −21377.4 −2.95562
\(375\) 0 0
\(376\) −23155.4 −3.17593
\(377\) −1195.59 −0.163331
\(378\) −3011.04 −0.409713
\(379\) 7644.03 1.03601 0.518005 0.855378i \(-0.326675\pi\)
0.518005 + 0.855378i \(0.326675\pi\)
\(380\) 0 0
\(381\) −4072.51 −0.547614
\(382\) −15198.6 −2.03567
\(383\) −13834.6 −1.84574 −0.922868 0.385115i \(-0.874162\pi\)
−0.922868 + 0.385115i \(0.874162\pi\)
\(384\) 3608.02 0.479482
\(385\) 0 0
\(386\) 9589.24 1.26445
\(387\) −731.664 −0.0961049
\(388\) 12879.8 1.68524
\(389\) −14818.0 −1.93137 −0.965684 0.259719i \(-0.916370\pi\)
−0.965684 + 0.259719i \(0.916370\pi\)
\(390\) 0 0
\(391\) −7021.64 −0.908183
\(392\) 6867.71 0.884877
\(393\) −8984.52 −1.15320
\(394\) 9047.14 1.15682
\(395\) 0 0
\(396\) 9386.78 1.19117
\(397\) 2846.02 0.359792 0.179896 0.983686i \(-0.442424\pi\)
0.179896 + 0.983686i \(0.442424\pi\)
\(398\) −784.281 −0.0987750
\(399\) 43.0056 0.00539592
\(400\) 0 0
\(401\) 7701.88 0.959136 0.479568 0.877505i \(-0.340793\pi\)
0.479568 + 0.877505i \(0.340793\pi\)
\(402\) −13653.0 −1.69391
\(403\) −82.8874 −0.0102454
\(404\) −23552.6 −2.90046
\(405\) 0 0
\(406\) −3234.08 −0.395332
\(407\) 18044.3 2.19759
\(408\) 11506.0 1.39616
\(409\) −10969.5 −1.32618 −0.663088 0.748541i \(-0.730755\pi\)
−0.663088 + 0.748541i \(0.730755\pi\)
\(410\) 0 0
\(411\) −3203.30 −0.384445
\(412\) −16388.7 −1.95974
\(413\) −12004.2 −1.43024
\(414\) 4434.57 0.526442
\(415\) 0 0
\(416\) 8682.61 1.02332
\(417\) 2529.94 0.297103
\(418\) −192.831 −0.0225638
\(419\) −10760.9 −1.25467 −0.627335 0.778750i \(-0.715854\pi\)
−0.627335 + 0.778750i \(0.715854\pi\)
\(420\) 0 0
\(421\) −3562.20 −0.412378 −0.206189 0.978512i \(-0.566106\pi\)
−0.206189 + 0.978512i \(0.566106\pi\)
\(422\) 28860.9 3.32921
\(423\) −3967.38 −0.456029
\(424\) −3459.41 −0.396236
\(425\) 0 0
\(426\) 8772.27 0.997695
\(427\) −3254.75 −0.368872
\(428\) 37965.7 4.28772
\(429\) −7067.52 −0.795392
\(430\) 0 0
\(431\) −1086.78 −0.121458 −0.0607290 0.998154i \(-0.519343\pi\)
−0.0607290 + 0.998154i \(0.519343\pi\)
\(432\) −3324.25 −0.370227
\(433\) −4185.80 −0.464565 −0.232282 0.972648i \(-0.574619\pi\)
−0.232282 + 0.972648i \(0.574619\pi\)
\(434\) −224.212 −0.0247984
\(435\) 0 0
\(436\) −25304.2 −2.77948
\(437\) −63.3372 −0.00693325
\(438\) 10210.4 1.11386
\(439\) 3960.69 0.430600 0.215300 0.976548i \(-0.430927\pi\)
0.215300 + 0.976548i \(0.430927\pi\)
\(440\) 0 0
\(441\) 1176.69 0.127059
\(442\) −15423.3 −1.65975
\(443\) −1695.58 −0.181850 −0.0909250 0.995858i \(-0.528982\pi\)
−0.0909250 + 0.995858i \(0.528982\pi\)
\(444\) −17290.5 −1.84814
\(445\) 0 0
\(446\) 15180.9 1.61174
\(447\) −3821.14 −0.404326
\(448\) 2048.24 0.216005
\(449\) 655.044 0.0688495 0.0344248 0.999407i \(-0.489040\pi\)
0.0344248 + 0.999407i \(0.489040\pi\)
\(450\) 0 0
\(451\) 12564.2 1.31181
\(452\) −8708.11 −0.906183
\(453\) 9091.73 0.942973
\(454\) 5158.58 0.533269
\(455\) 0 0
\(456\) 103.787 0.0106585
\(457\) −10691.4 −1.09437 −0.547183 0.837013i \(-0.684300\pi\)
−0.547183 + 0.837013i \(0.684300\pi\)
\(458\) −6646.96 −0.678148
\(459\) 1971.40 0.200473
\(460\) 0 0
\(461\) 15258.6 1.54157 0.770783 0.637098i \(-0.219865\pi\)
0.770783 + 0.637098i \(0.219865\pi\)
\(462\) −19117.8 −1.92519
\(463\) 9359.99 0.939515 0.469758 0.882795i \(-0.344341\pi\)
0.469758 + 0.882795i \(0.344341\pi\)
\(464\) −3570.49 −0.357233
\(465\) 0 0
\(466\) 8453.40 0.840335
\(467\) −11840.9 −1.17330 −0.586651 0.809840i \(-0.699554\pi\)
−0.586651 + 0.809840i \(0.699554\pi\)
\(468\) 6772.31 0.668911
\(469\) 19333.0 1.90344
\(470\) 0 0
\(471\) −4540.70 −0.444213
\(472\) −28970.3 −2.82514
\(473\) −4645.50 −0.451586
\(474\) −3411.70 −0.330600
\(475\) 0 0
\(476\) −29006.4 −2.79308
\(477\) −592.725 −0.0568953
\(478\) 29227.5 2.79672
\(479\) 581.072 0.0554277 0.0277139 0.999616i \(-0.491177\pi\)
0.0277139 + 0.999616i \(0.491177\pi\)
\(480\) 0 0
\(481\) 13018.5 1.23408
\(482\) 37064.6 3.50258
\(483\) −6279.43 −0.591561
\(484\) 35305.3 3.31567
\(485\) 0 0
\(486\) −1245.05 −0.116207
\(487\) 5996.94 0.558003 0.279001 0.960291i \(-0.409997\pi\)
0.279001 + 0.960291i \(0.409997\pi\)
\(488\) −7854.84 −0.728631
\(489\) −9404.65 −0.869720
\(490\) 0 0
\(491\) 18570.0 1.70683 0.853414 0.521234i \(-0.174528\pi\)
0.853414 + 0.521234i \(0.174528\pi\)
\(492\) −12039.4 −1.10321
\(493\) 2117.43 0.193437
\(494\) −139.122 −0.0126709
\(495\) 0 0
\(496\) −247.534 −0.0224085
\(497\) −12421.7 −1.12111
\(498\) −11381.2 −1.02410
\(499\) 3462.43 0.310621 0.155310 0.987866i \(-0.450362\pi\)
0.155310 + 0.987866i \(0.450362\pi\)
\(500\) 0 0
\(501\) 2110.25 0.188181
\(502\) 30167.9 2.68219
\(503\) 2437.40 0.216060 0.108030 0.994148i \(-0.465546\pi\)
0.108030 + 0.994148i \(0.465546\pi\)
\(504\) 10289.8 0.909410
\(505\) 0 0
\(506\) 28156.0 2.47369
\(507\) 1491.97 0.130692
\(508\) 24777.2 2.16399
\(509\) −17387.0 −1.51407 −0.757037 0.653372i \(-0.773354\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(510\) 0 0
\(511\) −14458.1 −1.25165
\(512\) −25808.5 −2.22771
\(513\) 17.7826 0.00153045
\(514\) −29467.9 −2.52874
\(515\) 0 0
\(516\) 4451.45 0.379776
\(517\) −25189.7 −2.14283
\(518\) 35215.1 2.98700
\(519\) −5099.26 −0.431277
\(520\) 0 0
\(521\) −13912.4 −1.16989 −0.584945 0.811073i \(-0.698884\pi\)
−0.584945 + 0.811073i \(0.698884\pi\)
\(522\) −1337.28 −0.112129
\(523\) −4178.69 −0.349371 −0.174686 0.984624i \(-0.555891\pi\)
−0.174686 + 0.984624i \(0.555891\pi\)
\(524\) 54661.9 4.55709
\(525\) 0 0
\(526\) −26625.3 −2.20707
\(527\) 146.797 0.0121339
\(528\) −21106.4 −1.73966
\(529\) −2918.86 −0.239900
\(530\) 0 0
\(531\) −4963.68 −0.405659
\(532\) −261.647 −0.0213230
\(533\) 9064.73 0.736655
\(534\) 13763.4 1.11536
\(535\) 0 0
\(536\) 46657.1 3.75985
\(537\) 4850.61 0.389794
\(538\) −36899.0 −2.95693
\(539\) 7471.08 0.597036
\(540\) 0 0
\(541\) 15727.3 1.24985 0.624927 0.780683i \(-0.285129\pi\)
0.624927 + 0.780683i \(0.285129\pi\)
\(542\) −7741.72 −0.613534
\(543\) −2371.24 −0.187402
\(544\) −15377.2 −1.21194
\(545\) 0 0
\(546\) −13793.0 −1.08111
\(547\) 17384.0 1.35884 0.679420 0.733750i \(-0.262231\pi\)
0.679420 + 0.733750i \(0.262231\pi\)
\(548\) 19488.9 1.51920
\(549\) −1345.82 −0.104624
\(550\) 0 0
\(551\) 19.0999 0.00147674
\(552\) −15154.4 −1.16851
\(553\) 4831.02 0.371494
\(554\) −35387.1 −2.71382
\(555\) 0 0
\(556\) −15392.2 −1.17405
\(557\) 18853.0 1.43416 0.717080 0.696991i \(-0.245478\pi\)
0.717080 + 0.696991i \(0.245478\pi\)
\(558\) −92.7106 −0.00703360
\(559\) −3351.60 −0.253592
\(560\) 0 0
\(561\) 12516.9 0.942001
\(562\) −28454.3 −2.13571
\(563\) −6897.37 −0.516323 −0.258161 0.966102i \(-0.583117\pi\)
−0.258161 + 0.966102i \(0.583117\pi\)
\(564\) 24137.6 1.80208
\(565\) 0 0
\(566\) 4646.20 0.345043
\(567\) 1763.02 0.130582
\(568\) −29977.9 −2.21451
\(569\) 4008.52 0.295336 0.147668 0.989037i \(-0.452823\pi\)
0.147668 + 0.989037i \(0.452823\pi\)
\(570\) 0 0
\(571\) −6259.59 −0.458766 −0.229383 0.973336i \(-0.573671\pi\)
−0.229383 + 0.973336i \(0.573671\pi\)
\(572\) 42998.9 3.14314
\(573\) 8899.02 0.648799
\(574\) 24520.3 1.78302
\(575\) 0 0
\(576\) 846.937 0.0612657
\(577\) 12282.9 0.886208 0.443104 0.896470i \(-0.353877\pi\)
0.443104 + 0.896470i \(0.353877\pi\)
\(578\) 2142.58 0.154186
\(579\) −5614.66 −0.403001
\(580\) 0 0
\(581\) 16116.0 1.15078
\(582\) −10846.8 −0.772533
\(583\) −3763.34 −0.267344
\(584\) −34892.5 −2.47237
\(585\) 0 0
\(586\) −2451.44 −0.172813
\(587\) 3526.91 0.247992 0.123996 0.992283i \(-0.460429\pi\)
0.123996 + 0.992283i \(0.460429\pi\)
\(588\) −7159.01 −0.502096
\(589\) 1.32415 9.26327e−5 0
\(590\) 0 0
\(591\) −5297.26 −0.368697
\(592\) 38878.2 2.69913
\(593\) 14783.4 1.02375 0.511875 0.859060i \(-0.328951\pi\)
0.511875 + 0.859060i \(0.328951\pi\)
\(594\) −7905.11 −0.546045
\(595\) 0 0
\(596\) 23247.9 1.59777
\(597\) 459.210 0.0314811
\(598\) 20313.8 1.38912
\(599\) 23249.3 1.58588 0.792940 0.609300i \(-0.208549\pi\)
0.792940 + 0.609300i \(0.208549\pi\)
\(600\) 0 0
\(601\) −15134.4 −1.02720 −0.513599 0.858031i \(-0.671688\pi\)
−0.513599 + 0.858031i \(0.671688\pi\)
\(602\) −9066.14 −0.613801
\(603\) 7994.09 0.539875
\(604\) −55314.2 −3.72633
\(605\) 0 0
\(606\) 19834.9 1.32960
\(607\) 26346.6 1.76174 0.880870 0.473358i \(-0.156958\pi\)
0.880870 + 0.473358i \(0.156958\pi\)
\(608\) −138.707 −0.00925217
\(609\) 1893.61 0.125998
\(610\) 0 0
\(611\) −18173.7 −1.20332
\(612\) −11994.0 −0.792206
\(613\) −3259.35 −0.214754 −0.107377 0.994218i \(-0.534245\pi\)
−0.107377 + 0.994218i \(0.534245\pi\)
\(614\) 41353.9 2.71809
\(615\) 0 0
\(616\) 65332.0 4.27322
\(617\) 6482.74 0.422990 0.211495 0.977379i \(-0.432167\pi\)
0.211495 + 0.977379i \(0.432167\pi\)
\(618\) 13801.8 0.898367
\(619\) −3720.63 −0.241591 −0.120796 0.992677i \(-0.538545\pi\)
−0.120796 + 0.992677i \(0.538545\pi\)
\(620\) 0 0
\(621\) −2596.52 −0.167785
\(622\) −11231.1 −0.723994
\(623\) −19489.3 −1.25333
\(624\) −15227.7 −0.976917
\(625\) 0 0
\(626\) −56027.4 −3.57717
\(627\) 112.906 0.00719142
\(628\) 27625.6 1.75539
\(629\) −23056.2 −1.46154
\(630\) 0 0
\(631\) −13113.6 −0.827328 −0.413664 0.910430i \(-0.635751\pi\)
−0.413664 + 0.910430i \(0.635751\pi\)
\(632\) 11658.9 0.733809
\(633\) −16898.6 −1.06107
\(634\) −44270.2 −2.77318
\(635\) 0 0
\(636\) 3606.15 0.224832
\(637\) 5390.19 0.335270
\(638\) −8490.68 −0.526880
\(639\) −5136.32 −0.317981
\(640\) 0 0
\(641\) 25815.2 1.59070 0.795352 0.606148i \(-0.207286\pi\)
0.795352 + 0.606148i \(0.207286\pi\)
\(642\) −31973.0 −1.96553
\(643\) −9425.88 −0.578103 −0.289052 0.957313i \(-0.593340\pi\)
−0.289052 + 0.957313i \(0.593340\pi\)
\(644\) 38204.1 2.33766
\(645\) 0 0
\(646\) 246.391 0.0150064
\(647\) −2734.65 −0.166167 −0.0830836 0.996543i \(-0.526477\pi\)
−0.0830836 + 0.996543i \(0.526477\pi\)
\(648\) 4254.77 0.257937
\(649\) −31515.5 −1.90615
\(650\) 0 0
\(651\) 131.280 0.00790363
\(652\) 57218.0 3.43686
\(653\) −602.998 −0.0361365 −0.0180683 0.999837i \(-0.505752\pi\)
−0.0180683 + 0.999837i \(0.505752\pi\)
\(654\) 21310.1 1.27414
\(655\) 0 0
\(656\) 27070.9 1.61119
\(657\) −5978.38 −0.355006
\(658\) −49160.2 −2.91256
\(659\) −23932.8 −1.41470 −0.707352 0.706862i \(-0.750110\pi\)
−0.707352 + 0.706862i \(0.750110\pi\)
\(660\) 0 0
\(661\) −12965.0 −0.762905 −0.381452 0.924388i \(-0.624576\pi\)
−0.381452 + 0.924388i \(0.624576\pi\)
\(662\) −51395.4 −3.01743
\(663\) 9030.58 0.528988
\(664\) 38893.4 2.27313
\(665\) 0 0
\(666\) 14561.3 0.847206
\(667\) −2788.85 −0.161896
\(668\) −12838.8 −0.743633
\(669\) −8888.67 −0.513686
\(670\) 0 0
\(671\) −8544.94 −0.491615
\(672\) −13751.8 −0.789416
\(673\) 4523.17 0.259072 0.129536 0.991575i \(-0.458651\pi\)
0.129536 + 0.991575i \(0.458651\pi\)
\(674\) −13004.7 −0.743208
\(675\) 0 0
\(676\) −9077.16 −0.516452
\(677\) 17685.7 1.00401 0.502007 0.864863i \(-0.332595\pi\)
0.502007 + 0.864863i \(0.332595\pi\)
\(678\) 7333.57 0.415404
\(679\) 15359.3 0.868093
\(680\) 0 0
\(681\) −3020.44 −0.169961
\(682\) −588.640 −0.0330501
\(683\) −31140.8 −1.74461 −0.872307 0.488958i \(-0.837377\pi\)
−0.872307 + 0.488958i \(0.837377\pi\)
\(684\) −108.190 −0.00604786
\(685\) 0 0
\(686\) −23670.8 −1.31743
\(687\) 3891.91 0.216136
\(688\) −10009.2 −0.554647
\(689\) −2715.15 −0.150129
\(690\) 0 0
\(691\) −18166.3 −1.00012 −0.500058 0.865992i \(-0.666688\pi\)
−0.500058 + 0.865992i \(0.666688\pi\)
\(692\) 31024.0 1.70427
\(693\) 11193.8 0.613589
\(694\) −41701.9 −2.28096
\(695\) 0 0
\(696\) 4569.94 0.248884
\(697\) −16054.0 −0.872437
\(698\) 15652.6 0.848794
\(699\) −4949.61 −0.267828
\(700\) 0 0
\(701\) −11583.6 −0.624120 −0.312060 0.950062i \(-0.601019\pi\)
−0.312060 + 0.950062i \(0.601019\pi\)
\(702\) −5703.33 −0.306636
\(703\) −207.974 −0.0111577
\(704\) 5377.39 0.287881
\(705\) 0 0
\(706\) 25587.5 1.36402
\(707\) −28086.6 −1.49407
\(708\) 30199.1 1.60304
\(709\) −20232.9 −1.07174 −0.535869 0.844301i \(-0.680016\pi\)
−0.535869 + 0.844301i \(0.680016\pi\)
\(710\) 0 0
\(711\) 1997.61 0.105367
\(712\) −47034.4 −2.47569
\(713\) −193.345 −0.0101554
\(714\) 24427.9 1.28038
\(715\) 0 0
\(716\) −29511.2 −1.54034
\(717\) −17113.2 −0.891359
\(718\) −18967.8 −0.985895
\(719\) 16489.7 0.855304 0.427652 0.903943i \(-0.359341\pi\)
0.427652 + 0.903943i \(0.359341\pi\)
\(720\) 0 0
\(721\) −19543.6 −1.00949
\(722\) −35141.1 −1.81138
\(723\) −21702.0 −1.11633
\(724\) 14426.6 0.740554
\(725\) 0 0
\(726\) −29732.5 −1.51994
\(727\) −27239.4 −1.38962 −0.694810 0.719194i \(-0.744511\pi\)
−0.694810 + 0.719194i \(0.744511\pi\)
\(728\) 47135.3 2.39966
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 5935.82 0.300334
\(732\) 8188.01 0.413439
\(733\) 8145.16 0.410434 0.205217 0.978716i \(-0.434210\pi\)
0.205217 + 0.978716i \(0.434210\pi\)
\(734\) 9923.57 0.499027
\(735\) 0 0
\(736\) 20253.2 1.01433
\(737\) 50756.3 2.53681
\(738\) 10139.0 0.505721
\(739\) 23926.8 1.19102 0.595508 0.803349i \(-0.296951\pi\)
0.595508 + 0.803349i \(0.296951\pi\)
\(740\) 0 0
\(741\) 81.4585 0.00403840
\(742\) −7344.53 −0.363378
\(743\) 2938.74 0.145103 0.0725517 0.997365i \(-0.476886\pi\)
0.0725517 + 0.997365i \(0.476886\pi\)
\(744\) 316.824 0.0156120
\(745\) 0 0
\(746\) −64251.3 −3.15336
\(747\) 6663.89 0.326397
\(748\) −76152.7 −3.72249
\(749\) 45274.3 2.20866
\(750\) 0 0
\(751\) 7625.31 0.370508 0.185254 0.982691i \(-0.440689\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(752\) −54273.9 −2.63187
\(753\) −17663.8 −0.854855
\(754\) −6125.80 −0.295873
\(755\) 0 0
\(756\) −10726.2 −0.516017
\(757\) 1641.02 0.0787898 0.0393949 0.999224i \(-0.487457\pi\)
0.0393949 + 0.999224i \(0.487457\pi\)
\(758\) 39165.5 1.87672
\(759\) −16485.8 −0.788404
\(760\) 0 0
\(761\) −18376.8 −0.875374 −0.437687 0.899127i \(-0.644202\pi\)
−0.437687 + 0.899127i \(0.644202\pi\)
\(762\) −20866.2 −0.991998
\(763\) −30175.4 −1.43175
\(764\) −54141.8 −2.56385
\(765\) 0 0
\(766\) −70884.2 −3.34354
\(767\) −22737.6 −1.07041
\(768\) 20744.8 0.974694
\(769\) −16315.5 −0.765085 −0.382543 0.923938i \(-0.624951\pi\)
−0.382543 + 0.923938i \(0.624951\pi\)
\(770\) 0 0
\(771\) 17254.0 0.805950
\(772\) 34159.7 1.59253
\(773\) 1255.81 0.0584325 0.0292163 0.999573i \(-0.490699\pi\)
0.0292163 + 0.999573i \(0.490699\pi\)
\(774\) −3748.81 −0.174093
\(775\) 0 0
\(776\) 37067.3 1.71474
\(777\) −20619.1 −0.952002
\(778\) −75922.6 −3.49866
\(779\) −144.812 −0.00666036
\(780\) 0 0
\(781\) −32611.6 −1.49415
\(782\) −35976.6 −1.64517
\(783\) 783.000 0.0357371
\(784\) 16097.2 0.733291
\(785\) 0 0
\(786\) −46033.8 −2.08902
\(787\) 18667.8 0.845534 0.422767 0.906238i \(-0.361059\pi\)
0.422767 + 0.906238i \(0.361059\pi\)
\(788\) 32228.6 1.45697
\(789\) 15589.6 0.703428
\(790\) 0 0
\(791\) −10384.5 −0.466788
\(792\) 27014.5 1.21202
\(793\) −6164.94 −0.276070
\(794\) 14582.1 0.651761
\(795\) 0 0
\(796\) −2793.84 −0.124403
\(797\) 7280.08 0.323556 0.161778 0.986827i \(-0.448277\pi\)
0.161778 + 0.986827i \(0.448277\pi\)
\(798\) 220.347 0.00977467
\(799\) 32186.4 1.42512
\(800\) 0 0
\(801\) −8058.73 −0.355482
\(802\) 39461.9 1.73747
\(803\) −37958.1 −1.66813
\(804\) −48636.2 −2.13341
\(805\) 0 0
\(806\) −424.688 −0.0185595
\(807\) 21605.0 0.942418
\(808\) −67782.8 −2.95122
\(809\) 44097.9 1.91644 0.958221 0.286030i \(-0.0923356\pi\)
0.958221 + 0.286030i \(0.0923356\pi\)
\(810\) 0 0
\(811\) −17249.1 −0.746854 −0.373427 0.927660i \(-0.621817\pi\)
−0.373427 + 0.927660i \(0.621817\pi\)
\(812\) −11520.8 −0.497905
\(813\) 4532.91 0.195543
\(814\) 92452.9 3.98093
\(815\) 0 0
\(816\) 26968.9 1.15698
\(817\) 53.5428 0.00229281
\(818\) −56204.1 −2.40236
\(819\) 8076.02 0.344565
\(820\) 0 0
\(821\) 11201.7 0.476177 0.238088 0.971244i \(-0.423479\pi\)
0.238088 + 0.971244i \(0.423479\pi\)
\(822\) −16412.6 −0.696419
\(823\) −12114.8 −0.513118 −0.256559 0.966529i \(-0.582589\pi\)
−0.256559 + 0.966529i \(0.582589\pi\)
\(824\) −47165.6 −1.99404
\(825\) 0 0
\(826\) −61505.5 −2.59086
\(827\) −37074.2 −1.55888 −0.779442 0.626474i \(-0.784498\pi\)
−0.779442 + 0.626474i \(0.784498\pi\)
\(828\) 15797.2 0.663033
\(829\) 611.209 0.0256069 0.0128035 0.999918i \(-0.495924\pi\)
0.0128035 + 0.999918i \(0.495924\pi\)
\(830\) 0 0
\(831\) 20719.8 0.864935
\(832\) 3879.64 0.161662
\(833\) −9546.23 −0.397068
\(834\) 12962.6 0.538199
\(835\) 0 0
\(836\) −686.920 −0.0284182
\(837\) 54.2837 0.00224172
\(838\) −55135.6 −2.27282
\(839\) −43306.8 −1.78202 −0.891010 0.453983i \(-0.850003\pi\)
−0.891010 + 0.453983i \(0.850003\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −18251.6 −0.747020
\(843\) 16660.5 0.680685
\(844\) 102811. 4.19301
\(845\) 0 0
\(846\) −20327.5 −0.826094
\(847\) 42101.7 1.70795
\(848\) −8108.51 −0.328358
\(849\) −2720.43 −0.109971
\(850\) 0 0
\(851\) 30367.1 1.22323
\(852\) 31249.4 1.25656
\(853\) 3447.15 0.138368 0.0691842 0.997604i \(-0.477960\pi\)
0.0691842 + 0.997604i \(0.477960\pi\)
\(854\) −16676.3 −0.668209
\(855\) 0 0
\(856\) 109263. 4.36276
\(857\) 42416.7 1.69069 0.845347 0.534217i \(-0.179393\pi\)
0.845347 + 0.534217i \(0.179393\pi\)
\(858\) −36211.7 −1.44085
\(859\) 29061.5 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(860\) 0 0
\(861\) −14357.0 −0.568277
\(862\) −5568.31 −0.220020
\(863\) −20744.0 −0.818232 −0.409116 0.912482i \(-0.634163\pi\)
−0.409116 + 0.912482i \(0.634163\pi\)
\(864\) −5686.31 −0.223903
\(865\) 0 0
\(866\) −21446.7 −0.841556
\(867\) −1254.52 −0.0491414
\(868\) −798.708 −0.0312326
\(869\) 12683.2 0.495109
\(870\) 0 0
\(871\) 36619.3 1.42457
\(872\) −72823.8 −2.82812
\(873\) 6350.99 0.246218
\(874\) −324.519 −0.0125595
\(875\) 0 0
\(876\) 36372.5 1.40287
\(877\) 26329.7 1.01379 0.506893 0.862009i \(-0.330794\pi\)
0.506893 + 0.862009i \(0.330794\pi\)
\(878\) 20293.3 0.780028
\(879\) 1435.36 0.0550780
\(880\) 0 0
\(881\) −7199.40 −0.275317 −0.137658 0.990480i \(-0.543958\pi\)
−0.137658 + 0.990480i \(0.543958\pi\)
\(882\) 6028.99 0.230166
\(883\) −64.9911 −0.00247693 −0.00123846 0.999999i \(-0.500394\pi\)
−0.00123846 + 0.999999i \(0.500394\pi\)
\(884\) −54942.2 −2.09039
\(885\) 0 0
\(886\) −8687.61 −0.329420
\(887\) −12243.2 −0.463456 −0.231728 0.972781i \(-0.574438\pi\)
−0.231728 + 0.972781i \(0.574438\pi\)
\(888\) −49761.0 −1.88048
\(889\) 29546.9 1.11470
\(890\) 0 0
\(891\) 4628.58 0.174033
\(892\) 54078.8 2.02992
\(893\) 290.331 0.0108797
\(894\) −19578.3 −0.732433
\(895\) 0 0
\(896\) −26177.0 −0.976018
\(897\) −11894.1 −0.442734
\(898\) 3356.23 0.124720
\(899\) 58.3047 0.00216304
\(900\) 0 0
\(901\) 4808.64 0.177801
\(902\) 64374.9 2.37633
\(903\) 5308.38 0.195628
\(904\) −25061.3 −0.922043
\(905\) 0 0
\(906\) 46583.1 1.70819
\(907\) −30619.9 −1.12097 −0.560483 0.828166i \(-0.689384\pi\)
−0.560483 + 0.828166i \(0.689384\pi\)
\(908\) 18376.4 0.671631
\(909\) −11613.7 −0.423764
\(910\) 0 0
\(911\) 3062.05 0.111362 0.0556808 0.998449i \(-0.482267\pi\)
0.0556808 + 0.998449i \(0.482267\pi\)
\(912\) 243.267 0.00883265
\(913\) 42310.5 1.53370
\(914\) −54779.5 −1.98243
\(915\) 0 0
\(916\) −23678.4 −0.854101
\(917\) 65184.7 2.34742
\(918\) 10100.8 0.363155
\(919\) −1527.71 −0.0548361 −0.0274180 0.999624i \(-0.508729\pi\)
−0.0274180 + 0.999624i \(0.508729\pi\)
\(920\) 0 0
\(921\) −24213.4 −0.866296
\(922\) 78179.9 2.79253
\(923\) −23528.4 −0.839054
\(924\) −68103.1 −2.42471
\(925\) 0 0
\(926\) 47957.5 1.70192
\(927\) −8081.21 −0.286323
\(928\) −6107.52 −0.216044
\(929\) −968.476 −0.0342031 −0.0171015 0.999854i \(-0.505444\pi\)
−0.0171015 + 0.999854i \(0.505444\pi\)
\(930\) 0 0
\(931\) −86.1098 −0.00303129
\(932\) 30113.5 1.05837
\(933\) 6575.98 0.230748
\(934\) −60669.0 −2.12543
\(935\) 0 0
\(936\) 19490.2 0.680618
\(937\) 47051.9 1.64047 0.820234 0.572029i \(-0.193843\pi\)
0.820234 + 0.572029i \(0.193843\pi\)
\(938\) 99055.8 3.44807
\(939\) 32805.0 1.14010
\(940\) 0 0
\(941\) −31285.3 −1.08382 −0.541908 0.840438i \(-0.682298\pi\)
−0.541908 + 0.840438i \(0.682298\pi\)
\(942\) −23265.0 −0.804688
\(943\) 21144.6 0.730183
\(944\) −67903.3 −2.34117
\(945\) 0 0
\(946\) −23802.0 −0.818045
\(947\) 1155.25 0.0396416 0.0198208 0.999804i \(-0.493690\pi\)
0.0198208 + 0.999804i \(0.493690\pi\)
\(948\) −12153.5 −0.416378
\(949\) −27385.7 −0.936752
\(950\) 0 0
\(951\) 25921.0 0.883853
\(952\) −83478.5 −2.84197
\(953\) −8073.69 −0.274431 −0.137215 0.990541i \(-0.543815\pi\)
−0.137215 + 0.990541i \(0.543815\pi\)
\(954\) −3036.93 −0.103065
\(955\) 0 0
\(956\) 104117. 3.52236
\(957\) 4971.44 0.167925
\(958\) 2977.22 0.100407
\(959\) 23240.6 0.782563
\(960\) 0 0
\(961\) −29787.0 −0.999864
\(962\) 66702.3 2.23552
\(963\) 18720.7 0.626446
\(964\) 132035. 4.41137
\(965\) 0 0
\(966\) −32173.7 −1.07161
\(967\) −30587.8 −1.01721 −0.508603 0.861001i \(-0.669838\pi\)
−0.508603 + 0.861001i \(0.669838\pi\)
\(968\) 101606. 3.37370
\(969\) −144.266 −0.00478276
\(970\) 0 0
\(971\) −37585.6 −1.24220 −0.621101 0.783730i \(-0.713314\pi\)
−0.621101 + 0.783730i \(0.713314\pi\)
\(972\) −4435.24 −0.146359
\(973\) −18355.3 −0.604772
\(974\) 30726.4 1.01082
\(975\) 0 0
\(976\) −18410.9 −0.603811
\(977\) −605.357 −0.0198230 −0.00991151 0.999951i \(-0.503155\pi\)
−0.00991151 + 0.999951i \(0.503155\pi\)
\(978\) −48186.4 −1.57549
\(979\) −51166.7 −1.67037
\(980\) 0 0
\(981\) −12477.4 −0.406089
\(982\) 95146.6 3.09190
\(983\) −24370.9 −0.790755 −0.395378 0.918519i \(-0.629386\pi\)
−0.395378 + 0.918519i \(0.629386\pi\)
\(984\) −34648.5 −1.12251
\(985\) 0 0
\(986\) 10849.0 0.350409
\(987\) 28784.2 0.928278
\(988\) −495.594 −0.0159585
\(989\) −7818.02 −0.251363
\(990\) 0 0
\(991\) 53287.8 1.70812 0.854058 0.520178i \(-0.174134\pi\)
0.854058 + 0.520178i \(0.174134\pi\)
\(992\) −423.421 −0.0135520
\(993\) 30092.9 0.961701
\(994\) −63644.7 −2.03087
\(995\) 0 0
\(996\) −40543.1 −1.28982
\(997\) −880.741 −0.0279773 −0.0139886 0.999902i \(-0.504453\pi\)
−0.0139886 + 0.999902i \(0.504453\pi\)
\(998\) 17740.4 0.562687
\(999\) −8525.90 −0.270017
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.m.1.7 7
5.4 even 2 435.4.a.j.1.1 7
15.14 odd 2 1305.4.a.m.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.1 7 5.4 even 2
1305.4.a.m.1.7 7 15.14 odd 2
2175.4.a.m.1.7 7 1.1 even 1 trivial