Properties

Label 2175.4.a.m.1.5
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.26184\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26184 q^{2} -3.00000 q^{3} -6.40776 q^{4} -3.78552 q^{6} +13.4311 q^{7} -18.1803 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+1.26184 q^{2} -3.00000 q^{3} -6.40776 q^{4} -3.78552 q^{6} +13.4311 q^{7} -18.1803 q^{8} +9.00000 q^{9} -1.30869 q^{11} +19.2233 q^{12} -85.6641 q^{13} +16.9479 q^{14} +28.3214 q^{16} -67.9685 q^{17} +11.3566 q^{18} -63.3429 q^{19} -40.2934 q^{21} -1.65136 q^{22} +139.990 q^{23} +54.5409 q^{24} -108.094 q^{26} -27.0000 q^{27} -86.0634 q^{28} -29.0000 q^{29} -170.385 q^{31} +181.179 q^{32} +3.92607 q^{33} -85.7654 q^{34} -57.6698 q^{36} +405.970 q^{37} -79.9286 q^{38} +256.992 q^{39} -447.863 q^{41} -50.8438 q^{42} -407.779 q^{43} +8.38576 q^{44} +176.645 q^{46} +178.857 q^{47} -84.9643 q^{48} -162.605 q^{49} +203.905 q^{51} +548.915 q^{52} -93.3357 q^{53} -34.0697 q^{54} -244.182 q^{56} +190.029 q^{57} -36.5934 q^{58} +279.796 q^{59} -793.549 q^{61} -214.999 q^{62} +120.880 q^{63} +2.04805 q^{64} +4.95407 q^{66} -460.471 q^{67} +435.526 q^{68} -419.971 q^{69} +803.153 q^{71} -163.623 q^{72} +150.833 q^{73} +512.269 q^{74} +405.886 q^{76} -17.5772 q^{77} +324.283 q^{78} -313.814 q^{79} +81.0000 q^{81} -565.132 q^{82} -250.514 q^{83} +258.190 q^{84} -514.552 q^{86} +87.0000 q^{87} +23.7923 q^{88} -97.2972 q^{89} -1150.57 q^{91} -897.024 q^{92} +511.156 q^{93} +225.689 q^{94} -543.538 q^{96} +1342.23 q^{97} -205.181 q^{98} -11.7782 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9} - 11 q^{11} - 45 q^{12} + 133 q^{13} - 75 q^{14} - 53 q^{16} - 21 q^{17} + 9 q^{18} - 170 q^{19} - 111 q^{21} + 369 q^{22} + 68 q^{23} - 108 q^{24} + 181 q^{26} - 189 q^{27} + 637 q^{28} - 203 q^{29} - 480 q^{31} + 779 q^{32} + 33 q^{33} - 897 q^{34} + 135 q^{36} + 1032 q^{37} + 194 q^{38} - 399 q^{39} - 638 q^{41} + 225 q^{42} + 512 q^{43} + 625 q^{44} + 16 q^{46} + 111 q^{47} + 159 q^{48} + 178 q^{49} + 63 q^{51} + 1263 q^{52} - 410 q^{53} - 27 q^{54} + 1174 q^{56} + 510 q^{57} - 29 q^{58} - 426 q^{59} - 1192 q^{61} - 460 q^{62} + 333 q^{63} + 390 q^{64} - 1107 q^{66} + 1671 q^{67} - 1509 q^{68} - 204 q^{69} - 1324 q^{71} + 324 q^{72} + 852 q^{73} + 1780 q^{74} - 564 q^{76} + 2107 q^{77} - 543 q^{78} + 366 q^{79} + 567 q^{81} + 318 q^{82} - 470 q^{83} - 1911 q^{84} - 2196 q^{86} + 609 q^{87} + 2518 q^{88} + 51 q^{89} - 1297 q^{91} + 684 q^{92} + 1440 q^{93} - 1837 q^{94} - 2337 q^{96} + 3322 q^{97} - 1068 q^{98} - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26184 0.446128 0.223064 0.974804i \(-0.428394\pi\)
0.223064 + 0.974804i \(0.428394\pi\)
\(3\) −3.00000 −0.577350
\(4\) −6.40776 −0.800970
\(5\) 0 0
\(6\) −3.78552 −0.257572
\(7\) 13.4311 0.725213 0.362606 0.931942i \(-0.381887\pi\)
0.362606 + 0.931942i \(0.381887\pi\)
\(8\) −18.1803 −0.803463
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −1.30869 −0.0358713 −0.0179357 0.999839i \(-0.505709\pi\)
−0.0179357 + 0.999839i \(0.505709\pi\)
\(12\) 19.2233 0.462440
\(13\) −85.6641 −1.82761 −0.913806 0.406151i \(-0.866871\pi\)
−0.913806 + 0.406151i \(0.866871\pi\)
\(14\) 16.9479 0.323538
\(15\) 0 0
\(16\) 28.3214 0.442523
\(17\) −67.9685 −0.969693 −0.484846 0.874599i \(-0.661124\pi\)
−0.484846 + 0.874599i \(0.661124\pi\)
\(18\) 11.3566 0.148709
\(19\) −63.3429 −0.764834 −0.382417 0.923990i \(-0.624908\pi\)
−0.382417 + 0.923990i \(0.624908\pi\)
\(20\) 0 0
\(21\) −40.2934 −0.418702
\(22\) −1.65136 −0.0160032
\(23\) 139.990 1.26913 0.634565 0.772870i \(-0.281179\pi\)
0.634565 + 0.772870i \(0.281179\pi\)
\(24\) 54.5409 0.463880
\(25\) 0 0
\(26\) −108.094 −0.815349
\(27\) −27.0000 −0.192450
\(28\) −86.0634 −0.580874
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −170.385 −0.987164 −0.493582 0.869699i \(-0.664313\pi\)
−0.493582 + 0.869699i \(0.664313\pi\)
\(32\) 181.179 1.00088
\(33\) 3.92607 0.0207103
\(34\) −85.7654 −0.432607
\(35\) 0 0
\(36\) −57.6698 −0.266990
\(37\) 405.970 1.80381 0.901905 0.431934i \(-0.142169\pi\)
0.901905 + 0.431934i \(0.142169\pi\)
\(38\) −79.9286 −0.341214
\(39\) 256.992 1.05517
\(40\) 0 0
\(41\) −447.863 −1.70596 −0.852982 0.521940i \(-0.825208\pi\)
−0.852982 + 0.521940i \(0.825208\pi\)
\(42\) −50.8438 −0.186795
\(43\) −407.779 −1.44618 −0.723090 0.690754i \(-0.757279\pi\)
−0.723090 + 0.690754i \(0.757279\pi\)
\(44\) 8.38576 0.0287318
\(45\) 0 0
\(46\) 176.645 0.566194
\(47\) 178.857 0.555086 0.277543 0.960713i \(-0.410480\pi\)
0.277543 + 0.960713i \(0.410480\pi\)
\(48\) −84.9643 −0.255491
\(49\) −162.605 −0.474066
\(50\) 0 0
\(51\) 203.905 0.559852
\(52\) 548.915 1.46386
\(53\) −93.3357 −0.241899 −0.120949 0.992659i \(-0.538594\pi\)
−0.120949 + 0.992659i \(0.538594\pi\)
\(54\) −34.0697 −0.0858574
\(55\) 0 0
\(56\) −244.182 −0.582682
\(57\) 190.029 0.441577
\(58\) −36.5934 −0.0828439
\(59\) 279.796 0.617396 0.308698 0.951160i \(-0.400107\pi\)
0.308698 + 0.951160i \(0.400107\pi\)
\(60\) 0 0
\(61\) −793.549 −1.66563 −0.832816 0.553550i \(-0.813273\pi\)
−0.832816 + 0.553550i \(0.813273\pi\)
\(62\) −214.999 −0.440402
\(63\) 120.880 0.241738
\(64\) 2.04805 0.00400010
\(65\) 0 0
\(66\) 4.95407 0.00923945
\(67\) −460.471 −0.839635 −0.419818 0.907609i \(-0.637906\pi\)
−0.419818 + 0.907609i \(0.637906\pi\)
\(68\) 435.526 0.776695
\(69\) −419.971 −0.732732
\(70\) 0 0
\(71\) 803.153 1.34249 0.671244 0.741236i \(-0.265760\pi\)
0.671244 + 0.741236i \(0.265760\pi\)
\(72\) −163.623 −0.267821
\(73\) 150.833 0.241832 0.120916 0.992663i \(-0.461417\pi\)
0.120916 + 0.992663i \(0.461417\pi\)
\(74\) 512.269 0.804730
\(75\) 0 0
\(76\) 405.886 0.612609
\(77\) −17.5772 −0.0260143
\(78\) 324.283 0.470742
\(79\) −313.814 −0.446922 −0.223461 0.974713i \(-0.571735\pi\)
−0.223461 + 0.974713i \(0.571735\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −565.132 −0.761078
\(83\) −250.514 −0.331295 −0.165648 0.986185i \(-0.552971\pi\)
−0.165648 + 0.986185i \(0.552971\pi\)
\(84\) 258.190 0.335368
\(85\) 0 0
\(86\) −514.552 −0.645181
\(87\) 87.0000 0.107211
\(88\) 23.7923 0.0288213
\(89\) −97.2972 −0.115882 −0.0579409 0.998320i \(-0.518453\pi\)
−0.0579409 + 0.998320i \(0.518453\pi\)
\(90\) 0 0
\(91\) −1150.57 −1.32541
\(92\) −897.024 −1.01653
\(93\) 511.156 0.569940
\(94\) 225.689 0.247639
\(95\) 0 0
\(96\) −543.538 −0.577861
\(97\) 1342.23 1.40497 0.702487 0.711697i \(-0.252073\pi\)
0.702487 + 0.711697i \(0.252073\pi\)
\(98\) −205.181 −0.211494
\(99\) −11.7782 −0.0119571
\(100\) 0 0
\(101\) 73.7087 0.0726167 0.0363084 0.999341i \(-0.488440\pi\)
0.0363084 + 0.999341i \(0.488440\pi\)
\(102\) 257.296 0.249766
\(103\) 1307.09 1.25040 0.625199 0.780465i \(-0.285018\pi\)
0.625199 + 0.780465i \(0.285018\pi\)
\(104\) 1557.40 1.46842
\(105\) 0 0
\(106\) −117.775 −0.107918
\(107\) −845.454 −0.763861 −0.381930 0.924191i \(-0.624741\pi\)
−0.381930 + 0.924191i \(0.624741\pi\)
\(108\) 173.009 0.154147
\(109\) −1502.99 −1.32074 −0.660370 0.750941i \(-0.729600\pi\)
−0.660370 + 0.750941i \(0.729600\pi\)
\(110\) 0 0
\(111\) −1217.91 −1.04143
\(112\) 380.389 0.320923
\(113\) 317.218 0.264083 0.132042 0.991244i \(-0.457847\pi\)
0.132042 + 0.991244i \(0.457847\pi\)
\(114\) 239.786 0.197000
\(115\) 0 0
\(116\) 185.825 0.148736
\(117\) −770.977 −0.609204
\(118\) 353.058 0.275438
\(119\) −912.893 −0.703234
\(120\) 0 0
\(121\) −1329.29 −0.998713
\(122\) −1001.33 −0.743085
\(123\) 1343.59 0.984939
\(124\) 1091.79 0.790689
\(125\) 0 0
\(126\) 152.531 0.107846
\(127\) 1936.01 1.35270 0.676349 0.736581i \(-0.263561\pi\)
0.676349 + 0.736581i \(0.263561\pi\)
\(128\) −1446.85 −0.999100
\(129\) 1223.34 0.834952
\(130\) 0 0
\(131\) −1234.54 −0.823379 −0.411689 0.911324i \(-0.635061\pi\)
−0.411689 + 0.911324i \(0.635061\pi\)
\(132\) −25.1573 −0.0165883
\(133\) −850.767 −0.554668
\(134\) −581.042 −0.374585
\(135\) 0 0
\(136\) 1235.69 0.779112
\(137\) 886.190 0.552645 0.276322 0.961065i \(-0.410884\pi\)
0.276322 + 0.961065i \(0.410884\pi\)
\(138\) −529.936 −0.326892
\(139\) 1582.12 0.965421 0.482711 0.875780i \(-0.339652\pi\)
0.482711 + 0.875780i \(0.339652\pi\)
\(140\) 0 0
\(141\) −536.572 −0.320479
\(142\) 1013.45 0.598922
\(143\) 112.108 0.0655588
\(144\) 254.893 0.147508
\(145\) 0 0
\(146\) 190.328 0.107888
\(147\) 487.814 0.273702
\(148\) −2601.36 −1.44480
\(149\) −1649.57 −0.906969 −0.453485 0.891264i \(-0.649819\pi\)
−0.453485 + 0.891264i \(0.649819\pi\)
\(150\) 0 0
\(151\) 343.852 0.185313 0.0926565 0.995698i \(-0.470464\pi\)
0.0926565 + 0.995698i \(0.470464\pi\)
\(152\) 1151.59 0.614516
\(153\) −611.716 −0.323231
\(154\) −22.1796 −0.0116057
\(155\) 0 0
\(156\) −1646.75 −0.845161
\(157\) −2493.83 −1.26770 −0.633851 0.773455i \(-0.718527\pi\)
−0.633851 + 0.773455i \(0.718527\pi\)
\(158\) −395.983 −0.199384
\(159\) 280.007 0.139660
\(160\) 0 0
\(161\) 1880.23 0.920389
\(162\) 102.209 0.0495698
\(163\) 1915.12 0.920270 0.460135 0.887849i \(-0.347801\pi\)
0.460135 + 0.887849i \(0.347801\pi\)
\(164\) 2869.80 1.36643
\(165\) 0 0
\(166\) −316.109 −0.147800
\(167\) −99.5806 −0.0461424 −0.0230712 0.999734i \(-0.507344\pi\)
−0.0230712 + 0.999734i \(0.507344\pi\)
\(168\) 732.546 0.336411
\(169\) 5141.34 2.34016
\(170\) 0 0
\(171\) −570.086 −0.254945
\(172\) 2612.95 1.15835
\(173\) −2139.30 −0.940160 −0.470080 0.882624i \(-0.655775\pi\)
−0.470080 + 0.882624i \(0.655775\pi\)
\(174\) 109.780 0.0478299
\(175\) 0 0
\(176\) −37.0640 −0.0158739
\(177\) −839.389 −0.356454
\(178\) −122.773 −0.0516981
\(179\) 1863.54 0.778142 0.389071 0.921208i \(-0.372796\pi\)
0.389071 + 0.921208i \(0.372796\pi\)
\(180\) 0 0
\(181\) −3008.76 −1.23558 −0.617788 0.786345i \(-0.711971\pi\)
−0.617788 + 0.786345i \(0.711971\pi\)
\(182\) −1451.83 −0.591301
\(183\) 2380.65 0.961653
\(184\) −2545.06 −1.01970
\(185\) 0 0
\(186\) 644.997 0.254266
\(187\) 88.9496 0.0347842
\(188\) −1146.07 −0.444607
\(189\) −362.641 −0.139567
\(190\) 0 0
\(191\) 5175.24 1.96056 0.980280 0.197611i \(-0.0633184\pi\)
0.980280 + 0.197611i \(0.0633184\pi\)
\(192\) −6.14415 −0.00230946
\(193\) 3407.89 1.27101 0.635505 0.772097i \(-0.280792\pi\)
0.635505 + 0.772097i \(0.280792\pi\)
\(194\) 1693.68 0.626798
\(195\) 0 0
\(196\) 1041.93 0.379713
\(197\) 2662.23 0.962823 0.481412 0.876495i \(-0.340124\pi\)
0.481412 + 0.876495i \(0.340124\pi\)
\(198\) −14.8622 −0.00533440
\(199\) 1124.12 0.400437 0.200218 0.979751i \(-0.435835\pi\)
0.200218 + 0.979751i \(0.435835\pi\)
\(200\) 0 0
\(201\) 1381.41 0.484764
\(202\) 93.0086 0.0323964
\(203\) −389.503 −0.134669
\(204\) −1306.58 −0.448425
\(205\) 0 0
\(206\) 1649.33 0.557837
\(207\) 1259.91 0.423043
\(208\) −2426.13 −0.808759
\(209\) 82.8961 0.0274356
\(210\) 0 0
\(211\) 109.248 0.0356442 0.0178221 0.999841i \(-0.494327\pi\)
0.0178221 + 0.999841i \(0.494327\pi\)
\(212\) 598.072 0.193754
\(213\) −2409.46 −0.775086
\(214\) −1066.83 −0.340780
\(215\) 0 0
\(216\) 490.868 0.154627
\(217\) −2288.47 −0.715904
\(218\) −1896.54 −0.589219
\(219\) −452.500 −0.139622
\(220\) 0 0
\(221\) 5822.46 1.77222
\(222\) −1536.81 −0.464611
\(223\) 4655.65 1.39805 0.699026 0.715097i \(-0.253617\pi\)
0.699026 + 0.715097i \(0.253617\pi\)
\(224\) 2433.45 0.725854
\(225\) 0 0
\(226\) 400.279 0.117815
\(227\) −3715.56 −1.08639 −0.543195 0.839606i \(-0.682786\pi\)
−0.543195 + 0.839606i \(0.682786\pi\)
\(228\) −1217.66 −0.353690
\(229\) 2437.74 0.703451 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(230\) 0 0
\(231\) 52.7315 0.0150194
\(232\) 527.228 0.149199
\(233\) 2704.29 0.760360 0.380180 0.924912i \(-0.375862\pi\)
0.380180 + 0.924912i \(0.375862\pi\)
\(234\) −972.850 −0.271783
\(235\) 0 0
\(236\) −1792.87 −0.494516
\(237\) 941.441 0.258030
\(238\) −1151.93 −0.313732
\(239\) 6018.67 1.62893 0.814467 0.580210i \(-0.197030\pi\)
0.814467 + 0.580210i \(0.197030\pi\)
\(240\) 0 0
\(241\) −1244.90 −0.332743 −0.166372 0.986063i \(-0.553205\pi\)
−0.166372 + 0.986063i \(0.553205\pi\)
\(242\) −1677.35 −0.445554
\(243\) −243.000 −0.0641500
\(244\) 5084.87 1.33412
\(245\) 0 0
\(246\) 1695.40 0.439409
\(247\) 5426.21 1.39782
\(248\) 3097.65 0.793150
\(249\) 751.543 0.191273
\(250\) 0 0
\(251\) 2477.48 0.623016 0.311508 0.950244i \(-0.399166\pi\)
0.311508 + 0.950244i \(0.399166\pi\)
\(252\) −774.571 −0.193625
\(253\) −183.204 −0.0455254
\(254\) 2442.93 0.603477
\(255\) 0 0
\(256\) −1842.08 −0.449727
\(257\) 4778.08 1.15972 0.579860 0.814716i \(-0.303107\pi\)
0.579860 + 0.814716i \(0.303107\pi\)
\(258\) 1543.66 0.372495
\(259\) 5452.63 1.30815
\(260\) 0 0
\(261\) −261.000 −0.0618984
\(262\) −1557.80 −0.367332
\(263\) 1571.56 0.368467 0.184233 0.982883i \(-0.441020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(264\) −71.3770 −0.0166400
\(265\) 0 0
\(266\) −1073.53 −0.247453
\(267\) 291.892 0.0669044
\(268\) 2950.59 0.672522
\(269\) 4946.58 1.12118 0.560591 0.828093i \(-0.310574\pi\)
0.560591 + 0.828093i \(0.310574\pi\)
\(270\) 0 0
\(271\) −914.942 −0.205088 −0.102544 0.994728i \(-0.532698\pi\)
−0.102544 + 0.994728i \(0.532698\pi\)
\(272\) −1924.97 −0.429111
\(273\) 3451.70 0.765224
\(274\) 1118.23 0.246550
\(275\) 0 0
\(276\) 2691.07 0.586896
\(277\) 2441.56 0.529599 0.264799 0.964304i \(-0.414694\pi\)
0.264799 + 0.964304i \(0.414694\pi\)
\(278\) 1996.38 0.430701
\(279\) −1533.47 −0.329055
\(280\) 0 0
\(281\) −5311.04 −1.12751 −0.563755 0.825942i \(-0.690644\pi\)
−0.563755 + 0.825942i \(0.690644\pi\)
\(282\) −677.068 −0.142975
\(283\) −669.167 −0.140558 −0.0702789 0.997527i \(-0.522389\pi\)
−0.0702789 + 0.997527i \(0.522389\pi\)
\(284\) −5146.41 −1.07529
\(285\) 0 0
\(286\) 141.462 0.0292476
\(287\) −6015.31 −1.23719
\(288\) 1630.62 0.333628
\(289\) −293.286 −0.0596960
\(290\) 0 0
\(291\) −4026.68 −0.811162
\(292\) −966.504 −0.193700
\(293\) 7468.02 1.48903 0.744516 0.667604i \(-0.232680\pi\)
0.744516 + 0.667604i \(0.232680\pi\)
\(294\) 615.544 0.122106
\(295\) 0 0
\(296\) −7380.65 −1.44930
\(297\) 35.3346 0.00690344
\(298\) −2081.50 −0.404624
\(299\) −11992.1 −2.31948
\(300\) 0 0
\(301\) −5476.93 −1.04879
\(302\) 433.886 0.0826733
\(303\) −221.126 −0.0419253
\(304\) −1793.96 −0.338456
\(305\) 0 0
\(306\) −771.888 −0.144202
\(307\) 9927.63 1.84560 0.922801 0.385278i \(-0.125894\pi\)
0.922801 + 0.385278i \(0.125894\pi\)
\(308\) 112.630 0.0208367
\(309\) −3921.26 −0.721918
\(310\) 0 0
\(311\) 3131.42 0.570953 0.285477 0.958386i \(-0.407848\pi\)
0.285477 + 0.958386i \(0.407848\pi\)
\(312\) −4672.20 −0.847792
\(313\) −8434.75 −1.52320 −0.761598 0.648050i \(-0.775585\pi\)
−0.761598 + 0.648050i \(0.775585\pi\)
\(314\) −3146.82 −0.565558
\(315\) 0 0
\(316\) 2010.84 0.357971
\(317\) 9162.80 1.62345 0.811725 0.584039i \(-0.198529\pi\)
0.811725 + 0.584039i \(0.198529\pi\)
\(318\) 353.324 0.0623064
\(319\) 37.9520 0.00666114
\(320\) 0 0
\(321\) 2536.36 0.441015
\(322\) 2372.55 0.410611
\(323\) 4305.32 0.741654
\(324\) −519.028 −0.0889966
\(325\) 0 0
\(326\) 2416.58 0.410558
\(327\) 4508.98 0.762529
\(328\) 8142.29 1.37068
\(329\) 2402.26 0.402555
\(330\) 0 0
\(331\) 5194.87 0.862647 0.431323 0.902197i \(-0.358047\pi\)
0.431323 + 0.902197i \(0.358047\pi\)
\(332\) 1605.23 0.265357
\(333\) 3653.73 0.601270
\(334\) −125.655 −0.0205854
\(335\) 0 0
\(336\) −1141.17 −0.185285
\(337\) 3217.15 0.520027 0.260014 0.965605i \(-0.416273\pi\)
0.260014 + 0.965605i \(0.416273\pi\)
\(338\) 6487.55 1.04401
\(339\) −951.655 −0.152468
\(340\) 0 0
\(341\) 222.981 0.0354109
\(342\) −719.358 −0.113738
\(343\) −6790.84 −1.06901
\(344\) 7413.54 1.16195
\(345\) 0 0
\(346\) −2699.45 −0.419432
\(347\) 609.761 0.0943334 0.0471667 0.998887i \(-0.484981\pi\)
0.0471667 + 0.998887i \(0.484981\pi\)
\(348\) −557.475 −0.0858730
\(349\) 4406.40 0.675843 0.337921 0.941174i \(-0.390276\pi\)
0.337921 + 0.941174i \(0.390276\pi\)
\(350\) 0 0
\(351\) 2312.93 0.351724
\(352\) −237.108 −0.0359031
\(353\) −2480.09 −0.373943 −0.186971 0.982365i \(-0.559867\pi\)
−0.186971 + 0.982365i \(0.559867\pi\)
\(354\) −1059.18 −0.159024
\(355\) 0 0
\(356\) 623.457 0.0928178
\(357\) 2738.68 0.406012
\(358\) 2351.49 0.347151
\(359\) 6578.82 0.967177 0.483589 0.875295i \(-0.339333\pi\)
0.483589 + 0.875295i \(0.339333\pi\)
\(360\) 0 0
\(361\) −2846.68 −0.415028
\(362\) −3796.57 −0.551225
\(363\) 3987.86 0.576607
\(364\) 7372.55 1.06161
\(365\) 0 0
\(366\) 3004.00 0.429020
\(367\) 731.114 0.103989 0.0519943 0.998647i \(-0.483442\pi\)
0.0519943 + 0.998647i \(0.483442\pi\)
\(368\) 3964.72 0.561618
\(369\) −4030.77 −0.568655
\(370\) 0 0
\(371\) −1253.60 −0.175428
\(372\) −3275.36 −0.456504
\(373\) 1673.03 0.232242 0.116121 0.993235i \(-0.462954\pi\)
0.116121 + 0.993235i \(0.462954\pi\)
\(374\) 112.240 0.0155182
\(375\) 0 0
\(376\) −3251.68 −0.445991
\(377\) 2484.26 0.339379
\(378\) −457.594 −0.0622649
\(379\) 3760.44 0.509659 0.254830 0.966986i \(-0.417981\pi\)
0.254830 + 0.966986i \(0.417981\pi\)
\(380\) 0 0
\(381\) −5808.02 −0.780981
\(382\) 6530.33 0.874661
\(383\) 12540.8 1.67312 0.836562 0.547872i \(-0.184562\pi\)
0.836562 + 0.547872i \(0.184562\pi\)
\(384\) 4340.55 0.576831
\(385\) 0 0
\(386\) 4300.21 0.567033
\(387\) −3670.01 −0.482060
\(388\) −8600.66 −1.12534
\(389\) 5779.21 0.753259 0.376629 0.926364i \(-0.377083\pi\)
0.376629 + 0.926364i \(0.377083\pi\)
\(390\) 0 0
\(391\) −9514.92 −1.23067
\(392\) 2956.20 0.380895
\(393\) 3703.63 0.475378
\(394\) 3359.31 0.429542
\(395\) 0 0
\(396\) 75.4719 0.00957728
\(397\) −14394.6 −1.81976 −0.909881 0.414869i \(-0.863827\pi\)
−0.909881 + 0.414869i \(0.863827\pi\)
\(398\) 1418.46 0.178646
\(399\) 2552.30 0.320238
\(400\) 0 0
\(401\) 8620.31 1.07351 0.536756 0.843738i \(-0.319650\pi\)
0.536756 + 0.843738i \(0.319650\pi\)
\(402\) 1743.12 0.216267
\(403\) 14595.9 1.80415
\(404\) −472.308 −0.0581638
\(405\) 0 0
\(406\) −491.490 −0.0600795
\(407\) −531.288 −0.0647051
\(408\) −3707.06 −0.449821
\(409\) −14058.0 −1.69957 −0.849783 0.527133i \(-0.823267\pi\)
−0.849783 + 0.527133i \(0.823267\pi\)
\(410\) 0 0
\(411\) −2658.57 −0.319070
\(412\) −8375.49 −1.00153
\(413\) 3757.98 0.447744
\(414\) 1589.81 0.188731
\(415\) 0 0
\(416\) −15520.6 −1.82923
\(417\) −4746.36 −0.557386
\(418\) 104.602 0.0122398
\(419\) −308.722 −0.0359954 −0.0179977 0.999838i \(-0.505729\pi\)
−0.0179977 + 0.999838i \(0.505729\pi\)
\(420\) 0 0
\(421\) 7341.48 0.849886 0.424943 0.905220i \(-0.360294\pi\)
0.424943 + 0.905220i \(0.360294\pi\)
\(422\) 137.853 0.0159019
\(423\) 1609.72 0.185029
\(424\) 1696.87 0.194357
\(425\) 0 0
\(426\) −3040.35 −0.345788
\(427\) −10658.3 −1.20794
\(428\) 5417.47 0.611830
\(429\) −336.323 −0.0378504
\(430\) 0 0
\(431\) −16660.8 −1.86201 −0.931003 0.365013i \(-0.881065\pi\)
−0.931003 + 0.365013i \(0.881065\pi\)
\(432\) −764.679 −0.0851635
\(433\) −10091.5 −1.12001 −0.560006 0.828488i \(-0.689201\pi\)
−0.560006 + 0.828488i \(0.689201\pi\)
\(434\) −2887.68 −0.319385
\(435\) 0 0
\(436\) 9630.82 1.05787
\(437\) −8867.38 −0.970674
\(438\) −570.983 −0.0622891
\(439\) 5149.74 0.559871 0.279936 0.960019i \(-0.409687\pi\)
0.279936 + 0.960019i \(0.409687\pi\)
\(440\) 0 0
\(441\) −1463.44 −0.158022
\(442\) 7347.02 0.790638
\(443\) −15820.5 −1.69674 −0.848371 0.529402i \(-0.822416\pi\)
−0.848371 + 0.529402i \(0.822416\pi\)
\(444\) 7804.07 0.834154
\(445\) 0 0
\(446\) 5874.69 0.623710
\(447\) 4948.72 0.523639
\(448\) 27.5076 0.00290092
\(449\) −13903.0 −1.46130 −0.730651 0.682751i \(-0.760783\pi\)
−0.730651 + 0.682751i \(0.760783\pi\)
\(450\) 0 0
\(451\) 586.114 0.0611952
\(452\) −2032.66 −0.211523
\(453\) −1031.55 −0.106990
\(454\) −4688.45 −0.484669
\(455\) 0 0
\(456\) −3454.78 −0.354791
\(457\) −4315.24 −0.441704 −0.220852 0.975307i \(-0.570884\pi\)
−0.220852 + 0.975307i \(0.570884\pi\)
\(458\) 3076.04 0.313829
\(459\) 1835.15 0.186617
\(460\) 0 0
\(461\) 5936.08 0.599720 0.299860 0.953983i \(-0.403060\pi\)
0.299860 + 0.953983i \(0.403060\pi\)
\(462\) 66.5388 0.00670057
\(463\) 12894.4 1.29428 0.647141 0.762370i \(-0.275964\pi\)
0.647141 + 0.762370i \(0.275964\pi\)
\(464\) −821.322 −0.0821744
\(465\) 0 0
\(466\) 3412.38 0.339218
\(467\) −12653.8 −1.25385 −0.626924 0.779081i \(-0.715686\pi\)
−0.626924 + 0.779081i \(0.715686\pi\)
\(468\) 4940.24 0.487954
\(469\) −6184.65 −0.608914
\(470\) 0 0
\(471\) 7481.49 0.731909
\(472\) −5086.78 −0.496055
\(473\) 533.656 0.0518764
\(474\) 1187.95 0.115115
\(475\) 0 0
\(476\) 5849.60 0.563269
\(477\) −840.021 −0.0806330
\(478\) 7594.60 0.726713
\(479\) 8991.57 0.857694 0.428847 0.903377i \(-0.358920\pi\)
0.428847 + 0.903377i \(0.358920\pi\)
\(480\) 0 0
\(481\) −34777.0 −3.29667
\(482\) −1570.87 −0.148446
\(483\) −5640.68 −0.531387
\(484\) 8517.75 0.799939
\(485\) 0 0
\(486\) −306.627 −0.0286191
\(487\) −7671.39 −0.713806 −0.356903 0.934141i \(-0.616167\pi\)
−0.356903 + 0.934141i \(0.616167\pi\)
\(488\) 14426.9 1.33827
\(489\) −5745.37 −0.531318
\(490\) 0 0
\(491\) 10322.9 0.948809 0.474405 0.880307i \(-0.342663\pi\)
0.474405 + 0.880307i \(0.342663\pi\)
\(492\) −8609.40 −0.788906
\(493\) 1971.09 0.180067
\(494\) 6847.01 0.623607
\(495\) 0 0
\(496\) −4825.56 −0.436843
\(497\) 10787.3 0.973590
\(498\) 948.327 0.0853324
\(499\) −4385.18 −0.393402 −0.196701 0.980464i \(-0.563023\pi\)
−0.196701 + 0.980464i \(0.563023\pi\)
\(500\) 0 0
\(501\) 298.742 0.0266403
\(502\) 3126.18 0.277945
\(503\) −8327.07 −0.738143 −0.369071 0.929401i \(-0.620324\pi\)
−0.369071 + 0.929401i \(0.620324\pi\)
\(504\) −2197.64 −0.194227
\(505\) 0 0
\(506\) −231.174 −0.0203101
\(507\) −15424.0 −1.35109
\(508\) −12405.5 −1.08347
\(509\) −20580.8 −1.79220 −0.896098 0.443856i \(-0.853610\pi\)
−0.896098 + 0.443856i \(0.853610\pi\)
\(510\) 0 0
\(511\) 2025.86 0.175379
\(512\) 9250.40 0.798465
\(513\) 1710.26 0.147192
\(514\) 6029.17 0.517384
\(515\) 0 0
\(516\) −7838.85 −0.668771
\(517\) −234.069 −0.0199117
\(518\) 6880.35 0.583601
\(519\) 6417.89 0.542802
\(520\) 0 0
\(521\) −15109.3 −1.27054 −0.635270 0.772290i \(-0.719111\pi\)
−0.635270 + 0.772290i \(0.719111\pi\)
\(522\) −329.340 −0.0276146
\(523\) 507.100 0.0423976 0.0211988 0.999775i \(-0.493252\pi\)
0.0211988 + 0.999775i \(0.493252\pi\)
\(524\) 7910.66 0.659502
\(525\) 0 0
\(526\) 1983.06 0.164383
\(527\) 11580.8 0.957246
\(528\) 111.192 0.00916478
\(529\) 7430.26 0.610690
\(530\) 0 0
\(531\) 2518.17 0.205799
\(532\) 5451.51 0.444272
\(533\) 38365.8 3.11784
\(534\) 368.320 0.0298479
\(535\) 0 0
\(536\) 8371.51 0.674616
\(537\) −5590.61 −0.449260
\(538\) 6241.79 0.500191
\(539\) 212.799 0.0170054
\(540\) 0 0
\(541\) 8249.02 0.655551 0.327776 0.944756i \(-0.393701\pi\)
0.327776 + 0.944756i \(0.393701\pi\)
\(542\) −1154.51 −0.0914954
\(543\) 9026.27 0.713360
\(544\) −12314.5 −0.970551
\(545\) 0 0
\(546\) 4355.49 0.341388
\(547\) 19432.6 1.51897 0.759486 0.650524i \(-0.225450\pi\)
0.759486 + 0.650524i \(0.225450\pi\)
\(548\) −5678.49 −0.442652
\(549\) −7141.94 −0.555210
\(550\) 0 0
\(551\) 1836.94 0.142026
\(552\) 7635.19 0.588723
\(553\) −4214.87 −0.324113
\(554\) 3080.85 0.236269
\(555\) 0 0
\(556\) −10137.8 −0.773273
\(557\) −18807.6 −1.43071 −0.715354 0.698762i \(-0.753735\pi\)
−0.715354 + 0.698762i \(0.753735\pi\)
\(558\) −1934.99 −0.146801
\(559\) 34932.0 2.64305
\(560\) 0 0
\(561\) −266.849 −0.0200826
\(562\) −6701.69 −0.503013
\(563\) −7337.15 −0.549243 −0.274622 0.961552i \(-0.588553\pi\)
−0.274622 + 0.961552i \(0.588553\pi\)
\(564\) 3438.22 0.256694
\(565\) 0 0
\(566\) −844.382 −0.0627068
\(567\) 1087.92 0.0805792
\(568\) −14601.6 −1.07864
\(569\) 5459.12 0.402211 0.201106 0.979570i \(-0.435547\pi\)
0.201106 + 0.979570i \(0.435547\pi\)
\(570\) 0 0
\(571\) 5306.93 0.388946 0.194473 0.980908i \(-0.437700\pi\)
0.194473 + 0.980908i \(0.437700\pi\)
\(572\) −718.359 −0.0525107
\(573\) −15525.7 −1.13193
\(574\) −7590.36 −0.551944
\(575\) 0 0
\(576\) 18.4325 0.00133337
\(577\) −16127.1 −1.16357 −0.581785 0.813343i \(-0.697645\pi\)
−0.581785 + 0.813343i \(0.697645\pi\)
\(578\) −370.081 −0.0266320
\(579\) −10223.7 −0.733818
\(580\) 0 0
\(581\) −3364.69 −0.240260
\(582\) −5081.03 −0.361882
\(583\) 122.147 0.00867723
\(584\) −2742.19 −0.194303
\(585\) 0 0
\(586\) 9423.45 0.664299
\(587\) −9109.13 −0.640501 −0.320250 0.947333i \(-0.603767\pi\)
−0.320250 + 0.947333i \(0.603767\pi\)
\(588\) −3125.80 −0.219227
\(589\) 10792.7 0.755017
\(590\) 0 0
\(591\) −7986.69 −0.555886
\(592\) 11497.6 0.798227
\(593\) −28352.1 −1.96337 −0.981687 0.190500i \(-0.938989\pi\)
−0.981687 + 0.190500i \(0.938989\pi\)
\(594\) 44.5866 0.00307982
\(595\) 0 0
\(596\) 10570.1 0.726455
\(597\) −3372.37 −0.231192
\(598\) −15132.2 −1.03478
\(599\) −15496.1 −1.05702 −0.528508 0.848928i \(-0.677248\pi\)
−0.528508 + 0.848928i \(0.677248\pi\)
\(600\) 0 0
\(601\) 7637.92 0.518398 0.259199 0.965824i \(-0.416541\pi\)
0.259199 + 0.965824i \(0.416541\pi\)
\(602\) −6911.01 −0.467894
\(603\) −4144.24 −0.279878
\(604\) −2203.32 −0.148430
\(605\) 0 0
\(606\) −279.026 −0.0187040
\(607\) 12012.8 0.803268 0.401634 0.915800i \(-0.368442\pi\)
0.401634 + 0.915800i \(0.368442\pi\)
\(608\) −11476.4 −0.765511
\(609\) 1168.51 0.0777510
\(610\) 0 0
\(611\) −15321.7 −1.01448
\(612\) 3919.73 0.258898
\(613\) 6113.47 0.402807 0.201404 0.979508i \(-0.435450\pi\)
0.201404 + 0.979508i \(0.435450\pi\)
\(614\) 12527.1 0.823374
\(615\) 0 0
\(616\) 319.558 0.0209016
\(617\) 28775.9 1.87759 0.938797 0.344472i \(-0.111942\pi\)
0.938797 + 0.344472i \(0.111942\pi\)
\(618\) −4948.00 −0.322068
\(619\) −7092.81 −0.460556 −0.230278 0.973125i \(-0.573964\pi\)
−0.230278 + 0.973125i \(0.573964\pi\)
\(620\) 0 0
\(621\) −3779.74 −0.244244
\(622\) 3951.35 0.254718
\(623\) −1306.81 −0.0840390
\(624\) 7278.39 0.466937
\(625\) 0 0
\(626\) −10643.3 −0.679540
\(627\) −248.688 −0.0158400
\(628\) 15979.9 1.01539
\(629\) −27593.1 −1.74914
\(630\) 0 0
\(631\) −2283.67 −0.144075 −0.0720377 0.997402i \(-0.522950\pi\)
−0.0720377 + 0.997402i \(0.522950\pi\)
\(632\) 5705.23 0.359085
\(633\) −327.743 −0.0205792
\(634\) 11562.0 0.724267
\(635\) 0 0
\(636\) −1794.22 −0.111864
\(637\) 13929.4 0.866409
\(638\) 47.8893 0.00297172
\(639\) 7228.38 0.447496
\(640\) 0 0
\(641\) −17599.2 −1.08444 −0.542220 0.840236i \(-0.682416\pi\)
−0.542220 + 0.840236i \(0.682416\pi\)
\(642\) 3200.48 0.196749
\(643\) −9248.80 −0.567242 −0.283621 0.958936i \(-0.591536\pi\)
−0.283621 + 0.958936i \(0.591536\pi\)
\(644\) −12048.0 −0.737204
\(645\) 0 0
\(646\) 5432.63 0.330873
\(647\) 12201.5 0.741409 0.370704 0.928751i \(-0.379116\pi\)
0.370704 + 0.928751i \(0.379116\pi\)
\(648\) −1472.60 −0.0892737
\(649\) −366.166 −0.0221468
\(650\) 0 0
\(651\) 6865.40 0.413328
\(652\) −12271.6 −0.737108
\(653\) −9769.75 −0.585482 −0.292741 0.956192i \(-0.594567\pi\)
−0.292741 + 0.956192i \(0.594567\pi\)
\(654\) 5689.61 0.340186
\(655\) 0 0
\(656\) −12684.1 −0.754927
\(657\) 1357.50 0.0806105
\(658\) 3031.26 0.179591
\(659\) −15386.3 −0.909506 −0.454753 0.890618i \(-0.650272\pi\)
−0.454753 + 0.890618i \(0.650272\pi\)
\(660\) 0 0
\(661\) 16886.7 0.993671 0.496835 0.867845i \(-0.334495\pi\)
0.496835 + 0.867845i \(0.334495\pi\)
\(662\) 6555.10 0.384851
\(663\) −17467.4 −1.02319
\(664\) 4554.42 0.266183
\(665\) 0 0
\(666\) 4610.42 0.268243
\(667\) −4059.72 −0.235671
\(668\) 638.089 0.0369587
\(669\) −13967.0 −0.807165
\(670\) 0 0
\(671\) 1038.51 0.0597484
\(672\) −7300.34 −0.419072
\(673\) −26462.8 −1.51570 −0.757851 0.652428i \(-0.773751\pi\)
−0.757851 + 0.652428i \(0.773751\pi\)
\(674\) 4059.53 0.231999
\(675\) 0 0
\(676\) −32944.5 −1.87440
\(677\) −28533.1 −1.61982 −0.809908 0.586556i \(-0.800483\pi\)
−0.809908 + 0.586556i \(0.800483\pi\)
\(678\) −1200.84 −0.0680204
\(679\) 18027.6 1.01890
\(680\) 0 0
\(681\) 11146.7 0.627228
\(682\) 281.367 0.0157978
\(683\) −27990.7 −1.56813 −0.784066 0.620677i \(-0.786858\pi\)
−0.784066 + 0.620677i \(0.786858\pi\)
\(684\) 3652.97 0.204203
\(685\) 0 0
\(686\) −8568.96 −0.476916
\(687\) −7313.22 −0.406138
\(688\) −11548.9 −0.639967
\(689\) 7995.52 0.442097
\(690\) 0 0
\(691\) 9248.47 0.509158 0.254579 0.967052i \(-0.418063\pi\)
0.254579 + 0.967052i \(0.418063\pi\)
\(692\) 13708.1 0.753040
\(693\) −158.195 −0.00867145
\(694\) 769.421 0.0420848
\(695\) 0 0
\(696\) −1581.69 −0.0861403
\(697\) 30440.6 1.65426
\(698\) 5560.17 0.301512
\(699\) −8112.87 −0.438994
\(700\) 0 0
\(701\) 16805.6 0.905474 0.452737 0.891644i \(-0.350448\pi\)
0.452737 + 0.891644i \(0.350448\pi\)
\(702\) 2918.55 0.156914
\(703\) −25715.3 −1.37962
\(704\) −2.68026 −0.000143489 0
\(705\) 0 0
\(706\) −3129.48 −0.166826
\(707\) 989.991 0.0526626
\(708\) 5378.60 0.285509
\(709\) 28586.0 1.51421 0.757103 0.653296i \(-0.226614\pi\)
0.757103 + 0.653296i \(0.226614\pi\)
\(710\) 0 0
\(711\) −2824.32 −0.148974
\(712\) 1768.89 0.0931067
\(713\) −23852.3 −1.25284
\(714\) 3455.78 0.181133
\(715\) 0 0
\(716\) −11941.1 −0.623268
\(717\) −18056.0 −0.940465
\(718\) 8301.42 0.431485
\(719\) −37753.6 −1.95824 −0.979119 0.203289i \(-0.934837\pi\)
−0.979119 + 0.203289i \(0.934837\pi\)
\(720\) 0 0
\(721\) 17555.6 0.906805
\(722\) −3592.05 −0.185156
\(723\) 3734.70 0.192109
\(724\) 19279.4 0.989659
\(725\) 0 0
\(726\) 5032.05 0.257241
\(727\) 10769.6 0.549412 0.274706 0.961528i \(-0.411419\pi\)
0.274706 + 0.961528i \(0.411419\pi\)
\(728\) 20917.6 1.06492
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 27716.1 1.40235
\(732\) −15254.6 −0.770255
\(733\) 29083.9 1.46554 0.732768 0.680479i \(-0.238228\pi\)
0.732768 + 0.680479i \(0.238228\pi\)
\(734\) 922.549 0.0463923
\(735\) 0 0
\(736\) 25363.4 1.27025
\(737\) 602.614 0.0301188
\(738\) −5086.19 −0.253693
\(739\) 5594.45 0.278478 0.139239 0.990259i \(-0.455534\pi\)
0.139239 + 0.990259i \(0.455534\pi\)
\(740\) 0 0
\(741\) −16278.6 −0.807032
\(742\) −1581.85 −0.0782634
\(743\) −8984.59 −0.443624 −0.221812 0.975089i \(-0.571197\pi\)
−0.221812 + 0.975089i \(0.571197\pi\)
\(744\) −9292.96 −0.457925
\(745\) 0 0
\(746\) 2111.10 0.103610
\(747\) −2254.63 −0.110432
\(748\) −569.967 −0.0278611
\(749\) −11355.4 −0.553962
\(750\) 0 0
\(751\) 4621.64 0.224562 0.112281 0.993676i \(-0.464184\pi\)
0.112281 + 0.993676i \(0.464184\pi\)
\(752\) 5065.50 0.245638
\(753\) −7432.44 −0.359699
\(754\) 3134.74 0.151406
\(755\) 0 0
\(756\) 2323.71 0.111789
\(757\) 5554.76 0.266699 0.133349 0.991069i \(-0.457427\pi\)
0.133349 + 0.991069i \(0.457427\pi\)
\(758\) 4745.07 0.227373
\(759\) 549.611 0.0262841
\(760\) 0 0
\(761\) 28686.9 1.36649 0.683245 0.730189i \(-0.260568\pi\)
0.683245 + 0.730189i \(0.260568\pi\)
\(762\) −7328.79 −0.348417
\(763\) −20186.9 −0.957817
\(764\) −33161.7 −1.57035
\(765\) 0 0
\(766\) 15824.5 0.746427
\(767\) −23968.5 −1.12836
\(768\) 5526.24 0.259650
\(769\) 26311.7 1.23384 0.616921 0.787025i \(-0.288380\pi\)
0.616921 + 0.787025i \(0.288380\pi\)
\(770\) 0 0
\(771\) −14334.2 −0.669565
\(772\) −21836.9 −1.01804
\(773\) 25176.4 1.17145 0.585727 0.810508i \(-0.300809\pi\)
0.585727 + 0.810508i \(0.300809\pi\)
\(774\) −4630.97 −0.215060
\(775\) 0 0
\(776\) −24402.1 −1.12884
\(777\) −16357.9 −0.755259
\(778\) 7292.44 0.336050
\(779\) 28369.0 1.30478
\(780\) 0 0
\(781\) −1051.08 −0.0481568
\(782\) −12006.3 −0.549034
\(783\) 783.000 0.0357371
\(784\) −4605.20 −0.209785
\(785\) 0 0
\(786\) 4673.39 0.212079
\(787\) 27651.8 1.25245 0.626226 0.779641i \(-0.284599\pi\)
0.626226 + 0.779641i \(0.284599\pi\)
\(788\) −17058.9 −0.771192
\(789\) −4714.69 −0.212734
\(790\) 0 0
\(791\) 4260.60 0.191516
\(792\) 214.131 0.00960709
\(793\) 67978.7 3.04413
\(794\) −18163.7 −0.811847
\(795\) 0 0
\(796\) −7203.11 −0.320738
\(797\) 35053.5 1.55792 0.778958 0.627076i \(-0.215748\pi\)
0.778958 + 0.627076i \(0.215748\pi\)
\(798\) 3220.59 0.142867
\(799\) −12156.7 −0.538262
\(800\) 0 0
\(801\) −875.675 −0.0386273
\(802\) 10877.5 0.478923
\(803\) −197.394 −0.00867482
\(804\) −8851.77 −0.388281
\(805\) 0 0
\(806\) 18417.7 0.804883
\(807\) −14839.7 −0.647315
\(808\) −1340.05 −0.0583449
\(809\) −23824.8 −1.03540 −0.517699 0.855563i \(-0.673211\pi\)
−0.517699 + 0.855563i \(0.673211\pi\)
\(810\) 0 0
\(811\) 19361.6 0.838322 0.419161 0.907912i \(-0.362324\pi\)
0.419161 + 0.907912i \(0.362324\pi\)
\(812\) 2495.84 0.107866
\(813\) 2744.83 0.118407
\(814\) −670.401 −0.0288667
\(815\) 0 0
\(816\) 5774.90 0.247747
\(817\) 25829.9 1.10609
\(818\) −17738.9 −0.758224
\(819\) −10355.1 −0.441803
\(820\) 0 0
\(821\) −14914.6 −0.634012 −0.317006 0.948424i \(-0.602678\pi\)
−0.317006 + 0.948424i \(0.602678\pi\)
\(822\) −3354.69 −0.142346
\(823\) −7639.98 −0.323588 −0.161794 0.986825i \(-0.551728\pi\)
−0.161794 + 0.986825i \(0.551728\pi\)
\(824\) −23763.2 −1.00465
\(825\) 0 0
\(826\) 4741.97 0.199751
\(827\) −12462.1 −0.524003 −0.262001 0.965068i \(-0.584382\pi\)
−0.262001 + 0.965068i \(0.584382\pi\)
\(828\) −8073.21 −0.338845
\(829\) −26986.5 −1.13062 −0.565309 0.824880i \(-0.691243\pi\)
−0.565309 + 0.824880i \(0.691243\pi\)
\(830\) 0 0
\(831\) −7324.67 −0.305764
\(832\) −175.444 −0.00731063
\(833\) 11052.0 0.459699
\(834\) −5989.14 −0.248666
\(835\) 0 0
\(836\) −531.178 −0.0219751
\(837\) 4600.40 0.189980
\(838\) −389.558 −0.0160585
\(839\) 23448.1 0.964860 0.482430 0.875935i \(-0.339754\pi\)
0.482430 + 0.875935i \(0.339754\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 9263.78 0.379158
\(843\) 15933.1 0.650968
\(844\) −700.034 −0.0285499
\(845\) 0 0
\(846\) 2031.20 0.0825464
\(847\) −17853.8 −0.724280
\(848\) −2643.40 −0.107046
\(849\) 2007.50 0.0811511
\(850\) 0 0
\(851\) 56831.8 2.28927
\(852\) 15439.2 0.620821
\(853\) 30230.4 1.21344 0.606722 0.794914i \(-0.292484\pi\)
0.606722 + 0.794914i \(0.292484\pi\)
\(854\) −13449.0 −0.538895
\(855\) 0 0
\(856\) 15370.6 0.613734
\(857\) −32088.1 −1.27900 −0.639502 0.768789i \(-0.720860\pi\)
−0.639502 + 0.768789i \(0.720860\pi\)
\(858\) −424.386 −0.0168861
\(859\) −43201.3 −1.71596 −0.857980 0.513683i \(-0.828281\pi\)
−0.857980 + 0.513683i \(0.828281\pi\)
\(860\) 0 0
\(861\) 18045.9 0.714290
\(862\) −21023.3 −0.830692
\(863\) 15650.5 0.617323 0.308662 0.951172i \(-0.400119\pi\)
0.308662 + 0.951172i \(0.400119\pi\)
\(864\) −4891.85 −0.192620
\(865\) 0 0
\(866\) −12733.8 −0.499669
\(867\) 879.859 0.0344655
\(868\) 14663.9 0.573418
\(869\) 410.685 0.0160317
\(870\) 0 0
\(871\) 39445.9 1.53453
\(872\) 27324.9 1.06117
\(873\) 12080.0 0.468324
\(874\) −11189.2 −0.433045
\(875\) 0 0
\(876\) 2899.51 0.111833
\(877\) 37921.1 1.46010 0.730049 0.683395i \(-0.239497\pi\)
0.730049 + 0.683395i \(0.239497\pi\)
\(878\) 6498.14 0.249774
\(879\) −22404.1 −0.859693
\(880\) 0 0
\(881\) 19844.4 0.758881 0.379441 0.925216i \(-0.376116\pi\)
0.379441 + 0.925216i \(0.376116\pi\)
\(882\) −1846.63 −0.0704981
\(883\) −33386.5 −1.27242 −0.636210 0.771516i \(-0.719499\pi\)
−0.636210 + 0.771516i \(0.719499\pi\)
\(884\) −37308.9 −1.41950
\(885\) 0 0
\(886\) −19963.0 −0.756964
\(887\) 25988.8 0.983788 0.491894 0.870655i \(-0.336305\pi\)
0.491894 + 0.870655i \(0.336305\pi\)
\(888\) 22141.9 0.836751
\(889\) 26002.7 0.980994
\(890\) 0 0
\(891\) −106.004 −0.00398570
\(892\) −29832.3 −1.11980
\(893\) −11329.3 −0.424549
\(894\) 6244.50 0.233610
\(895\) 0 0
\(896\) −19432.9 −0.724560
\(897\) 35976.4 1.33915
\(898\) −17543.4 −0.651928
\(899\) 4941.17 0.183312
\(900\) 0 0
\(901\) 6343.88 0.234568
\(902\) 739.582 0.0273009
\(903\) 16430.8 0.605518
\(904\) −5767.12 −0.212181
\(905\) 0 0
\(906\) −1301.66 −0.0477314
\(907\) 26383.8 0.965887 0.482943 0.875652i \(-0.339568\pi\)
0.482943 + 0.875652i \(0.339568\pi\)
\(908\) 23808.4 0.870166
\(909\) 663.378 0.0242056
\(910\) 0 0
\(911\) −23448.5 −0.852779 −0.426390 0.904540i \(-0.640215\pi\)
−0.426390 + 0.904540i \(0.640215\pi\)
\(912\) 5381.89 0.195408
\(913\) 327.845 0.0118840
\(914\) −5445.15 −0.197056
\(915\) 0 0
\(916\) −15620.4 −0.563443
\(917\) −16581.3 −0.597125
\(918\) 2315.66 0.0832553
\(919\) −1649.45 −0.0592060 −0.0296030 0.999562i \(-0.509424\pi\)
−0.0296030 + 0.999562i \(0.509424\pi\)
\(920\) 0 0
\(921\) −29782.9 −1.06556
\(922\) 7490.39 0.267552
\(923\) −68801.4 −2.45355
\(924\) −337.891 −0.0120301
\(925\) 0 0
\(926\) 16270.7 0.577415
\(927\) 11763.8 0.416799
\(928\) −5254.20 −0.185860
\(929\) 48039.5 1.69658 0.848291 0.529531i \(-0.177632\pi\)
0.848291 + 0.529531i \(0.177632\pi\)
\(930\) 0 0
\(931\) 10299.9 0.362582
\(932\) −17328.4 −0.609026
\(933\) −9394.26 −0.329640
\(934\) −15967.0 −0.559376
\(935\) 0 0
\(936\) 14016.6 0.489473
\(937\) 28647.5 0.998796 0.499398 0.866373i \(-0.333555\pi\)
0.499398 + 0.866373i \(0.333555\pi\)
\(938\) −7804.04 −0.271654
\(939\) 25304.2 0.879417
\(940\) 0 0
\(941\) 9541.12 0.330533 0.165267 0.986249i \(-0.447152\pi\)
0.165267 + 0.986249i \(0.447152\pi\)
\(942\) 9440.45 0.326525
\(943\) −62696.5 −2.16509
\(944\) 7924.24 0.273212
\(945\) 0 0
\(946\) 673.388 0.0231435
\(947\) −44596.6 −1.53030 −0.765151 0.643851i \(-0.777336\pi\)
−0.765151 + 0.643851i \(0.777336\pi\)
\(948\) −6032.53 −0.206674
\(949\) −12921.0 −0.441974
\(950\) 0 0
\(951\) −27488.4 −0.937300
\(952\) 16596.7 0.565022
\(953\) −437.931 −0.0148856 −0.00744279 0.999972i \(-0.502369\pi\)
−0.00744279 + 0.999972i \(0.502369\pi\)
\(954\) −1059.97 −0.0359726
\(955\) 0 0
\(956\) −38566.2 −1.30473
\(957\) −113.856 −0.00384581
\(958\) 11345.9 0.382641
\(959\) 11902.5 0.400785
\(960\) 0 0
\(961\) −759.861 −0.0255064
\(962\) −43883.1 −1.47073
\(963\) −7609.09 −0.254620
\(964\) 7977.02 0.266517
\(965\) 0 0
\(966\) −7117.64 −0.237067
\(967\) 37762.6 1.25580 0.627902 0.778292i \(-0.283914\pi\)
0.627902 + 0.778292i \(0.283914\pi\)
\(968\) 24166.8 0.802429
\(969\) −12916.0 −0.428194
\(970\) 0 0
\(971\) 16153.0 0.533858 0.266929 0.963716i \(-0.413991\pi\)
0.266929 + 0.963716i \(0.413991\pi\)
\(972\) 1557.09 0.0513822
\(973\) 21249.6 0.700136
\(974\) −9680.07 −0.318449
\(975\) 0 0
\(976\) −22474.4 −0.737079
\(977\) −33700.3 −1.10355 −0.551775 0.833993i \(-0.686049\pi\)
−0.551775 + 0.833993i \(0.686049\pi\)
\(978\) −7249.74 −0.237036
\(979\) 127.332 0.00415683
\(980\) 0 0
\(981\) −13526.9 −0.440247
\(982\) 13025.8 0.423290
\(983\) 7637.13 0.247799 0.123900 0.992295i \(-0.460460\pi\)
0.123900 + 0.992295i \(0.460460\pi\)
\(984\) −24426.9 −0.791362
\(985\) 0 0
\(986\) 2487.20 0.0803331
\(987\) −7206.77 −0.232415
\(988\) −34769.9 −1.11961
\(989\) −57085.1 −1.83539
\(990\) 0 0
\(991\) 9339.90 0.299386 0.149693 0.988733i \(-0.452171\pi\)
0.149693 + 0.988733i \(0.452171\pi\)
\(992\) −30870.3 −0.988038
\(993\) −15584.6 −0.498049
\(994\) 13611.8 0.434346
\(995\) 0 0
\(996\) −4815.70 −0.153204
\(997\) 11144.7 0.354017 0.177009 0.984209i \(-0.443358\pi\)
0.177009 + 0.984209i \(0.443358\pi\)
\(998\) −5533.39 −0.175508
\(999\) −10961.2 −0.347144
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.m.1.5 7
5.4 even 2 435.4.a.j.1.3 7
15.14 odd 2 1305.4.a.m.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.3 7 5.4 even 2
1305.4.a.m.1.5 7 15.14 odd 2
2175.4.a.m.1.5 7 1.1 even 1 trivial