Properties

Label 2175.4.a.l.1.4
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 31x^{4} + 9x^{3} + 230x^{2} + 32x - 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.691666\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.691666 q^{2} +3.00000 q^{3} -7.52160 q^{4} +2.07500 q^{6} +14.5720 q^{7} -10.7358 q^{8} +9.00000 q^{9} +36.8326 q^{11} -22.5648 q^{12} +23.9199 q^{13} +10.0790 q^{14} +52.7472 q^{16} -62.8914 q^{17} +6.22499 q^{18} -94.1599 q^{19} +43.7161 q^{21} +25.4759 q^{22} -185.410 q^{23} -32.2073 q^{24} +16.5446 q^{26} +27.0000 q^{27} -109.605 q^{28} -29.0000 q^{29} -104.971 q^{31} +122.370 q^{32} +110.498 q^{33} -43.4999 q^{34} -67.6944 q^{36} +259.799 q^{37} -65.1272 q^{38} +71.7597 q^{39} +11.8069 q^{41} +30.2369 q^{42} +61.0501 q^{43} -277.040 q^{44} -128.242 q^{46} -281.426 q^{47} +158.242 q^{48} -130.656 q^{49} -188.674 q^{51} -179.916 q^{52} +170.846 q^{53} +18.6750 q^{54} -156.442 q^{56} -282.480 q^{57} -20.0583 q^{58} -636.987 q^{59} -379.603 q^{61} -72.6051 q^{62} +131.148 q^{63} -337.339 q^{64} +76.4276 q^{66} +623.333 q^{67} +473.044 q^{68} -556.231 q^{69} +298.898 q^{71} -96.6218 q^{72} +524.124 q^{73} +179.694 q^{74} +708.233 q^{76} +536.726 q^{77} +49.6337 q^{78} +563.264 q^{79} +81.0000 q^{81} +8.16645 q^{82} +885.342 q^{83} -328.815 q^{84} +42.2263 q^{86} -87.0000 q^{87} -395.426 q^{88} -447.652 q^{89} +348.562 q^{91} +1394.58 q^{92} -314.914 q^{93} -194.653 q^{94} +367.109 q^{96} +558.895 q^{97} -90.3702 q^{98} +331.493 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 18 q^{3} + 15 q^{4} + 3 q^{6} - 23 q^{7} + 51 q^{8} + 54 q^{9} - 111 q^{11} + 45 q^{12} + 83 q^{13} - 102 q^{14} - 37 q^{16} + 35 q^{17} + 9 q^{18} - 76 q^{19} - 69 q^{21} - 66 q^{22} - 166 q^{23}+ \cdots - 999 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.691666 0.244541 0.122270 0.992497i \(-0.460982\pi\)
0.122270 + 0.992497i \(0.460982\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.52160 −0.940200
\(5\) 0 0
\(6\) 2.07500 0.141186
\(7\) 14.5720 0.786816 0.393408 0.919364i \(-0.371296\pi\)
0.393408 + 0.919364i \(0.371296\pi\)
\(8\) −10.7358 −0.474458
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 36.8326 1.00959 0.504793 0.863240i \(-0.331569\pi\)
0.504793 + 0.863240i \(0.331569\pi\)
\(12\) −22.5648 −0.542825
\(13\) 23.9199 0.510322 0.255161 0.966899i \(-0.417872\pi\)
0.255161 + 0.966899i \(0.417872\pi\)
\(14\) 10.0790 0.192409
\(15\) 0 0
\(16\) 52.7472 0.824175
\(17\) −62.8914 −0.897260 −0.448630 0.893718i \(-0.648088\pi\)
−0.448630 + 0.893718i \(0.648088\pi\)
\(18\) 6.22499 0.0815136
\(19\) −94.1599 −1.13693 −0.568467 0.822706i \(-0.692463\pi\)
−0.568467 + 0.822706i \(0.692463\pi\)
\(20\) 0 0
\(21\) 43.7161 0.454268
\(22\) 25.4759 0.246885
\(23\) −185.410 −1.68090 −0.840450 0.541889i \(-0.817709\pi\)
−0.840450 + 0.541889i \(0.817709\pi\)
\(24\) −32.2073 −0.273928
\(25\) 0 0
\(26\) 16.5446 0.124795
\(27\) 27.0000 0.192450
\(28\) −109.605 −0.739764
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −104.971 −0.608174 −0.304087 0.952644i \(-0.598351\pi\)
−0.304087 + 0.952644i \(0.598351\pi\)
\(32\) 122.370 0.676003
\(33\) 110.498 0.582885
\(34\) −43.4999 −0.219417
\(35\) 0 0
\(36\) −67.6944 −0.313400
\(37\) 259.799 1.15435 0.577173 0.816622i \(-0.304156\pi\)
0.577173 + 0.816622i \(0.304156\pi\)
\(38\) −65.1272 −0.278027
\(39\) 71.7597 0.294635
\(40\) 0 0
\(41\) 11.8069 0.0449740 0.0224870 0.999747i \(-0.492842\pi\)
0.0224870 + 0.999747i \(0.492842\pi\)
\(42\) 30.2369 0.111087
\(43\) 61.0501 0.216513 0.108256 0.994123i \(-0.465473\pi\)
0.108256 + 0.994123i \(0.465473\pi\)
\(44\) −277.040 −0.949213
\(45\) 0 0
\(46\) −128.242 −0.411049
\(47\) −281.426 −0.873409 −0.436705 0.899605i \(-0.643855\pi\)
−0.436705 + 0.899605i \(0.643855\pi\)
\(48\) 158.242 0.475838
\(49\) −130.656 −0.380921
\(50\) 0 0
\(51\) −188.674 −0.518033
\(52\) −179.916 −0.479805
\(53\) 170.846 0.442782 0.221391 0.975185i \(-0.428940\pi\)
0.221391 + 0.975185i \(0.428940\pi\)
\(54\) 18.6750 0.0470619
\(55\) 0 0
\(56\) −156.442 −0.373311
\(57\) −282.480 −0.656409
\(58\) −20.0583 −0.0454101
\(59\) −636.987 −1.40557 −0.702785 0.711402i \(-0.748060\pi\)
−0.702785 + 0.711402i \(0.748060\pi\)
\(60\) 0 0
\(61\) −379.603 −0.796774 −0.398387 0.917218i \(-0.630430\pi\)
−0.398387 + 0.917218i \(0.630430\pi\)
\(62\) −72.6051 −0.148723
\(63\) 131.148 0.262272
\(64\) −337.339 −0.658865
\(65\) 0 0
\(66\) 76.4276 0.142539
\(67\) 623.333 1.13660 0.568300 0.822821i \(-0.307601\pi\)
0.568300 + 0.822821i \(0.307601\pi\)
\(68\) 473.044 0.843603
\(69\) −556.231 −0.970468
\(70\) 0 0
\(71\) 298.898 0.499615 0.249808 0.968295i \(-0.419633\pi\)
0.249808 + 0.968295i \(0.419633\pi\)
\(72\) −96.6218 −0.158153
\(73\) 524.124 0.840329 0.420165 0.907448i \(-0.361972\pi\)
0.420165 + 0.907448i \(0.361972\pi\)
\(74\) 179.694 0.282284
\(75\) 0 0
\(76\) 708.233 1.06895
\(77\) 536.726 0.794358
\(78\) 49.6337 0.0720502
\(79\) 563.264 0.802179 0.401090 0.916039i \(-0.368632\pi\)
0.401090 + 0.916039i \(0.368632\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 8.16645 0.0109980
\(83\) 885.342 1.17083 0.585415 0.810734i \(-0.300932\pi\)
0.585415 + 0.810734i \(0.300932\pi\)
\(84\) −328.815 −0.427103
\(85\) 0 0
\(86\) 42.2263 0.0529462
\(87\) −87.0000 −0.107211
\(88\) −395.426 −0.479006
\(89\) −447.652 −0.533157 −0.266579 0.963813i \(-0.585893\pi\)
−0.266579 + 0.963813i \(0.585893\pi\)
\(90\) 0 0
\(91\) 348.562 0.401529
\(92\) 1394.58 1.58038
\(93\) −314.914 −0.351130
\(94\) −194.653 −0.213584
\(95\) 0 0
\(96\) 367.109 0.390290
\(97\) 558.895 0.585022 0.292511 0.956262i \(-0.405509\pi\)
0.292511 + 0.956262i \(0.405509\pi\)
\(98\) −90.3702 −0.0931507
\(99\) 331.493 0.336529
\(100\) 0 0
\(101\) −1138.78 −1.12191 −0.560956 0.827846i \(-0.689566\pi\)
−0.560956 + 0.827846i \(0.689566\pi\)
\(102\) −130.500 −0.126680
\(103\) −1008.31 −0.964583 −0.482292 0.876011i \(-0.660195\pi\)
−0.482292 + 0.876011i \(0.660195\pi\)
\(104\) −256.798 −0.242126
\(105\) 0 0
\(106\) 118.168 0.108278
\(107\) −140.506 −0.126946 −0.0634730 0.997984i \(-0.520218\pi\)
−0.0634730 + 0.997984i \(0.520218\pi\)
\(108\) −203.083 −0.180942
\(109\) −850.530 −0.747394 −0.373697 0.927551i \(-0.621910\pi\)
−0.373697 + 0.927551i \(0.621910\pi\)
\(110\) 0 0
\(111\) 779.398 0.666461
\(112\) 768.634 0.648474
\(113\) −1851.23 −1.54115 −0.770573 0.637352i \(-0.780030\pi\)
−0.770573 + 0.637352i \(0.780030\pi\)
\(114\) −195.381 −0.160519
\(115\) 0 0
\(116\) 218.126 0.174591
\(117\) 215.279 0.170107
\(118\) −440.582 −0.343719
\(119\) −916.456 −0.705978
\(120\) 0 0
\(121\) 25.6407 0.0192643
\(122\) −262.558 −0.194844
\(123\) 35.4208 0.0259657
\(124\) 789.552 0.571805
\(125\) 0 0
\(126\) 90.7108 0.0641362
\(127\) −903.124 −0.631018 −0.315509 0.948923i \(-0.602175\pi\)
−0.315509 + 0.948923i \(0.602175\pi\)
\(128\) −1212.28 −0.837122
\(129\) 183.150 0.125004
\(130\) 0 0
\(131\) −685.958 −0.457499 −0.228750 0.973485i \(-0.573464\pi\)
−0.228750 + 0.973485i \(0.573464\pi\)
\(132\) −831.120 −0.548028
\(133\) −1372.10 −0.894558
\(134\) 431.138 0.277945
\(135\) 0 0
\(136\) 675.187 0.425712
\(137\) 1152.95 0.718999 0.359500 0.933145i \(-0.382947\pi\)
0.359500 + 0.933145i \(0.382947\pi\)
\(138\) −384.726 −0.237319
\(139\) −438.465 −0.267555 −0.133777 0.991011i \(-0.542711\pi\)
−0.133777 + 0.991011i \(0.542711\pi\)
\(140\) 0 0
\(141\) −844.279 −0.504263
\(142\) 206.738 0.122176
\(143\) 881.032 0.515214
\(144\) 474.725 0.274725
\(145\) 0 0
\(146\) 362.518 0.205495
\(147\) −391.968 −0.219925
\(148\) −1954.11 −1.08532
\(149\) −405.570 −0.222991 −0.111495 0.993765i \(-0.535564\pi\)
−0.111495 + 0.993765i \(0.535564\pi\)
\(150\) 0 0
\(151\) −78.9559 −0.0425519 −0.0212760 0.999774i \(-0.506773\pi\)
−0.0212760 + 0.999774i \(0.506773\pi\)
\(152\) 1010.88 0.539428
\(153\) −566.023 −0.299087
\(154\) 371.235 0.194253
\(155\) 0 0
\(156\) −539.748 −0.277015
\(157\) −314.869 −0.160059 −0.0800296 0.996792i \(-0.525501\pi\)
−0.0800296 + 0.996792i \(0.525501\pi\)
\(158\) 389.590 0.196166
\(159\) 512.537 0.255640
\(160\) 0 0
\(161\) −2701.80 −1.32256
\(162\) 56.0249 0.0271712
\(163\) −816.812 −0.392501 −0.196251 0.980554i \(-0.562877\pi\)
−0.196251 + 0.980554i \(0.562877\pi\)
\(164\) −88.8070 −0.0422845
\(165\) 0 0
\(166\) 612.361 0.286316
\(167\) 1364.36 0.632200 0.316100 0.948726i \(-0.397626\pi\)
0.316100 + 0.948726i \(0.397626\pi\)
\(168\) −469.325 −0.215531
\(169\) −1624.84 −0.739571
\(170\) 0 0
\(171\) −847.439 −0.378978
\(172\) −459.194 −0.203565
\(173\) −430.857 −0.189350 −0.0946748 0.995508i \(-0.530181\pi\)
−0.0946748 + 0.995508i \(0.530181\pi\)
\(174\) −60.1749 −0.0262175
\(175\) 0 0
\(176\) 1942.82 0.832076
\(177\) −1910.96 −0.811506
\(178\) −309.625 −0.130379
\(179\) −3192.64 −1.33312 −0.666561 0.745451i \(-0.732234\pi\)
−0.666561 + 0.745451i \(0.732234\pi\)
\(180\) 0 0
\(181\) −621.160 −0.255085 −0.127543 0.991833i \(-0.540709\pi\)
−0.127543 + 0.991833i \(0.540709\pi\)
\(182\) 241.088 0.0981903
\(183\) −1138.81 −0.460017
\(184\) 1990.52 0.797517
\(185\) 0 0
\(186\) −217.815 −0.0858655
\(187\) −2316.46 −0.905861
\(188\) 2116.78 0.821179
\(189\) 393.445 0.151423
\(190\) 0 0
\(191\) 2943.37 1.11505 0.557526 0.830160i \(-0.311751\pi\)
0.557526 + 0.830160i \(0.311751\pi\)
\(192\) −1012.02 −0.380396
\(193\) −3259.79 −1.21578 −0.607889 0.794022i \(-0.707983\pi\)
−0.607889 + 0.794022i \(0.707983\pi\)
\(194\) 386.568 0.143062
\(195\) 0 0
\(196\) 982.741 0.358142
\(197\) −2372.35 −0.857983 −0.428992 0.903308i \(-0.641131\pi\)
−0.428992 + 0.903308i \(0.641131\pi\)
\(198\) 229.283 0.0822950
\(199\) −1828.75 −0.651441 −0.325721 0.945466i \(-0.605607\pi\)
−0.325721 + 0.945466i \(0.605607\pi\)
\(200\) 0 0
\(201\) 1870.00 0.656216
\(202\) −787.657 −0.274353
\(203\) −422.589 −0.146108
\(204\) 1419.13 0.487055
\(205\) 0 0
\(206\) −697.416 −0.235880
\(207\) −1668.69 −0.560300
\(208\) 1261.71 0.420595
\(209\) −3468.15 −1.14783
\(210\) 0 0
\(211\) 4223.45 1.37798 0.688991 0.724770i \(-0.258054\pi\)
0.688991 + 0.724770i \(0.258054\pi\)
\(212\) −1285.03 −0.416304
\(213\) 896.694 0.288453
\(214\) −97.1832 −0.0310435
\(215\) 0 0
\(216\) −289.865 −0.0913095
\(217\) −1529.65 −0.478521
\(218\) −588.282 −0.182768
\(219\) 1572.37 0.485164
\(220\) 0 0
\(221\) −1504.36 −0.457891
\(222\) 539.083 0.162977
\(223\) 327.670 0.0983964 0.0491982 0.998789i \(-0.484333\pi\)
0.0491982 + 0.998789i \(0.484333\pi\)
\(224\) 1783.17 0.531889
\(225\) 0 0
\(226\) −1280.44 −0.376873
\(227\) −3662.12 −1.07076 −0.535382 0.844610i \(-0.679832\pi\)
−0.535382 + 0.844610i \(0.679832\pi\)
\(228\) 2124.70 0.617156
\(229\) −6562.57 −1.89374 −0.946871 0.321613i \(-0.895775\pi\)
−0.946871 + 0.321613i \(0.895775\pi\)
\(230\) 0 0
\(231\) 1610.18 0.458623
\(232\) 311.337 0.0881046
\(233\) −2490.28 −0.700189 −0.350094 0.936714i \(-0.613850\pi\)
−0.350094 + 0.936714i \(0.613850\pi\)
\(234\) 148.901 0.0415982
\(235\) 0 0
\(236\) 4791.16 1.32152
\(237\) 1689.79 0.463138
\(238\) −633.881 −0.172640
\(239\) −3584.40 −0.970106 −0.485053 0.874485i \(-0.661200\pi\)
−0.485053 + 0.874485i \(0.661200\pi\)
\(240\) 0 0
\(241\) −6543.94 −1.74910 −0.874548 0.484938i \(-0.838842\pi\)
−0.874548 + 0.484938i \(0.838842\pi\)
\(242\) 17.7348 0.00471090
\(243\) 243.000 0.0641500
\(244\) 2855.22 0.749126
\(245\) 0 0
\(246\) 24.4994 0.00634968
\(247\) −2252.29 −0.580203
\(248\) 1126.95 0.288553
\(249\) 2656.03 0.675979
\(250\) 0 0
\(251\) 528.100 0.132802 0.0664011 0.997793i \(-0.478848\pi\)
0.0664011 + 0.997793i \(0.478848\pi\)
\(252\) −986.445 −0.246588
\(253\) −6829.14 −1.69701
\(254\) −624.660 −0.154310
\(255\) 0 0
\(256\) 1860.22 0.454155
\(257\) −5020.78 −1.21863 −0.609314 0.792929i \(-0.708555\pi\)
−0.609314 + 0.792929i \(0.708555\pi\)
\(258\) 126.679 0.0305685
\(259\) 3785.81 0.908257
\(260\) 0 0
\(261\) −261.000 −0.0618984
\(262\) −474.453 −0.111877
\(263\) 422.212 0.0989913 0.0494957 0.998774i \(-0.484239\pi\)
0.0494957 + 0.998774i \(0.484239\pi\)
\(264\) −1186.28 −0.276554
\(265\) 0 0
\(266\) −949.035 −0.218756
\(267\) −1342.96 −0.307818
\(268\) −4688.46 −1.06863
\(269\) −1777.19 −0.402815 −0.201407 0.979508i \(-0.564551\pi\)
−0.201407 + 0.979508i \(0.564551\pi\)
\(270\) 0 0
\(271\) −1465.51 −0.328499 −0.164250 0.986419i \(-0.552520\pi\)
−0.164250 + 0.986419i \(0.552520\pi\)
\(272\) −3317.35 −0.739499
\(273\) 1045.68 0.231823
\(274\) 797.454 0.175825
\(275\) 0 0
\(276\) 4183.74 0.912434
\(277\) 6081.50 1.31914 0.659570 0.751643i \(-0.270738\pi\)
0.659570 + 0.751643i \(0.270738\pi\)
\(278\) −303.271 −0.0654281
\(279\) −944.742 −0.202725
\(280\) 0 0
\(281\) −1194.50 −0.253587 −0.126794 0.991929i \(-0.540469\pi\)
−0.126794 + 0.991929i \(0.540469\pi\)
\(282\) −583.959 −0.123313
\(283\) −3827.53 −0.803968 −0.401984 0.915647i \(-0.631679\pi\)
−0.401984 + 0.915647i \(0.631679\pi\)
\(284\) −2248.19 −0.469738
\(285\) 0 0
\(286\) 609.380 0.125991
\(287\) 172.051 0.0353862
\(288\) 1101.33 0.225334
\(289\) −957.668 −0.194925
\(290\) 0 0
\(291\) 1676.68 0.337763
\(292\) −3942.25 −0.790077
\(293\) 6821.00 1.36002 0.680012 0.733201i \(-0.261975\pi\)
0.680012 + 0.733201i \(0.261975\pi\)
\(294\) −271.111 −0.0537806
\(295\) 0 0
\(296\) −2789.14 −0.547688
\(297\) 994.480 0.194295
\(298\) −280.519 −0.0545303
\(299\) −4434.99 −0.857801
\(300\) 0 0
\(301\) 889.624 0.170356
\(302\) −54.6111 −0.0104057
\(303\) −3416.35 −0.647736
\(304\) −4966.67 −0.937034
\(305\) 0 0
\(306\) −391.499 −0.0731389
\(307\) 7350.74 1.36654 0.683272 0.730164i \(-0.260556\pi\)
0.683272 + 0.730164i \(0.260556\pi\)
\(308\) −4037.04 −0.746856
\(309\) −3024.94 −0.556902
\(310\) 0 0
\(311\) 3393.14 0.618673 0.309337 0.950953i \(-0.399893\pi\)
0.309337 + 0.950953i \(0.399893\pi\)
\(312\) −770.395 −0.139792
\(313\) 10732.3 1.93810 0.969049 0.246867i \(-0.0794011\pi\)
0.969049 + 0.246867i \(0.0794011\pi\)
\(314\) −217.784 −0.0391410
\(315\) 0 0
\(316\) −4236.65 −0.754209
\(317\) 8721.17 1.54520 0.772602 0.634890i \(-0.218955\pi\)
0.772602 + 0.634890i \(0.218955\pi\)
\(318\) 354.504 0.0625145
\(319\) −1068.15 −0.187475
\(320\) 0 0
\(321\) −421.518 −0.0732923
\(322\) −1868.75 −0.323420
\(323\) 5921.85 1.02013
\(324\) −609.249 −0.104467
\(325\) 0 0
\(326\) −564.961 −0.0959825
\(327\) −2551.59 −0.431508
\(328\) −126.756 −0.0213383
\(329\) −4100.95 −0.687212
\(330\) 0 0
\(331\) −6093.02 −1.01179 −0.505895 0.862595i \(-0.668838\pi\)
−0.505895 + 0.862595i \(0.668838\pi\)
\(332\) −6659.18 −1.10081
\(333\) 2338.20 0.384782
\(334\) 943.682 0.154599
\(335\) 0 0
\(336\) 2305.90 0.374397
\(337\) 6306.92 1.01947 0.509733 0.860333i \(-0.329744\pi\)
0.509733 + 0.860333i \(0.329744\pi\)
\(338\) −1123.85 −0.180855
\(339\) −5553.70 −0.889781
\(340\) 0 0
\(341\) −3866.37 −0.614004
\(342\) −586.144 −0.0926756
\(343\) −6902.13 −1.08653
\(344\) −655.419 −0.102726
\(345\) 0 0
\(346\) −298.009 −0.0463037
\(347\) −11395.7 −1.76298 −0.881491 0.472201i \(-0.843460\pi\)
−0.881491 + 0.472201i \(0.843460\pi\)
\(348\) 654.379 0.100800
\(349\) 8835.08 1.35510 0.677552 0.735475i \(-0.263041\pi\)
0.677552 + 0.735475i \(0.263041\pi\)
\(350\) 0 0
\(351\) 645.837 0.0982115
\(352\) 4507.19 0.682483
\(353\) 3390.75 0.511251 0.255626 0.966776i \(-0.417719\pi\)
0.255626 + 0.966776i \(0.417719\pi\)
\(354\) −1321.75 −0.198446
\(355\) 0 0
\(356\) 3367.06 0.501274
\(357\) −2749.37 −0.407597
\(358\) −2208.24 −0.326003
\(359\) −5160.27 −0.758632 −0.379316 0.925267i \(-0.623841\pi\)
−0.379316 + 0.925267i \(0.623841\pi\)
\(360\) 0 0
\(361\) 2007.08 0.292620
\(362\) −429.635 −0.0623788
\(363\) 76.9222 0.0111222
\(364\) −2621.74 −0.377518
\(365\) 0 0
\(366\) −787.675 −0.112493
\(367\) −1110.17 −0.157902 −0.0789512 0.996878i \(-0.525157\pi\)
−0.0789512 + 0.996878i \(0.525157\pi\)
\(368\) −9779.88 −1.38536
\(369\) 106.262 0.0149913
\(370\) 0 0
\(371\) 2489.57 0.348388
\(372\) 2368.66 0.330132
\(373\) −5801.22 −0.805297 −0.402648 0.915355i \(-0.631910\pi\)
−0.402648 + 0.915355i \(0.631910\pi\)
\(374\) −1602.21 −0.221520
\(375\) 0 0
\(376\) 3021.32 0.414396
\(377\) −693.677 −0.0947644
\(378\) 272.132 0.0370290
\(379\) −12664.5 −1.71644 −0.858219 0.513284i \(-0.828429\pi\)
−0.858219 + 0.513284i \(0.828429\pi\)
\(380\) 0 0
\(381\) −2709.37 −0.364318
\(382\) 2035.83 0.272675
\(383\) 13408.3 1.78885 0.894427 0.447215i \(-0.147584\pi\)
0.894427 + 0.447215i \(0.147584\pi\)
\(384\) −3636.85 −0.483313
\(385\) 0 0
\(386\) −2254.69 −0.297307
\(387\) 549.451 0.0721710
\(388\) −4203.78 −0.550038
\(389\) −4676.56 −0.609540 −0.304770 0.952426i \(-0.598580\pi\)
−0.304770 + 0.952426i \(0.598580\pi\)
\(390\) 0 0
\(391\) 11660.7 1.50820
\(392\) 1402.69 0.180731
\(393\) −2057.87 −0.264137
\(394\) −1640.87 −0.209812
\(395\) 0 0
\(396\) −2493.36 −0.316404
\(397\) 5913.71 0.747608 0.373804 0.927508i \(-0.378053\pi\)
0.373804 + 0.927508i \(0.378053\pi\)
\(398\) −1264.89 −0.159304
\(399\) −4116.30 −0.516473
\(400\) 0 0
\(401\) 7756.80 0.965975 0.482987 0.875627i \(-0.339552\pi\)
0.482987 + 0.875627i \(0.339552\pi\)
\(402\) 1293.41 0.160472
\(403\) −2510.90 −0.310365
\(404\) 8565.46 1.05482
\(405\) 0 0
\(406\) −292.290 −0.0357294
\(407\) 9569.09 1.16541
\(408\) 2025.56 0.245785
\(409\) 7674.37 0.927808 0.463904 0.885886i \(-0.346448\pi\)
0.463904 + 0.885886i \(0.346448\pi\)
\(410\) 0 0
\(411\) 3458.84 0.415114
\(412\) 7584.13 0.906901
\(413\) −9282.19 −1.10592
\(414\) −1154.18 −0.137016
\(415\) 0 0
\(416\) 2927.07 0.344979
\(417\) −1315.39 −0.154473
\(418\) −2398.80 −0.280692
\(419\) 11316.2 1.31940 0.659702 0.751527i \(-0.270682\pi\)
0.659702 + 0.751527i \(0.270682\pi\)
\(420\) 0 0
\(421\) −15960.8 −1.84770 −0.923851 0.382753i \(-0.874976\pi\)
−0.923851 + 0.382753i \(0.874976\pi\)
\(422\) 2921.21 0.336973
\(423\) −2532.84 −0.291136
\(424\) −1834.16 −0.210081
\(425\) 0 0
\(426\) 620.213 0.0705385
\(427\) −5531.59 −0.626914
\(428\) 1056.83 0.119355
\(429\) 2643.10 0.297459
\(430\) 0 0
\(431\) 9181.83 1.02616 0.513078 0.858342i \(-0.328505\pi\)
0.513078 + 0.858342i \(0.328505\pi\)
\(432\) 1424.18 0.158613
\(433\) −312.822 −0.0347188 −0.0173594 0.999849i \(-0.505526\pi\)
−0.0173594 + 0.999849i \(0.505526\pi\)
\(434\) −1058.00 −0.117018
\(435\) 0 0
\(436\) 6397.34 0.702700
\(437\) 17458.2 1.91107
\(438\) 1087.56 0.118642
\(439\) −8018.14 −0.871720 −0.435860 0.900014i \(-0.643556\pi\)
−0.435860 + 0.900014i \(0.643556\pi\)
\(440\) 0 0
\(441\) −1175.90 −0.126974
\(442\) −1040.51 −0.111973
\(443\) −553.480 −0.0593603 −0.0296802 0.999559i \(-0.509449\pi\)
−0.0296802 + 0.999559i \(0.509449\pi\)
\(444\) −5862.32 −0.626607
\(445\) 0 0
\(446\) 226.638 0.0240619
\(447\) −1216.71 −0.128744
\(448\) −4915.71 −0.518406
\(449\) −12055.2 −1.26708 −0.633540 0.773710i \(-0.718399\pi\)
−0.633540 + 0.773710i \(0.718399\pi\)
\(450\) 0 0
\(451\) 434.880 0.0454051
\(452\) 13924.2 1.44899
\(453\) −236.868 −0.0245674
\(454\) −2532.96 −0.261845
\(455\) 0 0
\(456\) 3032.63 0.311439
\(457\) 268.261 0.0274589 0.0137295 0.999906i \(-0.495630\pi\)
0.0137295 + 0.999906i \(0.495630\pi\)
\(458\) −4539.11 −0.463097
\(459\) −1698.07 −0.172678
\(460\) 0 0
\(461\) 3621.49 0.365877 0.182939 0.983124i \(-0.441439\pi\)
0.182939 + 0.983124i \(0.441439\pi\)
\(462\) 1113.70 0.112152
\(463\) 7751.51 0.778063 0.389031 0.921225i \(-0.372810\pi\)
0.389031 + 0.921225i \(0.372810\pi\)
\(464\) −1529.67 −0.153046
\(465\) 0 0
\(466\) −1722.44 −0.171225
\(467\) −8838.90 −0.875836 −0.437918 0.899015i \(-0.644284\pi\)
−0.437918 + 0.899015i \(0.644284\pi\)
\(468\) −1619.24 −0.159935
\(469\) 9083.22 0.894295
\(470\) 0 0
\(471\) −944.607 −0.0924102
\(472\) 6838.54 0.666884
\(473\) 2248.63 0.218588
\(474\) 1168.77 0.113256
\(475\) 0 0
\(476\) 6893.21 0.663760
\(477\) 1537.61 0.147594
\(478\) −2479.20 −0.237230
\(479\) −9904.02 −0.944731 −0.472366 0.881403i \(-0.656600\pi\)
−0.472366 + 0.881403i \(0.656600\pi\)
\(480\) 0 0
\(481\) 6214.38 0.589088
\(482\) −4526.22 −0.427726
\(483\) −8105.41 −0.763580
\(484\) −192.859 −0.0181123
\(485\) 0 0
\(486\) 168.075 0.0156873
\(487\) −799.412 −0.0743836 −0.0371918 0.999308i \(-0.511841\pi\)
−0.0371918 + 0.999308i \(0.511841\pi\)
\(488\) 4075.33 0.378036
\(489\) −2450.44 −0.226611
\(490\) 0 0
\(491\) −10013.3 −0.920351 −0.460176 0.887828i \(-0.652214\pi\)
−0.460176 + 0.887828i \(0.652214\pi\)
\(492\) −266.421 −0.0244130
\(493\) 1823.85 0.166617
\(494\) −1557.84 −0.141883
\(495\) 0 0
\(496\) −5536.94 −0.501242
\(497\) 4355.55 0.393105
\(498\) 1837.08 0.165304
\(499\) 2556.35 0.229335 0.114667 0.993404i \(-0.463420\pi\)
0.114667 + 0.993404i \(0.463420\pi\)
\(500\) 0 0
\(501\) 4093.08 0.365001
\(502\) 365.269 0.0324756
\(503\) −11520.2 −1.02120 −0.510598 0.859820i \(-0.670576\pi\)
−0.510598 + 0.859820i \(0.670576\pi\)
\(504\) −1407.98 −0.124437
\(505\) 0 0
\(506\) −4723.48 −0.414989
\(507\) −4874.51 −0.426992
\(508\) 6792.94 0.593283
\(509\) 8055.10 0.701446 0.350723 0.936479i \(-0.385936\pi\)
0.350723 + 0.936479i \(0.385936\pi\)
\(510\) 0 0
\(511\) 7637.55 0.661184
\(512\) 10984.9 0.948181
\(513\) −2542.32 −0.218803
\(514\) −3472.70 −0.298004
\(515\) 0 0
\(516\) −1377.58 −0.117529
\(517\) −10365.7 −0.881782
\(518\) 2618.51 0.222106
\(519\) −1292.57 −0.109321
\(520\) 0 0
\(521\) 22383.5 1.88222 0.941111 0.338097i \(-0.109783\pi\)
0.941111 + 0.338097i \(0.109783\pi\)
\(522\) −180.525 −0.0151367
\(523\) −5260.45 −0.439816 −0.219908 0.975521i \(-0.570576\pi\)
−0.219908 + 0.975521i \(0.570576\pi\)
\(524\) 5159.50 0.430141
\(525\) 0 0
\(526\) 292.030 0.0242074
\(527\) 6601.79 0.545690
\(528\) 5828.45 0.480399
\(529\) 22210.0 1.82543
\(530\) 0 0
\(531\) −5732.88 −0.468523
\(532\) 10320.4 0.841063
\(533\) 282.421 0.0229512
\(534\) −928.876 −0.0752742
\(535\) 0 0
\(536\) −6691.95 −0.539269
\(537\) −9577.91 −0.769678
\(538\) −1229.22 −0.0985046
\(539\) −4812.40 −0.384573
\(540\) 0 0
\(541\) −15052.8 −1.19625 −0.598123 0.801404i \(-0.704087\pi\)
−0.598123 + 0.801404i \(0.704087\pi\)
\(542\) −1013.64 −0.0803315
\(543\) −1863.48 −0.147274
\(544\) −7695.99 −0.606550
\(545\) 0 0
\(546\) 723.264 0.0566902
\(547\) −13743.0 −1.07424 −0.537121 0.843505i \(-0.680488\pi\)
−0.537121 + 0.843505i \(0.680488\pi\)
\(548\) −8672.00 −0.676003
\(549\) −3416.43 −0.265591
\(550\) 0 0
\(551\) 2730.64 0.211123
\(552\) 5971.56 0.460446
\(553\) 8207.90 0.631167
\(554\) 4206.36 0.322584
\(555\) 0 0
\(556\) 3297.96 0.251555
\(557\) −23296.7 −1.77219 −0.886097 0.463500i \(-0.846593\pi\)
−0.886097 + 0.463500i \(0.846593\pi\)
\(558\) −653.446 −0.0495745
\(559\) 1460.31 0.110491
\(560\) 0 0
\(561\) −6949.37 −0.522999
\(562\) −826.196 −0.0620124
\(563\) −6823.79 −0.510814 −0.255407 0.966834i \(-0.582209\pi\)
−0.255407 + 0.966834i \(0.582209\pi\)
\(564\) 6350.33 0.474108
\(565\) 0 0
\(566\) −2647.37 −0.196603
\(567\) 1180.33 0.0874240
\(568\) −3208.90 −0.237046
\(569\) 17974.8 1.32433 0.662166 0.749358i \(-0.269638\pi\)
0.662166 + 0.749358i \(0.269638\pi\)
\(570\) 0 0
\(571\) 22031.6 1.61470 0.807350 0.590072i \(-0.200901\pi\)
0.807350 + 0.590072i \(0.200901\pi\)
\(572\) −6626.77 −0.484404
\(573\) 8830.11 0.643775
\(574\) 119.002 0.00865338
\(575\) 0 0
\(576\) −3036.05 −0.219622
\(577\) −14520.1 −1.04762 −0.523811 0.851834i \(-0.675490\pi\)
−0.523811 + 0.851834i \(0.675490\pi\)
\(578\) −662.386 −0.0476672
\(579\) −9779.38 −0.701929
\(580\) 0 0
\(581\) 12901.2 0.921227
\(582\) 1159.71 0.0825968
\(583\) 6292.69 0.447027
\(584\) −5626.87 −0.398701
\(585\) 0 0
\(586\) 4717.85 0.332581
\(587\) 998.184 0.0701865 0.0350932 0.999384i \(-0.488827\pi\)
0.0350932 + 0.999384i \(0.488827\pi\)
\(588\) 2948.22 0.206773
\(589\) 9884.08 0.691454
\(590\) 0 0
\(591\) −7117.04 −0.495357
\(592\) 13703.7 0.951383
\(593\) −3431.22 −0.237611 −0.118806 0.992918i \(-0.537907\pi\)
−0.118806 + 0.992918i \(0.537907\pi\)
\(594\) 687.848 0.0475130
\(595\) 0 0
\(596\) 3050.54 0.209656
\(597\) −5486.26 −0.376110
\(598\) −3067.53 −0.209767
\(599\) −21059.5 −1.43651 −0.718255 0.695780i \(-0.755059\pi\)
−0.718255 + 0.695780i \(0.755059\pi\)
\(600\) 0 0
\(601\) 8534.75 0.579267 0.289634 0.957138i \(-0.406467\pi\)
0.289634 + 0.957138i \(0.406467\pi\)
\(602\) 615.323 0.0416589
\(603\) 5609.99 0.378867
\(604\) 593.874 0.0400073
\(605\) 0 0
\(606\) −2362.97 −0.158398
\(607\) 17101.7 1.14355 0.571776 0.820409i \(-0.306254\pi\)
0.571776 + 0.820409i \(0.306254\pi\)
\(608\) −11522.3 −0.768571
\(609\) −1267.77 −0.0843555
\(610\) 0 0
\(611\) −6731.69 −0.445720
\(612\) 4257.40 0.281201
\(613\) 1048.59 0.0690897 0.0345449 0.999403i \(-0.489002\pi\)
0.0345449 + 0.999403i \(0.489002\pi\)
\(614\) 5084.26 0.334176
\(615\) 0 0
\(616\) −5762.16 −0.376890
\(617\) −2212.12 −0.144338 −0.0721689 0.997392i \(-0.522992\pi\)
−0.0721689 + 0.997392i \(0.522992\pi\)
\(618\) −2092.25 −0.136185
\(619\) 25602.7 1.66246 0.831228 0.555932i \(-0.187638\pi\)
0.831228 + 0.555932i \(0.187638\pi\)
\(620\) 0 0
\(621\) −5006.08 −0.323489
\(622\) 2346.92 0.151291
\(623\) −6523.19 −0.419496
\(624\) 3785.13 0.242831
\(625\) 0 0
\(626\) 7423.16 0.473944
\(627\) −10404.5 −0.662702
\(628\) 2368.32 0.150488
\(629\) −16339.2 −1.03575
\(630\) 0 0
\(631\) −25127.0 −1.58524 −0.792622 0.609713i \(-0.791285\pi\)
−0.792622 + 0.609713i \(0.791285\pi\)
\(632\) −6047.07 −0.380600
\(633\) 12670.3 0.795578
\(634\) 6032.14 0.377866
\(635\) 0 0
\(636\) −3855.10 −0.240353
\(637\) −3125.28 −0.194392
\(638\) −738.800 −0.0458454
\(639\) 2690.08 0.166538
\(640\) 0 0
\(641\) 2231.80 0.137521 0.0687605 0.997633i \(-0.478096\pi\)
0.0687605 + 0.997633i \(0.478096\pi\)
\(642\) −291.550 −0.0179230
\(643\) 15105.0 0.926415 0.463207 0.886250i \(-0.346699\pi\)
0.463207 + 0.886250i \(0.346699\pi\)
\(644\) 20321.9 1.24347
\(645\) 0 0
\(646\) 4095.94 0.249462
\(647\) −21013.9 −1.27688 −0.638441 0.769671i \(-0.720420\pi\)
−0.638441 + 0.769671i \(0.720420\pi\)
\(648\) −869.596 −0.0527176
\(649\) −23461.9 −1.41904
\(650\) 0 0
\(651\) −4588.94 −0.276274
\(652\) 6143.73 0.369029
\(653\) −25780.5 −1.54498 −0.772489 0.635028i \(-0.780989\pi\)
−0.772489 + 0.635028i \(0.780989\pi\)
\(654\) −1764.85 −0.105521
\(655\) 0 0
\(656\) 622.783 0.0370665
\(657\) 4717.11 0.280110
\(658\) −2836.49 −0.168051
\(659\) 14065.8 0.831448 0.415724 0.909491i \(-0.363528\pi\)
0.415724 + 0.909491i \(0.363528\pi\)
\(660\) 0 0
\(661\) −13363.3 −0.786342 −0.393171 0.919465i \(-0.628622\pi\)
−0.393171 + 0.919465i \(0.628622\pi\)
\(662\) −4214.33 −0.247424
\(663\) −4513.07 −0.264364
\(664\) −9504.81 −0.555510
\(665\) 0 0
\(666\) 1617.25 0.0940948
\(667\) 5376.90 0.312135
\(668\) −10262.2 −0.594395
\(669\) 983.010 0.0568092
\(670\) 0 0
\(671\) −13981.8 −0.804412
\(672\) 5349.52 0.307087
\(673\) 17727.5 1.01537 0.507686 0.861542i \(-0.330501\pi\)
0.507686 + 0.861542i \(0.330501\pi\)
\(674\) 4362.28 0.249301
\(675\) 0 0
\(676\) 12221.4 0.695345
\(677\) −15776.1 −0.895605 −0.447803 0.894132i \(-0.647793\pi\)
−0.447803 + 0.894132i \(0.647793\pi\)
\(678\) −3841.31 −0.217588
\(679\) 8144.23 0.460305
\(680\) 0 0
\(681\) −10986.4 −0.618206
\(682\) −2674.23 −0.150149
\(683\) −14482.3 −0.811350 −0.405675 0.914018i \(-0.632963\pi\)
−0.405675 + 0.914018i \(0.632963\pi\)
\(684\) 6374.09 0.356315
\(685\) 0 0
\(686\) −4773.97 −0.265701
\(687\) −19687.7 −1.09335
\(688\) 3220.22 0.178445
\(689\) 4086.61 0.225961
\(690\) 0 0
\(691\) 19721.5 1.08573 0.542867 0.839819i \(-0.317339\pi\)
0.542867 + 0.839819i \(0.317339\pi\)
\(692\) 3240.74 0.178026
\(693\) 4830.53 0.264786
\(694\) −7882.04 −0.431121
\(695\) 0 0
\(696\) 934.011 0.0508672
\(697\) −742.555 −0.0403533
\(698\) 6110.92 0.331378
\(699\) −7470.85 −0.404254
\(700\) 0 0
\(701\) 2004.45 0.107998 0.0539992 0.998541i \(-0.482803\pi\)
0.0539992 + 0.998541i \(0.482803\pi\)
\(702\) 446.704 0.0240167
\(703\) −24462.7 −1.31241
\(704\) −12425.1 −0.665181
\(705\) 0 0
\(706\) 2345.27 0.125022
\(707\) −16594.4 −0.882738
\(708\) 14373.5 0.762978
\(709\) 10037.8 0.531705 0.265853 0.964014i \(-0.414347\pi\)
0.265853 + 0.964014i \(0.414347\pi\)
\(710\) 0 0
\(711\) 5069.38 0.267393
\(712\) 4805.88 0.252961
\(713\) 19462.8 1.02228
\(714\) −1901.64 −0.0996740
\(715\) 0 0
\(716\) 24013.7 1.25340
\(717\) −10753.2 −0.560091
\(718\) −3569.18 −0.185516
\(719\) 10367.8 0.537768 0.268884 0.963173i \(-0.413345\pi\)
0.268884 + 0.963173i \(0.413345\pi\)
\(720\) 0 0
\(721\) −14693.2 −0.758949
\(722\) 1388.23 0.0715576
\(723\) −19631.8 −1.00984
\(724\) 4672.11 0.239831
\(725\) 0 0
\(726\) 53.2044 0.00271984
\(727\) 32648.0 1.66554 0.832770 0.553619i \(-0.186754\pi\)
0.832770 + 0.553619i \(0.186754\pi\)
\(728\) −3742.07 −0.190509
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −3839.53 −0.194268
\(732\) 8565.66 0.432508
\(733\) −21036.1 −1.06001 −0.530004 0.847995i \(-0.677809\pi\)
−0.530004 + 0.847995i \(0.677809\pi\)
\(734\) −767.863 −0.0386136
\(735\) 0 0
\(736\) −22688.6 −1.13629
\(737\) 22959.0 1.14750
\(738\) 73.4981 0.00366599
\(739\) 24591.3 1.22410 0.612048 0.790820i \(-0.290346\pi\)
0.612048 + 0.790820i \(0.290346\pi\)
\(740\) 0 0
\(741\) −6756.88 −0.334980
\(742\) 1721.95 0.0851950
\(743\) −3352.77 −0.165547 −0.0827734 0.996568i \(-0.526378\pi\)
−0.0827734 + 0.996568i \(0.526378\pi\)
\(744\) 3380.84 0.166596
\(745\) 0 0
\(746\) −4012.50 −0.196928
\(747\) 7968.08 0.390277
\(748\) 17423.4 0.851690
\(749\) −2047.46 −0.0998831
\(750\) 0 0
\(751\) 10898.0 0.529525 0.264762 0.964314i \(-0.414706\pi\)
0.264762 + 0.964314i \(0.414706\pi\)
\(752\) −14844.5 −0.719843
\(753\) 1584.30 0.0766734
\(754\) −479.793 −0.0231738
\(755\) 0 0
\(756\) −2959.33 −0.142368
\(757\) 34910.6 1.67615 0.838075 0.545555i \(-0.183681\pi\)
0.838075 + 0.545555i \(0.183681\pi\)
\(758\) −8759.58 −0.419739
\(759\) −20487.4 −0.979771
\(760\) 0 0
\(761\) −17093.2 −0.814229 −0.407115 0.913377i \(-0.633465\pi\)
−0.407115 + 0.913377i \(0.633465\pi\)
\(762\) −1873.98 −0.0890907
\(763\) −12393.9 −0.588062
\(764\) −22138.8 −1.04837
\(765\) 0 0
\(766\) 9274.05 0.437448
\(767\) −15236.7 −0.717293
\(768\) 5580.65 0.262206
\(769\) 29371.4 1.37732 0.688660 0.725084i \(-0.258199\pi\)
0.688660 + 0.725084i \(0.258199\pi\)
\(770\) 0 0
\(771\) −15062.3 −0.703575
\(772\) 24518.9 1.14307
\(773\) 25646.0 1.19330 0.596651 0.802501i \(-0.296498\pi\)
0.596651 + 0.802501i \(0.296498\pi\)
\(774\) 380.036 0.0176487
\(775\) 0 0
\(776\) −6000.16 −0.277568
\(777\) 11357.4 0.524382
\(778\) −3234.62 −0.149057
\(779\) −1111.74 −0.0511325
\(780\) 0 0
\(781\) 11009.2 0.504405
\(782\) 8065.32 0.368817
\(783\) −783.000 −0.0357371
\(784\) −6891.74 −0.313946
\(785\) 0 0
\(786\) −1423.36 −0.0645923
\(787\) −18188.7 −0.823834 −0.411917 0.911221i \(-0.635141\pi\)
−0.411917 + 0.911221i \(0.635141\pi\)
\(788\) 17843.8 0.806676
\(789\) 1266.64 0.0571527
\(790\) 0 0
\(791\) −26976.2 −1.21260
\(792\) −3558.83 −0.159669
\(793\) −9080.07 −0.406611
\(794\) 4090.31 0.182821
\(795\) 0 0
\(796\) 13755.1 0.612485
\(797\) −12068.7 −0.536379 −0.268190 0.963366i \(-0.586425\pi\)
−0.268190 + 0.963366i \(0.586425\pi\)
\(798\) −2847.11 −0.126299
\(799\) 17699.3 0.783675
\(800\) 0 0
\(801\) −4028.87 −0.177719
\(802\) 5365.11 0.236220
\(803\) 19304.8 0.848385
\(804\) −14065.4 −0.616974
\(805\) 0 0
\(806\) −1736.71 −0.0758968
\(807\) −5331.57 −0.232565
\(808\) 12225.7 0.532300
\(809\) −18274.6 −0.794191 −0.397096 0.917777i \(-0.629982\pi\)
−0.397096 + 0.917777i \(0.629982\pi\)
\(810\) 0 0
\(811\) −30620.5 −1.32581 −0.662903 0.748705i \(-0.730676\pi\)
−0.662903 + 0.748705i \(0.730676\pi\)
\(812\) 3178.54 0.137371
\(813\) −4396.53 −0.189659
\(814\) 6618.61 0.284990
\(815\) 0 0
\(816\) −9952.05 −0.426950
\(817\) −5748.47 −0.246161
\(818\) 5308.10 0.226887
\(819\) 3137.05 0.133843
\(820\) 0 0
\(821\) −10076.0 −0.428326 −0.214163 0.976798i \(-0.568702\pi\)
−0.214163 + 0.976798i \(0.568702\pi\)
\(822\) 2392.36 0.101512
\(823\) −37593.9 −1.59227 −0.796137 0.605116i \(-0.793127\pi\)
−0.796137 + 0.605116i \(0.793127\pi\)
\(824\) 10825.0 0.457654
\(825\) 0 0
\(826\) −6420.18 −0.270444
\(827\) −34830.2 −1.46453 −0.732264 0.681021i \(-0.761536\pi\)
−0.732264 + 0.681021i \(0.761536\pi\)
\(828\) 12551.2 0.526794
\(829\) −19925.3 −0.834784 −0.417392 0.908727i \(-0.637056\pi\)
−0.417392 + 0.908727i \(0.637056\pi\)
\(830\) 0 0
\(831\) 18244.5 0.761606
\(832\) −8069.12 −0.336233
\(833\) 8217.14 0.341785
\(834\) −909.814 −0.0377749
\(835\) 0 0
\(836\) 26086.1 1.07919
\(837\) −2834.22 −0.117043
\(838\) 7827.00 0.322648
\(839\) 26090.0 1.07357 0.536786 0.843718i \(-0.319638\pi\)
0.536786 + 0.843718i \(0.319638\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −11039.5 −0.451838
\(843\) −3583.51 −0.146409
\(844\) −31767.1 −1.29558
\(845\) 0 0
\(846\) −1751.88 −0.0711947
\(847\) 373.637 0.0151574
\(848\) 9011.63 0.364930
\(849\) −11482.6 −0.464171
\(850\) 0 0
\(851\) −48169.5 −1.94034
\(852\) −6744.57 −0.271203
\(853\) 37626.4 1.51032 0.755160 0.655540i \(-0.227559\pi\)
0.755160 + 0.655540i \(0.227559\pi\)
\(854\) −3826.01 −0.153306
\(855\) 0 0
\(856\) 1508.44 0.0602306
\(857\) −25833.1 −1.02969 −0.514844 0.857284i \(-0.672150\pi\)
−0.514844 + 0.857284i \(0.672150\pi\)
\(858\) 1828.14 0.0727409
\(859\) 49111.2 1.95070 0.975351 0.220661i \(-0.0708215\pi\)
0.975351 + 0.220661i \(0.0708215\pi\)
\(860\) 0 0
\(861\) 516.153 0.0204303
\(862\) 6350.76 0.250937
\(863\) −14549.3 −0.573886 −0.286943 0.957948i \(-0.592639\pi\)
−0.286943 + 0.957948i \(0.592639\pi\)
\(864\) 3303.98 0.130097
\(865\) 0 0
\(866\) −216.368 −0.00849017
\(867\) −2873.00 −0.112540
\(868\) 11505.4 0.449905
\(869\) 20746.5 0.809869
\(870\) 0 0
\(871\) 14910.1 0.580032
\(872\) 9131.08 0.354607
\(873\) 5030.05 0.195007
\(874\) 12075.2 0.467335
\(875\) 0 0
\(876\) −11826.7 −0.456151
\(877\) −501.781 −0.0193203 −0.00966017 0.999953i \(-0.503075\pi\)
−0.00966017 + 0.999953i \(0.503075\pi\)
\(878\) −5545.88 −0.213171
\(879\) 20463.0 0.785210
\(880\) 0 0
\(881\) 1569.47 0.0600189 0.0300095 0.999550i \(-0.490446\pi\)
0.0300095 + 0.999550i \(0.490446\pi\)
\(882\) −813.332 −0.0310502
\(883\) 26159.0 0.996967 0.498483 0.866899i \(-0.333890\pi\)
0.498483 + 0.866899i \(0.333890\pi\)
\(884\) 11315.2 0.430509
\(885\) 0 0
\(886\) −382.823 −0.0145160
\(887\) 29723.0 1.12514 0.562571 0.826749i \(-0.309812\pi\)
0.562571 + 0.826749i \(0.309812\pi\)
\(888\) −8367.43 −0.316208
\(889\) −13160.4 −0.496495
\(890\) 0 0
\(891\) 2983.44 0.112176
\(892\) −2464.60 −0.0925123
\(893\) 26499.1 0.993009
\(894\) −841.557 −0.0314831
\(895\) 0 0
\(896\) −17665.4 −0.658661
\(897\) −13305.0 −0.495251
\(898\) −8338.16 −0.309853
\(899\) 3044.17 0.112935
\(900\) 0 0
\(901\) −10744.7 −0.397290
\(902\) 300.792 0.0111034
\(903\) 2668.87 0.0983549
\(904\) 19874.4 0.731209
\(905\) 0 0
\(906\) −163.833 −0.00600772
\(907\) 9772.21 0.357752 0.178876 0.983872i \(-0.442754\pi\)
0.178876 + 0.983872i \(0.442754\pi\)
\(908\) 27545.0 1.00673
\(909\) −10249.0 −0.373971
\(910\) 0 0
\(911\) −49823.7 −1.81200 −0.906001 0.423275i \(-0.860880\pi\)
−0.906001 + 0.423275i \(0.860880\pi\)
\(912\) −14900.0 −0.540997
\(913\) 32609.4 1.18205
\(914\) 185.547 0.00671483
\(915\) 0 0
\(916\) 49361.0 1.78050
\(917\) −9995.80 −0.359968
\(918\) −1174.50 −0.0422267
\(919\) 28235.9 1.01351 0.506756 0.862090i \(-0.330845\pi\)
0.506756 + 0.862090i \(0.330845\pi\)
\(920\) 0 0
\(921\) 22052.2 0.788974
\(922\) 2504.86 0.0894720
\(923\) 7149.61 0.254965
\(924\) −12111.1 −0.431197
\(925\) 0 0
\(926\) 5361.45 0.190268
\(927\) −9074.82 −0.321528
\(928\) −3548.72 −0.125531
\(929\) −22846.1 −0.806842 −0.403421 0.915014i \(-0.632179\pi\)
−0.403421 + 0.915014i \(0.632179\pi\)
\(930\) 0 0
\(931\) 12302.5 0.433082
\(932\) 18730.9 0.658317
\(933\) 10179.4 0.357191
\(934\) −6113.56 −0.214178
\(935\) 0 0
\(936\) −2311.18 −0.0807088
\(937\) 45416.9 1.58346 0.791732 0.610868i \(-0.209180\pi\)
0.791732 + 0.610868i \(0.209180\pi\)
\(938\) 6282.55 0.218692
\(939\) 32196.9 1.11896
\(940\) 0 0
\(941\) −39333.3 −1.36262 −0.681311 0.731994i \(-0.738590\pi\)
−0.681311 + 0.731994i \(0.738590\pi\)
\(942\) −653.352 −0.0225981
\(943\) −2189.13 −0.0755968
\(944\) −33599.3 −1.15844
\(945\) 0 0
\(946\) 1555.30 0.0534538
\(947\) −31274.8 −1.07317 −0.536587 0.843845i \(-0.680287\pi\)
−0.536587 + 0.843845i \(0.680287\pi\)
\(948\) −12709.9 −0.435443
\(949\) 12537.0 0.428839
\(950\) 0 0
\(951\) 26163.5 0.892124
\(952\) 9838.85 0.334957
\(953\) 34174.1 1.16160 0.580802 0.814045i \(-0.302739\pi\)
0.580802 + 0.814045i \(0.302739\pi\)
\(954\) 1063.51 0.0360928
\(955\) 0 0
\(956\) 26960.4 0.912093
\(957\) −3204.44 −0.108239
\(958\) −6850.27 −0.231025
\(959\) 16800.8 0.565720
\(960\) 0 0
\(961\) −18772.0 −0.630124
\(962\) 4298.27 0.144056
\(963\) −1264.55 −0.0423153
\(964\) 49220.9 1.64450
\(965\) 0 0
\(966\) −5606.24 −0.186726
\(967\) −37894.7 −1.26020 −0.630098 0.776515i \(-0.716985\pi\)
−0.630098 + 0.776515i \(0.716985\pi\)
\(968\) −275.273 −0.00914008
\(969\) 17765.5 0.588970
\(970\) 0 0
\(971\) −39869.1 −1.31767 −0.658837 0.752286i \(-0.728951\pi\)
−0.658837 + 0.752286i \(0.728951\pi\)
\(972\) −1827.75 −0.0603138
\(973\) −6389.33 −0.210516
\(974\) −552.926 −0.0181898
\(975\) 0 0
\(976\) −20023.0 −0.656681
\(977\) 34257.3 1.12179 0.560894 0.827887i \(-0.310457\pi\)
0.560894 + 0.827887i \(0.310457\pi\)
\(978\) −1694.88 −0.0554155
\(979\) −16488.2 −0.538268
\(980\) 0 0
\(981\) −7654.77 −0.249131
\(982\) −6925.83 −0.225063
\(983\) −8665.65 −0.281171 −0.140586 0.990069i \(-0.544899\pi\)
−0.140586 + 0.990069i \(0.544899\pi\)
\(984\) −380.269 −0.0123197
\(985\) 0 0
\(986\) 1261.50 0.0407446
\(987\) −12302.9 −0.396762
\(988\) 16940.9 0.545507
\(989\) −11319.3 −0.363937
\(990\) 0 0
\(991\) 22129.9 0.709362 0.354681 0.934987i \(-0.384589\pi\)
0.354681 + 0.934987i \(0.384589\pi\)
\(992\) −12845.3 −0.411127
\(993\) −18279.0 −0.584157
\(994\) 3012.59 0.0961302
\(995\) 0 0
\(996\) −19977.6 −0.635555
\(997\) 14159.7 0.449791 0.224895 0.974383i \(-0.427796\pi\)
0.224895 + 0.974383i \(0.427796\pi\)
\(998\) 1768.14 0.0560817
\(999\) 7014.59 0.222154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.l.1.4 6
5.4 even 2 435.4.a.g.1.3 6
15.14 odd 2 1305.4.a.i.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.g.1.3 6 5.4 even 2
1305.4.a.i.1.4 6 15.14 odd 2
2175.4.a.l.1.4 6 1.1 even 1 trivial