Properties

Label 2175.4.a.m.1.1
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.96612\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.96612 q^{2} -3.00000 q^{3} +7.73008 q^{4} +11.8983 q^{6} +32.8717 q^{7} +1.07055 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-3.96612 q^{2} -3.00000 q^{3} +7.73008 q^{4} +11.8983 q^{6} +32.8717 q^{7} +1.07055 q^{8} +9.00000 q^{9} +12.6426 q^{11} -23.1902 q^{12} +52.2979 q^{13} -130.373 q^{14} -66.0865 q^{16} +17.2978 q^{17} -35.6950 q^{18} +48.0486 q^{19} -98.6150 q^{21} -50.1421 q^{22} +130.535 q^{23} -3.21165 q^{24} -207.420 q^{26} -27.0000 q^{27} +254.100 q^{28} -29.0000 q^{29} +196.614 q^{31} +253.542 q^{32} -37.9278 q^{33} -68.6049 q^{34} +69.5707 q^{36} +119.645 q^{37} -190.566 q^{38} -156.894 q^{39} -134.133 q^{41} +391.118 q^{42} +222.109 q^{43} +97.7283 q^{44} -517.716 q^{46} +569.042 q^{47} +198.260 q^{48} +737.546 q^{49} -51.8933 q^{51} +404.267 q^{52} -393.464 q^{53} +107.085 q^{54} +35.1908 q^{56} -144.146 q^{57} +115.017 q^{58} +741.684 q^{59} +758.295 q^{61} -779.796 q^{62} +295.845 q^{63} -476.886 q^{64} +150.426 q^{66} +74.7083 q^{67} +133.713 q^{68} -391.604 q^{69} -118.322 q^{71} +9.63496 q^{72} +498.399 q^{73} -474.525 q^{74} +371.419 q^{76} +415.584 q^{77} +622.259 q^{78} +106.032 q^{79} +81.0000 q^{81} +531.988 q^{82} -42.5010 q^{83} -762.301 q^{84} -880.911 q^{86} +87.0000 q^{87} +13.5346 q^{88} -161.806 q^{89} +1719.12 q^{91} +1009.04 q^{92} -589.843 q^{93} -2256.88 q^{94} -760.627 q^{96} -128.506 q^{97} -2925.19 q^{98} +113.784 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} - 21 q^{3} + 15 q^{4} - 3 q^{6} + 37 q^{7} + 36 q^{8} + 63 q^{9} - 11 q^{11} - 45 q^{12} + 133 q^{13} - 75 q^{14} - 53 q^{16} - 21 q^{17} + 9 q^{18} - 170 q^{19} - 111 q^{21} + 369 q^{22} + 68 q^{23} - 108 q^{24} + 181 q^{26} - 189 q^{27} + 637 q^{28} - 203 q^{29} - 480 q^{31} + 779 q^{32} + 33 q^{33} - 897 q^{34} + 135 q^{36} + 1032 q^{37} + 194 q^{38} - 399 q^{39} - 638 q^{41} + 225 q^{42} + 512 q^{43} + 625 q^{44} + 16 q^{46} + 111 q^{47} + 159 q^{48} + 178 q^{49} + 63 q^{51} + 1263 q^{52} - 410 q^{53} - 27 q^{54} + 1174 q^{56} + 510 q^{57} - 29 q^{58} - 426 q^{59} - 1192 q^{61} - 460 q^{62} + 333 q^{63} + 390 q^{64} - 1107 q^{66} + 1671 q^{67} - 1509 q^{68} - 204 q^{69} - 1324 q^{71} + 324 q^{72} + 852 q^{73} + 1780 q^{74} - 564 q^{76} + 2107 q^{77} - 543 q^{78} + 366 q^{79} + 567 q^{81} + 318 q^{82} - 470 q^{83} - 1911 q^{84} - 2196 q^{86} + 609 q^{87} + 2518 q^{88} + 51 q^{89} - 1297 q^{91} + 684 q^{92} + 1440 q^{93} - 1837 q^{94} - 2337 q^{96} + 3322 q^{97} - 1068 q^{98} - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.96612 −1.40223 −0.701117 0.713046i \(-0.747315\pi\)
−0.701117 + 0.713046i \(0.747315\pi\)
\(3\) −3.00000 −0.577350
\(4\) 7.73008 0.966259
\(5\) 0 0
\(6\) 11.8983 0.809580
\(7\) 32.8717 1.77490 0.887451 0.460901i \(-0.152474\pi\)
0.887451 + 0.460901i \(0.152474\pi\)
\(8\) 1.07055 0.0473121
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 12.6426 0.346536 0.173268 0.984875i \(-0.444567\pi\)
0.173268 + 0.984875i \(0.444567\pi\)
\(12\) −23.1902 −0.557870
\(13\) 52.2979 1.11576 0.557878 0.829923i \(-0.311616\pi\)
0.557878 + 0.829923i \(0.311616\pi\)
\(14\) −130.373 −2.48883
\(15\) 0 0
\(16\) −66.0865 −1.03260
\(17\) 17.2978 0.246784 0.123392 0.992358i \(-0.460623\pi\)
0.123392 + 0.992358i \(0.460623\pi\)
\(18\) −35.6950 −0.467411
\(19\) 48.0486 0.580163 0.290082 0.957002i \(-0.406318\pi\)
0.290082 + 0.957002i \(0.406318\pi\)
\(20\) 0 0
\(21\) −98.6150 −1.02474
\(22\) −50.1421 −0.485924
\(23\) 130.535 1.18341 0.591704 0.806156i \(-0.298456\pi\)
0.591704 + 0.806156i \(0.298456\pi\)
\(24\) −3.21165 −0.0273157
\(25\) 0 0
\(26\) −207.420 −1.56455
\(27\) −27.0000 −0.192450
\(28\) 254.100 1.71502
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 196.614 1.13913 0.569564 0.821947i \(-0.307112\pi\)
0.569564 + 0.821947i \(0.307112\pi\)
\(32\) 253.542 1.40064
\(33\) −37.9278 −0.200072
\(34\) −68.6049 −0.346048
\(35\) 0 0
\(36\) 69.5707 0.322086
\(37\) 119.645 0.531608 0.265804 0.964027i \(-0.414363\pi\)
0.265804 + 0.964027i \(0.414363\pi\)
\(38\) −190.566 −0.813525
\(39\) −156.894 −0.644182
\(40\) 0 0
\(41\) −134.133 −0.510929 −0.255465 0.966818i \(-0.582228\pi\)
−0.255465 + 0.966818i \(0.582228\pi\)
\(42\) 391.118 1.43693
\(43\) 222.109 0.787705 0.393853 0.919174i \(-0.371142\pi\)
0.393853 + 0.919174i \(0.371142\pi\)
\(44\) 97.7283 0.334843
\(45\) 0 0
\(46\) −517.716 −1.65941
\(47\) 569.042 1.76603 0.883013 0.469348i \(-0.155511\pi\)
0.883013 + 0.469348i \(0.155511\pi\)
\(48\) 198.260 0.596173
\(49\) 737.546 2.15028
\(50\) 0 0
\(51\) −51.8933 −0.142481
\(52\) 404.267 1.07811
\(53\) −393.464 −1.01974 −0.509872 0.860250i \(-0.670307\pi\)
−0.509872 + 0.860250i \(0.670307\pi\)
\(54\) 107.085 0.269860
\(55\) 0 0
\(56\) 35.1908 0.0839744
\(57\) −144.146 −0.334957
\(58\) 115.017 0.260388
\(59\) 741.684 1.63659 0.818297 0.574795i \(-0.194918\pi\)
0.818297 + 0.574795i \(0.194918\pi\)
\(60\) 0 0
\(61\) 758.295 1.59163 0.795817 0.605537i \(-0.207042\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(62\) −779.796 −1.59732
\(63\) 295.845 0.591634
\(64\) −476.886 −0.931419
\(65\) 0 0
\(66\) 150.426 0.280548
\(67\) 74.7083 0.136225 0.0681125 0.997678i \(-0.478302\pi\)
0.0681125 + 0.997678i \(0.478302\pi\)
\(68\) 133.713 0.238457
\(69\) −391.604 −0.683240
\(70\) 0 0
\(71\) −118.322 −0.197779 −0.0988893 0.995098i \(-0.531529\pi\)
−0.0988893 + 0.995098i \(0.531529\pi\)
\(72\) 9.63496 0.0157707
\(73\) 498.399 0.799084 0.399542 0.916715i \(-0.369169\pi\)
0.399542 + 0.916715i \(0.369169\pi\)
\(74\) −474.525 −0.745438
\(75\) 0 0
\(76\) 371.419 0.560588
\(77\) 415.584 0.615067
\(78\) 622.259 0.903294
\(79\) 106.032 0.151007 0.0755037 0.997146i \(-0.475944\pi\)
0.0755037 + 0.997146i \(0.475944\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 531.988 0.716442
\(83\) −42.5010 −0.0562059 −0.0281030 0.999605i \(-0.508947\pi\)
−0.0281030 + 0.999605i \(0.508947\pi\)
\(84\) −762.301 −0.990165
\(85\) 0 0
\(86\) −880.911 −1.10455
\(87\) 87.0000 0.107211
\(88\) 13.5346 0.0163953
\(89\) −161.806 −0.192713 −0.0963564 0.995347i \(-0.530719\pi\)
−0.0963564 + 0.995347i \(0.530719\pi\)
\(90\) 0 0
\(91\) 1719.12 1.98036
\(92\) 1009.04 1.14348
\(93\) −589.843 −0.657676
\(94\) −2256.88 −2.47638
\(95\) 0 0
\(96\) −760.627 −0.808658
\(97\) −128.506 −0.134514 −0.0672569 0.997736i \(-0.521425\pi\)
−0.0672569 + 0.997736i \(0.521425\pi\)
\(98\) −2925.19 −3.01519
\(99\) 113.784 0.115512
\(100\) 0 0
\(101\) −584.973 −0.576307 −0.288153 0.957584i \(-0.593041\pi\)
−0.288153 + 0.957584i \(0.593041\pi\)
\(102\) 205.815 0.199791
\(103\) 1908.33 1.82557 0.912783 0.408446i \(-0.133929\pi\)
0.912783 + 0.408446i \(0.133929\pi\)
\(104\) 55.9876 0.0527888
\(105\) 0 0
\(106\) 1560.52 1.42992
\(107\) −646.934 −0.584500 −0.292250 0.956342i \(-0.594404\pi\)
−0.292250 + 0.956342i \(0.594404\pi\)
\(108\) −208.712 −0.185957
\(109\) −1065.19 −0.936028 −0.468014 0.883721i \(-0.655030\pi\)
−0.468014 + 0.883721i \(0.655030\pi\)
\(110\) 0 0
\(111\) −358.934 −0.306924
\(112\) −2172.37 −1.83277
\(113\) 1368.69 1.13943 0.569713 0.821844i \(-0.307054\pi\)
0.569713 + 0.821844i \(0.307054\pi\)
\(114\) 571.699 0.469689
\(115\) 0 0
\(116\) −224.172 −0.179430
\(117\) 470.681 0.371919
\(118\) −2941.61 −2.29489
\(119\) 568.606 0.438017
\(120\) 0 0
\(121\) −1171.16 −0.879913
\(122\) −3007.49 −2.23184
\(123\) 402.400 0.294985
\(124\) 1519.84 1.10069
\(125\) 0 0
\(126\) −1173.36 −0.829610
\(127\) −2118.32 −1.48008 −0.740040 0.672562i \(-0.765194\pi\)
−0.740040 + 0.672562i \(0.765194\pi\)
\(128\) −136.953 −0.0945704
\(129\) −666.327 −0.454782
\(130\) 0 0
\(131\) −2446.56 −1.63173 −0.815866 0.578241i \(-0.803740\pi\)
−0.815866 + 0.578241i \(0.803740\pi\)
\(132\) −293.185 −0.193322
\(133\) 1579.44 1.02973
\(134\) −296.302 −0.191019
\(135\) 0 0
\(136\) 18.5181 0.0116759
\(137\) −1586.44 −0.989331 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(138\) 1553.15 0.958063
\(139\) 1793.32 1.09430 0.547150 0.837034i \(-0.315713\pi\)
0.547150 + 0.837034i \(0.315713\pi\)
\(140\) 0 0
\(141\) −1707.12 −1.01962
\(142\) 469.280 0.277332
\(143\) 661.182 0.386649
\(144\) −594.779 −0.344201
\(145\) 0 0
\(146\) −1976.71 −1.12050
\(147\) −2212.64 −1.24146
\(148\) 924.863 0.513671
\(149\) −2640.05 −1.45155 −0.725777 0.687930i \(-0.758520\pi\)
−0.725777 + 0.687930i \(0.758520\pi\)
\(150\) 0 0
\(151\) 1132.79 0.610498 0.305249 0.952273i \(-0.401260\pi\)
0.305249 + 0.952273i \(0.401260\pi\)
\(152\) 51.4385 0.0274487
\(153\) 155.680 0.0822612
\(154\) −1648.25 −0.862468
\(155\) 0 0
\(156\) −1212.80 −0.622447
\(157\) −912.652 −0.463933 −0.231967 0.972724i \(-0.574516\pi\)
−0.231967 + 0.972724i \(0.574516\pi\)
\(158\) −420.537 −0.211748
\(159\) 1180.39 0.588750
\(160\) 0 0
\(161\) 4290.89 2.10043
\(162\) −321.255 −0.155804
\(163\) 2303.83 1.10705 0.553527 0.832831i \(-0.313282\pi\)
0.553527 + 0.832831i \(0.313282\pi\)
\(164\) −1036.86 −0.493690
\(165\) 0 0
\(166\) 168.564 0.0788138
\(167\) −381.558 −0.176801 −0.0884006 0.996085i \(-0.528176\pi\)
−0.0884006 + 0.996085i \(0.528176\pi\)
\(168\) −105.572 −0.0484826
\(169\) 538.070 0.244911
\(170\) 0 0
\(171\) 432.437 0.193388
\(172\) 1716.92 0.761128
\(173\) 2697.02 1.18526 0.592631 0.805474i \(-0.298089\pi\)
0.592631 + 0.805474i \(0.298089\pi\)
\(174\) −345.052 −0.150335
\(175\) 0 0
\(176\) −835.506 −0.357833
\(177\) −2225.05 −0.944888
\(178\) 641.742 0.270228
\(179\) 30.7370 0.0128346 0.00641729 0.999979i \(-0.497957\pi\)
0.00641729 + 0.999979i \(0.497957\pi\)
\(180\) 0 0
\(181\) 159.556 0.0655231 0.0327615 0.999463i \(-0.489570\pi\)
0.0327615 + 0.999463i \(0.489570\pi\)
\(182\) −6818.22 −2.77692
\(183\) −2274.88 −0.918931
\(184\) 139.744 0.0559895
\(185\) 0 0
\(186\) 2339.39 0.922216
\(187\) 218.689 0.0855193
\(188\) 4398.73 1.70644
\(189\) −887.535 −0.341580
\(190\) 0 0
\(191\) 96.7632 0.0366573 0.0183286 0.999832i \(-0.494165\pi\)
0.0183286 + 0.999832i \(0.494165\pi\)
\(192\) 1430.66 0.537755
\(193\) −1017.92 −0.379646 −0.189823 0.981818i \(-0.560791\pi\)
−0.189823 + 0.981818i \(0.560791\pi\)
\(194\) 509.671 0.188620
\(195\) 0 0
\(196\) 5701.29 2.07773
\(197\) −5012.65 −1.81288 −0.906438 0.422339i \(-0.861209\pi\)
−0.906438 + 0.422339i \(0.861209\pi\)
\(198\) −451.279 −0.161975
\(199\) −4339.56 −1.54585 −0.772924 0.634499i \(-0.781206\pi\)
−0.772924 + 0.634499i \(0.781206\pi\)
\(200\) 0 0
\(201\) −224.125 −0.0786495
\(202\) 2320.07 0.808116
\(203\) −953.278 −0.329591
\(204\) −401.139 −0.137673
\(205\) 0 0
\(206\) −7568.65 −2.55987
\(207\) 1174.81 0.394469
\(208\) −3456.19 −1.15213
\(209\) 607.460 0.201047
\(210\) 0 0
\(211\) −2360.56 −0.770180 −0.385090 0.922879i \(-0.625830\pi\)
−0.385090 + 0.922879i \(0.625830\pi\)
\(212\) −3041.51 −0.985338
\(213\) 354.967 0.114188
\(214\) 2565.82 0.819605
\(215\) 0 0
\(216\) −28.9049 −0.00910522
\(217\) 6463.04 2.02184
\(218\) 4224.68 1.31253
\(219\) −1495.20 −0.461352
\(220\) 0 0
\(221\) 904.636 0.275350
\(222\) 1423.58 0.430379
\(223\) 6063.08 1.82069 0.910345 0.413851i \(-0.135816\pi\)
0.910345 + 0.413851i \(0.135816\pi\)
\(224\) 8334.36 2.48600
\(225\) 0 0
\(226\) −5428.37 −1.59774
\(227\) −4428.61 −1.29488 −0.647438 0.762118i \(-0.724160\pi\)
−0.647438 + 0.762118i \(0.724160\pi\)
\(228\) −1114.26 −0.323656
\(229\) −4517.28 −1.30354 −0.651768 0.758418i \(-0.725973\pi\)
−0.651768 + 0.758418i \(0.725973\pi\)
\(230\) 0 0
\(231\) −1246.75 −0.355109
\(232\) −31.0460 −0.00878564
\(233\) −4051.13 −1.13905 −0.569525 0.821974i \(-0.692873\pi\)
−0.569525 + 0.821974i \(0.692873\pi\)
\(234\) −1866.78 −0.521517
\(235\) 0 0
\(236\) 5733.28 1.58138
\(237\) −318.097 −0.0871841
\(238\) −2255.16 −0.614202
\(239\) 837.357 0.226628 0.113314 0.993559i \(-0.463853\pi\)
0.113314 + 0.993559i \(0.463853\pi\)
\(240\) 0 0
\(241\) −2011.23 −0.537571 −0.268785 0.963200i \(-0.586622\pi\)
−0.268785 + 0.963200i \(0.586622\pi\)
\(242\) 4644.97 1.23384
\(243\) −243.000 −0.0641500
\(244\) 5861.68 1.53793
\(245\) 0 0
\(246\) −1595.96 −0.413638
\(247\) 2512.84 0.647321
\(248\) 210.486 0.0538946
\(249\) 127.503 0.0324505
\(250\) 0 0
\(251\) 6458.29 1.62408 0.812039 0.583603i \(-0.198358\pi\)
0.812039 + 0.583603i \(0.198358\pi\)
\(252\) 2286.90 0.571672
\(253\) 1650.30 0.410093
\(254\) 8401.49 2.07542
\(255\) 0 0
\(256\) 4358.26 1.06403
\(257\) −1838.15 −0.446150 −0.223075 0.974801i \(-0.571610\pi\)
−0.223075 + 0.974801i \(0.571610\pi\)
\(258\) 2642.73 0.637711
\(259\) 3932.92 0.943552
\(260\) 0 0
\(261\) −261.000 −0.0618984
\(262\) 9703.34 2.28807
\(263\) −2263.00 −0.530580 −0.265290 0.964169i \(-0.585468\pi\)
−0.265290 + 0.964169i \(0.585468\pi\)
\(264\) −40.6037 −0.00946585
\(265\) 0 0
\(266\) −6264.23 −1.44393
\(267\) 485.419 0.111263
\(268\) 577.501 0.131629
\(269\) 632.951 0.143464 0.0717318 0.997424i \(-0.477147\pi\)
0.0717318 + 0.997424i \(0.477147\pi\)
\(270\) 0 0
\(271\) −987.158 −0.221275 −0.110638 0.993861i \(-0.535289\pi\)
−0.110638 + 0.993861i \(0.535289\pi\)
\(272\) −1143.15 −0.254829
\(273\) −5157.36 −1.14336
\(274\) 6291.99 1.38727
\(275\) 0 0
\(276\) −3027.13 −0.660187
\(277\) −8123.34 −1.76204 −0.881018 0.473083i \(-0.843141\pi\)
−0.881018 + 0.473083i \(0.843141\pi\)
\(278\) −7112.53 −1.53447
\(279\) 1769.53 0.379710
\(280\) 0 0
\(281\) −5075.60 −1.07753 −0.538764 0.842457i \(-0.681108\pi\)
−0.538764 + 0.842457i \(0.681108\pi\)
\(282\) 6770.65 1.42974
\(283\) 2077.30 0.436335 0.218168 0.975911i \(-0.429992\pi\)
0.218168 + 0.975911i \(0.429992\pi\)
\(284\) −914.641 −0.191105
\(285\) 0 0
\(286\) −2622.32 −0.542172
\(287\) −4409.18 −0.906849
\(288\) 2281.88 0.466879
\(289\) −4613.79 −0.939098
\(290\) 0 0
\(291\) 385.519 0.0776615
\(292\) 3852.66 0.772123
\(293\) 4097.60 0.817011 0.408505 0.912756i \(-0.366050\pi\)
0.408505 + 0.912756i \(0.366050\pi\)
\(294\) 8775.58 1.74082
\(295\) 0 0
\(296\) 128.086 0.0251515
\(297\) −341.351 −0.0666908
\(298\) 10470.8 2.03542
\(299\) 6826.69 1.32039
\(300\) 0 0
\(301\) 7301.10 1.39810
\(302\) −4492.78 −0.856061
\(303\) 1754.92 0.332731
\(304\) −3175.36 −0.599078
\(305\) 0 0
\(306\) −617.444 −0.115349
\(307\) −2800.27 −0.520586 −0.260293 0.965530i \(-0.583819\pi\)
−0.260293 + 0.965530i \(0.583819\pi\)
\(308\) 3212.49 0.594314
\(309\) −5724.99 −1.05399
\(310\) 0 0
\(311\) −1007.23 −0.183649 −0.0918247 0.995775i \(-0.529270\pi\)
−0.0918247 + 0.995775i \(0.529270\pi\)
\(312\) −167.963 −0.0304776
\(313\) 8540.20 1.54224 0.771119 0.636691i \(-0.219697\pi\)
0.771119 + 0.636691i \(0.219697\pi\)
\(314\) 3619.68 0.650543
\(315\) 0 0
\(316\) 819.639 0.145912
\(317\) 6756.75 1.19715 0.598575 0.801067i \(-0.295734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(318\) −4681.57 −0.825565
\(319\) −366.636 −0.0643500
\(320\) 0 0
\(321\) 1940.80 0.337461
\(322\) −17018.2 −2.94530
\(323\) 831.133 0.143175
\(324\) 626.136 0.107362
\(325\) 0 0
\(326\) −9137.25 −1.55235
\(327\) 3195.58 0.540416
\(328\) −143.596 −0.0241731
\(329\) 18705.3 3.13453
\(330\) 0 0
\(331\) −2186.58 −0.363097 −0.181548 0.983382i \(-0.558111\pi\)
−0.181548 + 0.983382i \(0.558111\pi\)
\(332\) −328.536 −0.0543095
\(333\) 1076.80 0.177203
\(334\) 1513.30 0.247917
\(335\) 0 0
\(336\) 6517.12 1.05815
\(337\) −5592.65 −0.904010 −0.452005 0.892016i \(-0.649291\pi\)
−0.452005 + 0.892016i \(0.649291\pi\)
\(338\) −2134.05 −0.343423
\(339\) −4106.06 −0.657848
\(340\) 0 0
\(341\) 2485.72 0.394749
\(342\) −1715.10 −0.271175
\(343\) 12969.4 2.04163
\(344\) 237.779 0.0372680
\(345\) 0 0
\(346\) −10696.7 −1.66201
\(347\) −3744.53 −0.579300 −0.289650 0.957133i \(-0.593539\pi\)
−0.289650 + 0.957133i \(0.593539\pi\)
\(348\) 672.517 0.103594
\(349\) −11200.7 −1.71794 −0.858970 0.512025i \(-0.828895\pi\)
−0.858970 + 0.512025i \(0.828895\pi\)
\(350\) 0 0
\(351\) −1412.04 −0.214727
\(352\) 3205.44 0.485371
\(353\) −1695.02 −0.255572 −0.127786 0.991802i \(-0.540787\pi\)
−0.127786 + 0.991802i \(0.540787\pi\)
\(354\) 8824.82 1.32495
\(355\) 0 0
\(356\) −1250.77 −0.186210
\(357\) −1705.82 −0.252889
\(358\) −121.907 −0.0179971
\(359\) −331.341 −0.0487117 −0.0243559 0.999703i \(-0.507753\pi\)
−0.0243559 + 0.999703i \(0.507753\pi\)
\(360\) 0 0
\(361\) −4550.33 −0.663411
\(362\) −632.816 −0.0918787
\(363\) 3513.49 0.508018
\(364\) 13288.9 1.91354
\(365\) 0 0
\(366\) 9022.46 1.28856
\(367\) 11394.1 1.62061 0.810306 0.586006i \(-0.199301\pi\)
0.810306 + 0.586006i \(0.199301\pi\)
\(368\) −8626.58 −1.22199
\(369\) −1207.20 −0.170310
\(370\) 0 0
\(371\) −12933.8 −1.80995
\(372\) −4559.53 −0.635486
\(373\) −6042.53 −0.838794 −0.419397 0.907803i \(-0.637759\pi\)
−0.419397 + 0.907803i \(0.637759\pi\)
\(374\) −867.345 −0.119918
\(375\) 0 0
\(376\) 609.188 0.0835544
\(377\) −1516.64 −0.207191
\(378\) 3520.07 0.478975
\(379\) 3446.58 0.467121 0.233560 0.972342i \(-0.424962\pi\)
0.233560 + 0.972342i \(0.424962\pi\)
\(380\) 0 0
\(381\) 6354.95 0.854525
\(382\) −383.774 −0.0514021
\(383\) −6068.80 −0.809664 −0.404832 0.914391i \(-0.632670\pi\)
−0.404832 + 0.914391i \(0.632670\pi\)
\(384\) 410.858 0.0546002
\(385\) 0 0
\(386\) 4037.20 0.532352
\(387\) 1998.98 0.262568
\(388\) −993.363 −0.129975
\(389\) −4788.36 −0.624112 −0.312056 0.950064i \(-0.601018\pi\)
−0.312056 + 0.950064i \(0.601018\pi\)
\(390\) 0 0
\(391\) 2257.96 0.292046
\(392\) 789.580 0.101734
\(393\) 7339.68 0.942081
\(394\) 19880.8 2.54208
\(395\) 0 0
\(396\) 879.555 0.111614
\(397\) −206.388 −0.0260914 −0.0130457 0.999915i \(-0.504153\pi\)
−0.0130457 + 0.999915i \(0.504153\pi\)
\(398\) 17211.2 2.16764
\(399\) −4738.31 −0.594517
\(400\) 0 0
\(401\) −10080.5 −1.25535 −0.627675 0.778475i \(-0.715993\pi\)
−0.627675 + 0.778475i \(0.715993\pi\)
\(402\) 888.906 0.110285
\(403\) 10282.5 1.27099
\(404\) −4521.88 −0.556862
\(405\) 0 0
\(406\) 3780.81 0.462164
\(407\) 1512.62 0.184221
\(408\) −55.5544 −0.00674106
\(409\) 15178.0 1.83497 0.917486 0.397769i \(-0.130215\pi\)
0.917486 + 0.397769i \(0.130215\pi\)
\(410\) 0 0
\(411\) 4759.31 0.571190
\(412\) 14751.5 1.76397
\(413\) 24380.4 2.90480
\(414\) −4659.44 −0.553138
\(415\) 0 0
\(416\) 13259.7 1.56277
\(417\) −5379.97 −0.631795
\(418\) −2409.26 −0.281915
\(419\) −6104.30 −0.711729 −0.355864 0.934538i \(-0.615814\pi\)
−0.355864 + 0.934538i \(0.615814\pi\)
\(420\) 0 0
\(421\) 8543.56 0.989045 0.494522 0.869165i \(-0.335343\pi\)
0.494522 + 0.869165i \(0.335343\pi\)
\(422\) 9362.27 1.07997
\(423\) 5121.37 0.588675
\(424\) −421.223 −0.0482463
\(425\) 0 0
\(426\) −1407.84 −0.160118
\(427\) 24926.4 2.82500
\(428\) −5000.85 −0.564778
\(429\) −1983.55 −0.223232
\(430\) 0 0
\(431\) −7712.54 −0.861949 −0.430975 0.902364i \(-0.641830\pi\)
−0.430975 + 0.902364i \(0.641830\pi\)
\(432\) 1784.34 0.198724
\(433\) 13294.5 1.47551 0.737753 0.675071i \(-0.235887\pi\)
0.737753 + 0.675071i \(0.235887\pi\)
\(434\) −25633.2 −2.83510
\(435\) 0 0
\(436\) −8234.03 −0.904446
\(437\) 6272.01 0.686569
\(438\) 5930.12 0.646923
\(439\) −18032.6 −1.96048 −0.980239 0.197816i \(-0.936615\pi\)
−0.980239 + 0.197816i \(0.936615\pi\)
\(440\) 0 0
\(441\) 6637.91 0.716760
\(442\) −3587.89 −0.386106
\(443\) −16475.7 −1.76700 −0.883502 0.468427i \(-0.844821\pi\)
−0.883502 + 0.468427i \(0.844821\pi\)
\(444\) −2774.59 −0.296568
\(445\) 0 0
\(446\) −24046.9 −2.55303
\(447\) 7920.16 0.838055
\(448\) −15676.1 −1.65318
\(449\) −2651.74 −0.278716 −0.139358 0.990242i \(-0.544504\pi\)
−0.139358 + 0.990242i \(0.544504\pi\)
\(450\) 0 0
\(451\) −1695.79 −0.177055
\(452\) 10580.0 1.10098
\(453\) −3398.37 −0.352471
\(454\) 17564.4 1.81572
\(455\) 0 0
\(456\) −154.315 −0.0158475
\(457\) 582.597 0.0596340 0.0298170 0.999555i \(-0.490508\pi\)
0.0298170 + 0.999555i \(0.490508\pi\)
\(458\) 17916.0 1.82786
\(459\) −467.040 −0.0474935
\(460\) 0 0
\(461\) −6537.72 −0.660504 −0.330252 0.943893i \(-0.607134\pi\)
−0.330252 + 0.943893i \(0.607134\pi\)
\(462\) 4944.76 0.497946
\(463\) 11895.3 1.19400 0.596998 0.802243i \(-0.296360\pi\)
0.596998 + 0.802243i \(0.296360\pi\)
\(464\) 1916.51 0.191749
\(465\) 0 0
\(466\) 16067.3 1.59721
\(467\) 14742.5 1.46081 0.730406 0.683013i \(-0.239331\pi\)
0.730406 + 0.683013i \(0.239331\pi\)
\(468\) 3638.40 0.359370
\(469\) 2455.79 0.241786
\(470\) 0 0
\(471\) 2737.96 0.267852
\(472\) 794.011 0.0774307
\(473\) 2808.04 0.272968
\(474\) 1261.61 0.122253
\(475\) 0 0
\(476\) 4395.37 0.423238
\(477\) −3541.18 −0.339915
\(478\) −3321.06 −0.317786
\(479\) 5864.41 0.559398 0.279699 0.960088i \(-0.409765\pi\)
0.279699 + 0.960088i \(0.409765\pi\)
\(480\) 0 0
\(481\) 6257.17 0.593144
\(482\) 7976.76 0.753800
\(483\) −12872.7 −1.21269
\(484\) −9053.19 −0.850224
\(485\) 0 0
\(486\) 963.766 0.0899533
\(487\) 15495.7 1.44184 0.720920 0.693018i \(-0.243719\pi\)
0.720920 + 0.693018i \(0.243719\pi\)
\(488\) 811.793 0.0753036
\(489\) −6911.49 −0.639158
\(490\) 0 0
\(491\) 951.715 0.0874751 0.0437376 0.999043i \(-0.486073\pi\)
0.0437376 + 0.999043i \(0.486073\pi\)
\(492\) 3110.58 0.285032
\(493\) −501.635 −0.0458266
\(494\) −9966.22 −0.907695
\(495\) 0 0
\(496\) −12993.6 −1.17627
\(497\) −3889.45 −0.351038
\(498\) −505.692 −0.0455032
\(499\) 12667.6 1.13643 0.568216 0.822880i \(-0.307634\pi\)
0.568216 + 0.822880i \(0.307634\pi\)
\(500\) 0 0
\(501\) 1144.67 0.102076
\(502\) −25614.3 −2.27734
\(503\) −17478.7 −1.54938 −0.774690 0.632341i \(-0.782094\pi\)
−0.774690 + 0.632341i \(0.782094\pi\)
\(504\) 316.717 0.0279915
\(505\) 0 0
\(506\) −6545.28 −0.575046
\(507\) −1614.21 −0.141399
\(508\) −16374.8 −1.43014
\(509\) 11463.1 0.998219 0.499110 0.866539i \(-0.333661\pi\)
0.499110 + 0.866539i \(0.333661\pi\)
\(510\) 0 0
\(511\) 16383.2 1.41830
\(512\) −16189.8 −1.39745
\(513\) −1297.31 −0.111652
\(514\) 7290.32 0.625607
\(515\) 0 0
\(516\) −5150.76 −0.439437
\(517\) 7194.17 0.611991
\(518\) −15598.4 −1.32308
\(519\) −8091.05 −0.684312
\(520\) 0 0
\(521\) 13465.1 1.13228 0.566141 0.824309i \(-0.308436\pi\)
0.566141 + 0.824309i \(0.308436\pi\)
\(522\) 1035.16 0.0867961
\(523\) −19829.8 −1.65793 −0.828963 0.559303i \(-0.811069\pi\)
−0.828963 + 0.559303i \(0.811069\pi\)
\(524\) −18912.1 −1.57668
\(525\) 0 0
\(526\) 8975.32 0.743997
\(527\) 3400.99 0.281118
\(528\) 2506.52 0.206595
\(529\) 4872.30 0.400452
\(530\) 0 0
\(531\) 6675.16 0.545532
\(532\) 12209.2 0.994990
\(533\) −7014.89 −0.570072
\(534\) −1925.23 −0.156016
\(535\) 0 0
\(536\) 79.9790 0.00644509
\(537\) −92.2110 −0.00741005
\(538\) −2510.36 −0.201170
\(539\) 9324.51 0.745148
\(540\) 0 0
\(541\) −8464.80 −0.672699 −0.336349 0.941737i \(-0.609192\pi\)
−0.336349 + 0.941737i \(0.609192\pi\)
\(542\) 3915.18 0.310280
\(543\) −478.667 −0.0378298
\(544\) 4385.72 0.345654
\(545\) 0 0
\(546\) 20454.7 1.60326
\(547\) −7649.90 −0.597964 −0.298982 0.954259i \(-0.596647\pi\)
−0.298982 + 0.954259i \(0.596647\pi\)
\(548\) −12263.3 −0.955950
\(549\) 6824.65 0.530545
\(550\) 0 0
\(551\) −1393.41 −0.107734
\(552\) −419.232 −0.0323255
\(553\) 3485.46 0.268023
\(554\) 32218.1 2.47079
\(555\) 0 0
\(556\) 13862.5 1.05738
\(557\) −6293.95 −0.478785 −0.239393 0.970923i \(-0.576948\pi\)
−0.239393 + 0.970923i \(0.576948\pi\)
\(558\) −7018.16 −0.532442
\(559\) 11615.8 0.878887
\(560\) 0 0
\(561\) −656.067 −0.0493746
\(562\) 20130.4 1.51095
\(563\) 4688.80 0.350993 0.175497 0.984480i \(-0.443847\pi\)
0.175497 + 0.984480i \(0.443847\pi\)
\(564\) −13196.2 −0.985213
\(565\) 0 0
\(566\) −8238.83 −0.611844
\(567\) 2662.60 0.197211
\(568\) −126.670 −0.00935732
\(569\) −20371.9 −1.50094 −0.750470 0.660904i \(-0.770173\pi\)
−0.750470 + 0.660904i \(0.770173\pi\)
\(570\) 0 0
\(571\) −5658.25 −0.414694 −0.207347 0.978267i \(-0.566483\pi\)
−0.207347 + 0.978267i \(0.566483\pi\)
\(572\) 5110.99 0.373603
\(573\) −290.290 −0.0211641
\(574\) 17487.3 1.27161
\(575\) 0 0
\(576\) −4291.98 −0.310473
\(577\) −809.648 −0.0584161 −0.0292081 0.999573i \(-0.509299\pi\)
−0.0292081 + 0.999573i \(0.509299\pi\)
\(578\) 18298.8 1.31683
\(579\) 3053.77 0.219189
\(580\) 0 0
\(581\) −1397.08 −0.0997600
\(582\) −1529.01 −0.108900
\(583\) −4974.42 −0.353378
\(584\) 533.561 0.0378064
\(585\) 0 0
\(586\) −16251.5 −1.14564
\(587\) −9794.78 −0.688712 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(588\) −17103.9 −1.19958
\(589\) 9447.05 0.660881
\(590\) 0 0
\(591\) 15038.0 1.04666
\(592\) −7906.91 −0.548939
\(593\) 19668.3 1.36202 0.681011 0.732273i \(-0.261541\pi\)
0.681011 + 0.732273i \(0.261541\pi\)
\(594\) 1353.84 0.0935161
\(595\) 0 0
\(596\) −20407.8 −1.40258
\(597\) 13018.7 0.892495
\(598\) −27075.4 −1.85150
\(599\) 3461.98 0.236148 0.118074 0.993005i \(-0.462328\pi\)
0.118074 + 0.993005i \(0.462328\pi\)
\(600\) 0 0
\(601\) 1598.93 0.108522 0.0542611 0.998527i \(-0.482720\pi\)
0.0542611 + 0.998527i \(0.482720\pi\)
\(602\) −28957.0 −1.96046
\(603\) 672.375 0.0454083
\(604\) 8756.56 0.589900
\(605\) 0 0
\(606\) −6960.21 −0.466566
\(607\) 9756.63 0.652405 0.326202 0.945300i \(-0.394231\pi\)
0.326202 + 0.945300i \(0.394231\pi\)
\(608\) 12182.4 0.812598
\(609\) 2859.83 0.190290
\(610\) 0 0
\(611\) 29759.7 1.97045
\(612\) 1203.42 0.0794857
\(613\) 1209.23 0.0796744 0.0398372 0.999206i \(-0.487316\pi\)
0.0398372 + 0.999206i \(0.487316\pi\)
\(614\) 11106.2 0.729984
\(615\) 0 0
\(616\) 444.903 0.0291001
\(617\) −12543.6 −0.818456 −0.409228 0.912432i \(-0.634202\pi\)
−0.409228 + 0.912432i \(0.634202\pi\)
\(618\) 22706.0 1.47794
\(619\) 11124.6 0.722353 0.361176 0.932498i \(-0.382375\pi\)
0.361176 + 0.932498i \(0.382375\pi\)
\(620\) 0 0
\(621\) −3524.44 −0.227747
\(622\) 3994.80 0.257519
\(623\) −5318.84 −0.342046
\(624\) 10368.6 0.665184
\(625\) 0 0
\(626\) −33871.4 −2.16258
\(627\) −1822.38 −0.116075
\(628\) −7054.87 −0.448280
\(629\) 2069.59 0.131192
\(630\) 0 0
\(631\) 5229.61 0.329932 0.164966 0.986299i \(-0.447249\pi\)
0.164966 + 0.986299i \(0.447249\pi\)
\(632\) 113.513 0.00714447
\(633\) 7081.69 0.444663
\(634\) −26798.0 −1.67868
\(635\) 0 0
\(636\) 9124.53 0.568885
\(637\) 38572.1 2.39919
\(638\) 1454.12 0.0902338
\(639\) −1064.90 −0.0659262
\(640\) 0 0
\(641\) 8390.44 0.517008 0.258504 0.966010i \(-0.416770\pi\)
0.258504 + 0.966010i \(0.416770\pi\)
\(642\) −7697.45 −0.473199
\(643\) −25647.2 −1.57298 −0.786490 0.617602i \(-0.788104\pi\)
−0.786490 + 0.617602i \(0.788104\pi\)
\(644\) 33168.9 2.02956
\(645\) 0 0
\(646\) −3296.37 −0.200765
\(647\) −24363.6 −1.48042 −0.740210 0.672376i \(-0.765274\pi\)
−0.740210 + 0.672376i \(0.765274\pi\)
\(648\) 86.7146 0.00525690
\(649\) 9376.83 0.567138
\(650\) 0 0
\(651\) −19389.1 −1.16731
\(652\) 17808.8 1.06970
\(653\) 20699.7 1.24049 0.620246 0.784407i \(-0.287033\pi\)
0.620246 + 0.784407i \(0.287033\pi\)
\(654\) −12674.1 −0.757790
\(655\) 0 0
\(656\) 8864.40 0.527586
\(657\) 4485.59 0.266361
\(658\) −74187.5 −4.39534
\(659\) 18977.9 1.12181 0.560905 0.827880i \(-0.310453\pi\)
0.560905 + 0.827880i \(0.310453\pi\)
\(660\) 0 0
\(661\) 19769.9 1.16333 0.581665 0.813428i \(-0.302401\pi\)
0.581665 + 0.813428i \(0.302401\pi\)
\(662\) 8672.21 0.509147
\(663\) −2713.91 −0.158974
\(664\) −45.4995 −0.00265922
\(665\) 0 0
\(666\) −4270.73 −0.248479
\(667\) −3785.51 −0.219753
\(668\) −2949.47 −0.170836
\(669\) −18189.2 −1.05118
\(670\) 0 0
\(671\) 9586.83 0.551558
\(672\) −25003.1 −1.43529
\(673\) −5776.20 −0.330841 −0.165420 0.986223i \(-0.552898\pi\)
−0.165420 + 0.986223i \(0.552898\pi\)
\(674\) 22181.1 1.26763
\(675\) 0 0
\(676\) 4159.32 0.236648
\(677\) −20304.8 −1.15270 −0.576349 0.817203i \(-0.695523\pi\)
−0.576349 + 0.817203i \(0.695523\pi\)
\(678\) 16285.1 0.922456
\(679\) −4224.21 −0.238749
\(680\) 0 0
\(681\) 13285.8 0.747598
\(682\) −9858.65 −0.553530
\(683\) −2014.43 −0.112855 −0.0564276 0.998407i \(-0.517971\pi\)
−0.0564276 + 0.998407i \(0.517971\pi\)
\(684\) 3342.77 0.186863
\(685\) 0 0
\(686\) −51438.1 −2.86285
\(687\) 13551.8 0.752597
\(688\) −14678.4 −0.813386
\(689\) −20577.4 −1.13779
\(690\) 0 0
\(691\) −25073.6 −1.38038 −0.690190 0.723628i \(-0.742473\pi\)
−0.690190 + 0.723628i \(0.742473\pi\)
\(692\) 20848.1 1.14527
\(693\) 3740.25 0.205022
\(694\) 14851.2 0.812314
\(695\) 0 0
\(696\) 93.1379 0.00507239
\(697\) −2320.20 −0.126089
\(698\) 44423.4 2.40895
\(699\) 12153.4 0.657631
\(700\) 0 0
\(701\) −507.308 −0.0273335 −0.0136667 0.999907i \(-0.504350\pi\)
−0.0136667 + 0.999907i \(0.504350\pi\)
\(702\) 5600.33 0.301098
\(703\) 5748.76 0.308419
\(704\) −6029.09 −0.322770
\(705\) 0 0
\(706\) 6722.65 0.358372
\(707\) −19229.0 −1.02289
\(708\) −17199.8 −0.913007
\(709\) −24972.7 −1.32280 −0.661402 0.750032i \(-0.730038\pi\)
−0.661402 + 0.750032i \(0.730038\pi\)
\(710\) 0 0
\(711\) 954.292 0.0503358
\(712\) −173.222 −0.00911764
\(713\) 25665.0 1.34805
\(714\) 6765.47 0.354610
\(715\) 0 0
\(716\) 237.599 0.0124015
\(717\) −2512.07 −0.130844
\(718\) 1314.14 0.0683052
\(719\) 13494.0 0.699917 0.349958 0.936765i \(-0.386196\pi\)
0.349958 + 0.936765i \(0.386196\pi\)
\(720\) 0 0
\(721\) 62729.9 3.24020
\(722\) 18047.1 0.930257
\(723\) 6033.68 0.310367
\(724\) 1233.38 0.0633123
\(725\) 0 0
\(726\) −13934.9 −0.712360
\(727\) −5717.08 −0.291657 −0.145829 0.989310i \(-0.546585\pi\)
−0.145829 + 0.989310i \(0.546585\pi\)
\(728\) 1840.40 0.0936949
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 3841.99 0.194393
\(732\) −17585.0 −0.887925
\(733\) −10147.2 −0.511318 −0.255659 0.966767i \(-0.582292\pi\)
−0.255659 + 0.966767i \(0.582292\pi\)
\(734\) −45190.1 −2.27248
\(735\) 0 0
\(736\) 33096.1 1.65752
\(737\) 944.508 0.0472068
\(738\) 4787.89 0.238814
\(739\) 39280.9 1.95531 0.977654 0.210222i \(-0.0674187\pi\)
0.977654 + 0.210222i \(0.0674187\pi\)
\(740\) 0 0
\(741\) −7538.52 −0.373731
\(742\) 51297.0 2.53797
\(743\) −27166.1 −1.34136 −0.670679 0.741748i \(-0.733997\pi\)
−0.670679 + 0.741748i \(0.733997\pi\)
\(744\) −631.457 −0.0311161
\(745\) 0 0
\(746\) 23965.4 1.17619
\(747\) −382.509 −0.0187353
\(748\) 1690.48 0.0826339
\(749\) −21265.8 −1.03743
\(750\) 0 0
\(751\) −2310.40 −0.112261 −0.0561303 0.998423i \(-0.517876\pi\)
−0.0561303 + 0.998423i \(0.517876\pi\)
\(752\) −37606.0 −1.82360
\(753\) −19374.9 −0.937662
\(754\) 6015.17 0.290530
\(755\) 0 0
\(756\) −6860.71 −0.330055
\(757\) −28647.5 −1.37545 −0.687723 0.725973i \(-0.741390\pi\)
−0.687723 + 0.725973i \(0.741390\pi\)
\(758\) −13669.5 −0.655012
\(759\) −4950.90 −0.236767
\(760\) 0 0
\(761\) −28161.6 −1.34147 −0.670733 0.741699i \(-0.734020\pi\)
−0.670733 + 0.741699i \(0.734020\pi\)
\(762\) −25204.5 −1.19824
\(763\) −35014.7 −1.66136
\(764\) 747.987 0.0354205
\(765\) 0 0
\(766\) 24069.6 1.13534
\(767\) 38788.5 1.82604
\(768\) −13074.8 −0.614317
\(769\) −12197.5 −0.571981 −0.285990 0.958233i \(-0.592323\pi\)
−0.285990 + 0.958233i \(0.592323\pi\)
\(770\) 0 0
\(771\) 5514.45 0.257585
\(772\) −7868.62 −0.366837
\(773\) −21367.3 −0.994216 −0.497108 0.867689i \(-0.665605\pi\)
−0.497108 + 0.867689i \(0.665605\pi\)
\(774\) −7928.20 −0.368182
\(775\) 0 0
\(776\) −137.572 −0.00636413
\(777\) −11798.8 −0.544760
\(778\) 18991.2 0.875151
\(779\) −6444.91 −0.296422
\(780\) 0 0
\(781\) −1495.90 −0.0685373
\(782\) −8955.32 −0.409516
\(783\) 783.000 0.0357371
\(784\) −48741.9 −2.22038
\(785\) 0 0
\(786\) −29110.0 −1.32102
\(787\) 20891.1 0.946236 0.473118 0.880999i \(-0.343128\pi\)
0.473118 + 0.880999i \(0.343128\pi\)
\(788\) −38748.2 −1.75171
\(789\) 6789.00 0.306331
\(790\) 0 0
\(791\) 44991.0 2.02237
\(792\) 121.811 0.00546511
\(793\) 39657.2 1.77588
\(794\) 818.557 0.0365863
\(795\) 0 0
\(796\) −33545.2 −1.49369
\(797\) 12968.8 0.576386 0.288193 0.957572i \(-0.406946\pi\)
0.288193 + 0.957572i \(0.406946\pi\)
\(798\) 18792.7 0.833652
\(799\) 9843.14 0.435827
\(800\) 0 0
\(801\) −1456.26 −0.0642376
\(802\) 39980.4 1.76029
\(803\) 6301.06 0.276911
\(804\) −1732.50 −0.0759959
\(805\) 0 0
\(806\) −40781.7 −1.78222
\(807\) −1898.85 −0.0828288
\(808\) −626.243 −0.0272663
\(809\) −13867.9 −0.602683 −0.301342 0.953516i \(-0.597434\pi\)
−0.301342 + 0.953516i \(0.597434\pi\)
\(810\) 0 0
\(811\) −32657.3 −1.41400 −0.707000 0.707213i \(-0.749952\pi\)
−0.707000 + 0.707213i \(0.749952\pi\)
\(812\) −7368.91 −0.318471
\(813\) 2961.47 0.127753
\(814\) −5999.24 −0.258321
\(815\) 0 0
\(816\) 3429.45 0.147126
\(817\) 10672.0 0.456998
\(818\) −60197.7 −2.57306
\(819\) 15472.1 0.660119
\(820\) 0 0
\(821\) 13615.5 0.578788 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(822\) −18876.0 −0.800942
\(823\) 13661.8 0.578640 0.289320 0.957232i \(-0.406571\pi\)
0.289320 + 0.957232i \(0.406571\pi\)
\(824\) 2042.96 0.0863713
\(825\) 0 0
\(826\) −96695.5 −4.07320
\(827\) −31693.6 −1.33264 −0.666320 0.745666i \(-0.732131\pi\)
−0.666320 + 0.745666i \(0.732131\pi\)
\(828\) 9081.39 0.381159
\(829\) −18908.6 −0.792185 −0.396093 0.918211i \(-0.629634\pi\)
−0.396093 + 0.918211i \(0.629634\pi\)
\(830\) 0 0
\(831\) 24370.0 1.01731
\(832\) −24940.2 −1.03924
\(833\) 12757.9 0.530654
\(834\) 21337.6 0.885924
\(835\) 0 0
\(836\) 4695.71 0.194264
\(837\) −5308.59 −0.219225
\(838\) 24210.3 0.998010
\(839\) 29382.9 1.20907 0.604534 0.796579i \(-0.293359\pi\)
0.604534 + 0.796579i \(0.293359\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −33884.8 −1.38687
\(843\) 15226.8 0.622111
\(844\) −18247.3 −0.744193
\(845\) 0 0
\(846\) −20312.0 −0.825461
\(847\) −38498.1 −1.56176
\(848\) 26002.7 1.05299
\(849\) −6231.91 −0.251918
\(850\) 0 0
\(851\) 15617.8 0.629108
\(852\) 2743.92 0.110335
\(853\) −421.011 −0.0168994 −0.00844968 0.999964i \(-0.502690\pi\)
−0.00844968 + 0.999964i \(0.502690\pi\)
\(854\) −98861.0 −3.96131
\(855\) 0 0
\(856\) −692.576 −0.0276539
\(857\) 41115.0 1.63881 0.819405 0.573215i \(-0.194304\pi\)
0.819405 + 0.573215i \(0.194304\pi\)
\(858\) 7866.97 0.313023
\(859\) −578.823 −0.0229909 −0.0114954 0.999934i \(-0.503659\pi\)
−0.0114954 + 0.999934i \(0.503659\pi\)
\(860\) 0 0
\(861\) 13227.5 0.523570
\(862\) 30588.8 1.20865
\(863\) 30773.6 1.21384 0.606921 0.794762i \(-0.292404\pi\)
0.606921 + 0.794762i \(0.292404\pi\)
\(864\) −6845.65 −0.269553
\(865\) 0 0
\(866\) −52727.6 −2.06900
\(867\) 13841.4 0.542188
\(868\) 49959.8 1.95362
\(869\) 1340.53 0.0523294
\(870\) 0 0
\(871\) 3907.09 0.151994
\(872\) −1140.34 −0.0442855
\(873\) −1156.56 −0.0448379
\(874\) −24875.5 −0.962731
\(875\) 0 0
\(876\) −11558.0 −0.445785
\(877\) 21118.7 0.813146 0.406573 0.913618i \(-0.366724\pi\)
0.406573 + 0.913618i \(0.366724\pi\)
\(878\) 71519.5 2.74905
\(879\) −12292.8 −0.471701
\(880\) 0 0
\(881\) −42520.5 −1.62605 −0.813026 0.582228i \(-0.802181\pi\)
−0.813026 + 0.582228i \(0.802181\pi\)
\(882\) −26326.7 −1.00506
\(883\) −25473.5 −0.970840 −0.485420 0.874281i \(-0.661333\pi\)
−0.485420 + 0.874281i \(0.661333\pi\)
\(884\) 6992.91 0.266060
\(885\) 0 0
\(886\) 65344.5 2.47775
\(887\) −36451.4 −1.37984 −0.689920 0.723885i \(-0.742354\pi\)
−0.689920 + 0.723885i \(0.742354\pi\)
\(888\) −384.258 −0.0145212
\(889\) −69632.6 −2.62700
\(890\) 0 0
\(891\) 1024.05 0.0385039
\(892\) 46868.1 1.75926
\(893\) 27341.6 1.02458
\(894\) −31412.3 −1.17515
\(895\) 0 0
\(896\) −4501.86 −0.167853
\(897\) −20480.1 −0.762329
\(898\) 10517.1 0.390825
\(899\) −5701.82 −0.211531
\(900\) 0 0
\(901\) −6806.05 −0.251656
\(902\) 6725.72 0.248273
\(903\) −21903.3 −0.807194
\(904\) 1465.25 0.0539086
\(905\) 0 0
\(906\) 13478.3 0.494247
\(907\) −36563.0 −1.33854 −0.669270 0.743020i \(-0.733393\pi\)
−0.669270 + 0.743020i \(0.733393\pi\)
\(908\) −34233.5 −1.25119
\(909\) −5264.75 −0.192102
\(910\) 0 0
\(911\) 25321.6 0.920902 0.460451 0.887685i \(-0.347688\pi\)
0.460451 + 0.887685i \(0.347688\pi\)
\(912\) 9526.09 0.345878
\(913\) −537.324 −0.0194773
\(914\) −2310.65 −0.0836208
\(915\) 0 0
\(916\) −34918.9 −1.25955
\(917\) −80422.5 −2.89617
\(918\) 1852.33 0.0665971
\(919\) 16527.1 0.593230 0.296615 0.954997i \(-0.404142\pi\)
0.296615 + 0.954997i \(0.404142\pi\)
\(920\) 0 0
\(921\) 8400.82 0.300561
\(922\) 25929.4 0.926181
\(923\) −6188.01 −0.220673
\(924\) −9637.48 −0.343127
\(925\) 0 0
\(926\) −47178.0 −1.67426
\(927\) 17175.0 0.608522
\(928\) −7352.73 −0.260092
\(929\) −32080.4 −1.13297 −0.566483 0.824073i \(-0.691696\pi\)
−0.566483 + 0.824073i \(0.691696\pi\)
\(930\) 0 0
\(931\) 35438.0 1.24751
\(932\) −31315.6 −1.10062
\(933\) 3021.70 0.106030
\(934\) −58470.3 −2.04840
\(935\) 0 0
\(936\) 503.888 0.0175963
\(937\) −31282.2 −1.09066 −0.545328 0.838223i \(-0.683595\pi\)
−0.545328 + 0.838223i \(0.683595\pi\)
\(938\) −9739.93 −0.339041
\(939\) −25620.6 −0.890411
\(940\) 0 0
\(941\) 23786.8 0.824047 0.412024 0.911173i \(-0.364822\pi\)
0.412024 + 0.911173i \(0.364822\pi\)
\(942\) −10859.0 −0.375591
\(943\) −17509.0 −0.604637
\(944\) −49015.4 −1.68995
\(945\) 0 0
\(946\) −11137.0 −0.382765
\(947\) −38442.2 −1.31912 −0.659558 0.751654i \(-0.729256\pi\)
−0.659558 + 0.751654i \(0.729256\pi\)
\(948\) −2458.92 −0.0842425
\(949\) 26065.2 0.891583
\(950\) 0 0
\(951\) −20270.2 −0.691175
\(952\) 608.722 0.0207235
\(953\) −41175.0 −1.39957 −0.699784 0.714355i \(-0.746720\pi\)
−0.699784 + 0.714355i \(0.746720\pi\)
\(954\) 14044.7 0.476640
\(955\) 0 0
\(956\) 6472.84 0.218982
\(957\) 1099.91 0.0371525
\(958\) −23258.9 −0.784407
\(959\) −52148.8 −1.75597
\(960\) 0 0
\(961\) 8866.24 0.297615
\(962\) −24816.7 −0.831727
\(963\) −5822.41 −0.194833
\(964\) −15546.9 −0.519433
\(965\) 0 0
\(966\) 51054.5 1.70047
\(967\) −20553.4 −0.683508 −0.341754 0.939790i \(-0.611021\pi\)
−0.341754 + 0.939790i \(0.611021\pi\)
\(968\) −1253.79 −0.0416305
\(969\) −2493.40 −0.0826620
\(970\) 0 0
\(971\) 7678.14 0.253762 0.126881 0.991918i \(-0.459503\pi\)
0.126881 + 0.991918i \(0.459503\pi\)
\(972\) −1878.41 −0.0619856
\(973\) 58949.5 1.94228
\(974\) −61457.7 −2.02180
\(975\) 0 0
\(976\) −50113.1 −1.64353
\(977\) −46149.6 −1.51121 −0.755607 0.655025i \(-0.772658\pi\)
−0.755607 + 0.655025i \(0.772658\pi\)
\(978\) 27411.8 0.896249
\(979\) −2045.65 −0.0667818
\(980\) 0 0
\(981\) −9586.75 −0.312009
\(982\) −3774.61 −0.122661
\(983\) 17189.7 0.557747 0.278874 0.960328i \(-0.410039\pi\)
0.278874 + 0.960328i \(0.410039\pi\)
\(984\) 430.789 0.0139564
\(985\) 0 0
\(986\) 1989.54 0.0642596
\(987\) −56116.0 −1.80972
\(988\) 19424.4 0.625480
\(989\) 28992.9 0.932176
\(990\) 0 0
\(991\) −14818.9 −0.475012 −0.237506 0.971386i \(-0.576330\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(992\) 49850.1 1.59551
\(993\) 6559.73 0.209634
\(994\) 15426.0 0.492237
\(995\) 0 0
\(996\) 985.608 0.0313556
\(997\) 60460.3 1.92056 0.960280 0.279038i \(-0.0900157\pi\)
0.960280 + 0.279038i \(0.0900157\pi\)
\(998\) −50241.2 −1.59354
\(999\) −3230.41 −0.102308
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.m.1.1 7
5.4 even 2 435.4.a.j.1.7 7
15.14 odd 2 1305.4.a.m.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.7 7 5.4 even 2
1305.4.a.m.1.1 7 15.14 odd 2
2175.4.a.m.1.1 7 1.1 even 1 trivial