Properties

Label 2175.4.a.k.1.2
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.39070\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.39070 q^{2} -3.00000 q^{3} +11.2783 q^{4} +13.1721 q^{6} -31.5336 q^{7} -14.3939 q^{8} +9.00000 q^{9} -5.28853 q^{11} -33.8348 q^{12} +5.98731 q^{13} +138.455 q^{14} -27.0267 q^{16} -84.6758 q^{17} -39.5163 q^{18} +57.3480 q^{19} +94.6008 q^{21} +23.2204 q^{22} -31.0898 q^{23} +43.1818 q^{24} -26.2885 q^{26} -27.0000 q^{27} -355.645 q^{28} +29.0000 q^{29} -14.6873 q^{31} +233.818 q^{32} +15.8656 q^{33} +371.786 q^{34} +101.504 q^{36} +7.76174 q^{37} -251.798 q^{38} -17.9619 q^{39} -399.867 q^{41} -415.364 q^{42} +17.9967 q^{43} -59.6455 q^{44} +136.506 q^{46} +262.798 q^{47} +81.0800 q^{48} +651.368 q^{49} +254.027 q^{51} +67.5265 q^{52} +64.9925 q^{53} +118.549 q^{54} +453.893 q^{56} -172.044 q^{57} -127.330 q^{58} +122.788 q^{59} +264.384 q^{61} +64.4877 q^{62} -283.802 q^{63} -810.411 q^{64} -69.6611 q^{66} -622.712 q^{67} -954.997 q^{68} +93.2694 q^{69} +327.717 q^{71} -129.545 q^{72} +833.518 q^{73} -34.0795 q^{74} +646.787 q^{76} +166.767 q^{77} +78.8655 q^{78} -666.457 q^{79} +81.0000 q^{81} +1755.70 q^{82} +1320.72 q^{83} +1066.93 q^{84} -79.0180 q^{86} -87.0000 q^{87} +76.1229 q^{88} -189.059 q^{89} -188.801 q^{91} -350.640 q^{92} +44.0620 q^{93} -1153.87 q^{94} -701.453 q^{96} +137.630 q^{97} -2859.97 q^{98} -47.5968 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 18 q^{3} + 51 q^{4} + 3 q^{6} - 47 q^{7} - 51 q^{8} + 54 q^{9} + 81 q^{11} - 153 q^{12} - 169 q^{13} - 30 q^{14} + 131 q^{16} + q^{17} - 9 q^{18} + 116 q^{19} + 141 q^{21} - 90 q^{22} + 52 q^{23}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.39070 −1.55235 −0.776174 0.630519i \(-0.782842\pi\)
−0.776174 + 0.630519i \(0.782842\pi\)
\(3\) −3.00000 −0.577350
\(4\) 11.2783 1.40978
\(5\) 0 0
\(6\) 13.1721 0.896249
\(7\) −31.5336 −1.70265 −0.851327 0.524635i \(-0.824202\pi\)
−0.851327 + 0.524635i \(0.824202\pi\)
\(8\) −14.3939 −0.636128
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −5.28853 −0.144959 −0.0724797 0.997370i \(-0.523091\pi\)
−0.0724797 + 0.997370i \(0.523091\pi\)
\(12\) −33.8348 −0.813940
\(13\) 5.98731 0.127737 0.0638685 0.997958i \(-0.479656\pi\)
0.0638685 + 0.997958i \(0.479656\pi\)
\(14\) 138.455 2.64311
\(15\) 0 0
\(16\) −27.0267 −0.422292
\(17\) −84.6758 −1.20805 −0.604026 0.796965i \(-0.706438\pi\)
−0.604026 + 0.796965i \(0.706438\pi\)
\(18\) −39.5163 −0.517449
\(19\) 57.3480 0.692449 0.346225 0.938152i \(-0.387464\pi\)
0.346225 + 0.938152i \(0.387464\pi\)
\(20\) 0 0
\(21\) 94.6008 0.983028
\(22\) 23.2204 0.225027
\(23\) −31.0898 −0.281855 −0.140928 0.990020i \(-0.545009\pi\)
−0.140928 + 0.990020i \(0.545009\pi\)
\(24\) 43.1818 0.367269
\(25\) 0 0
\(26\) −26.2885 −0.198292
\(27\) −27.0000 −0.192450
\(28\) −355.645 −2.40038
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −14.6873 −0.0850942 −0.0425471 0.999094i \(-0.513547\pi\)
−0.0425471 + 0.999094i \(0.513547\pi\)
\(32\) 233.818 1.29167
\(33\) 15.8656 0.0836923
\(34\) 371.786 1.87532
\(35\) 0 0
\(36\) 101.504 0.469928
\(37\) 7.76174 0.0344871 0.0172435 0.999851i \(-0.494511\pi\)
0.0172435 + 0.999851i \(0.494511\pi\)
\(38\) −251.798 −1.07492
\(39\) −17.9619 −0.0737490
\(40\) 0 0
\(41\) −399.867 −1.52314 −0.761569 0.648084i \(-0.775571\pi\)
−0.761569 + 0.648084i \(0.775571\pi\)
\(42\) −415.364 −1.52600
\(43\) 17.9967 0.0638247 0.0319124 0.999491i \(-0.489840\pi\)
0.0319124 + 0.999491i \(0.489840\pi\)
\(44\) −59.6455 −0.204361
\(45\) 0 0
\(46\) 136.506 0.437538
\(47\) 262.798 0.815595 0.407798 0.913072i \(-0.366297\pi\)
0.407798 + 0.913072i \(0.366297\pi\)
\(48\) 81.0800 0.243810
\(49\) 651.368 1.89903
\(50\) 0 0
\(51\) 254.027 0.697469
\(52\) 67.5265 0.180082
\(53\) 64.9925 0.168442 0.0842209 0.996447i \(-0.473160\pi\)
0.0842209 + 0.996447i \(0.473160\pi\)
\(54\) 118.549 0.298750
\(55\) 0 0
\(56\) 453.893 1.08311
\(57\) −172.044 −0.399786
\(58\) −127.330 −0.288264
\(59\) 122.788 0.270942 0.135471 0.990781i \(-0.456745\pi\)
0.135471 + 0.990781i \(0.456745\pi\)
\(60\) 0 0
\(61\) 264.384 0.554932 0.277466 0.960735i \(-0.410505\pi\)
0.277466 + 0.960735i \(0.410505\pi\)
\(62\) 64.4877 0.132096
\(63\) −283.802 −0.567552
\(64\) −810.411 −1.58283
\(65\) 0 0
\(66\) −69.6611 −0.129920
\(67\) −622.712 −1.13547 −0.567734 0.823212i \(-0.692180\pi\)
−0.567734 + 0.823212i \(0.692180\pi\)
\(68\) −954.997 −1.70309
\(69\) 93.2694 0.162729
\(70\) 0 0
\(71\) 327.717 0.547786 0.273893 0.961760i \(-0.411689\pi\)
0.273893 + 0.961760i \(0.411689\pi\)
\(72\) −129.545 −0.212043
\(73\) 833.518 1.33638 0.668191 0.743989i \(-0.267069\pi\)
0.668191 + 0.743989i \(0.267069\pi\)
\(74\) −34.0795 −0.0535360
\(75\) 0 0
\(76\) 646.787 0.976204
\(77\) 166.767 0.246816
\(78\) 78.8655 0.114484
\(79\) −666.457 −0.949143 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1755.70 2.36444
\(83\) 1320.72 1.74660 0.873301 0.487182i \(-0.161975\pi\)
0.873301 + 0.487182i \(0.161975\pi\)
\(84\) 1066.93 1.38586
\(85\) 0 0
\(86\) −79.0180 −0.0990782
\(87\) −87.0000 −0.107211
\(88\) 76.1229 0.0922128
\(89\) −189.059 −0.225172 −0.112586 0.993642i \(-0.535913\pi\)
−0.112586 + 0.993642i \(0.535913\pi\)
\(90\) 0 0
\(91\) −188.801 −0.217492
\(92\) −350.640 −0.397355
\(93\) 44.0620 0.0491292
\(94\) −1153.87 −1.26609
\(95\) 0 0
\(96\) −701.453 −0.745747
\(97\) 137.630 0.144064 0.0720321 0.997402i \(-0.477052\pi\)
0.0720321 + 0.997402i \(0.477052\pi\)
\(98\) −2859.97 −2.94796
\(99\) −47.5968 −0.0483198
\(100\) 0 0
\(101\) −1721.15 −1.69565 −0.847826 0.530275i \(-0.822089\pi\)
−0.847826 + 0.530275i \(0.822089\pi\)
\(102\) −1115.36 −1.08272
\(103\) −797.585 −0.762994 −0.381497 0.924370i \(-0.624591\pi\)
−0.381497 + 0.924370i \(0.624591\pi\)
\(104\) −86.1810 −0.0812571
\(105\) 0 0
\(106\) −285.363 −0.261480
\(107\) 778.452 0.703325 0.351662 0.936127i \(-0.385616\pi\)
0.351662 + 0.936127i \(0.385616\pi\)
\(108\) −304.513 −0.271313
\(109\) 721.205 0.633752 0.316876 0.948467i \(-0.397366\pi\)
0.316876 + 0.948467i \(0.397366\pi\)
\(110\) 0 0
\(111\) −23.2852 −0.0199111
\(112\) 852.249 0.719017
\(113\) 559.024 0.465386 0.232693 0.972550i \(-0.425246\pi\)
0.232693 + 0.972550i \(0.425246\pi\)
\(114\) 755.394 0.620607
\(115\) 0 0
\(116\) 327.070 0.261790
\(117\) 53.8858 0.0425790
\(118\) −539.124 −0.420597
\(119\) 2670.13 2.05690
\(120\) 0 0
\(121\) −1303.03 −0.978987
\(122\) −1160.83 −0.861448
\(123\) 1199.60 0.879384
\(124\) −165.648 −0.119965
\(125\) 0 0
\(126\) 1246.09 0.881038
\(127\) 626.324 0.437616 0.218808 0.975768i \(-0.429783\pi\)
0.218808 + 0.975768i \(0.429783\pi\)
\(128\) 1687.73 1.16544
\(129\) −53.9900 −0.0368492
\(130\) 0 0
\(131\) 1764.12 1.17658 0.588289 0.808651i \(-0.299802\pi\)
0.588289 + 0.808651i \(0.299802\pi\)
\(132\) 178.937 0.117988
\(133\) −1808.39 −1.17900
\(134\) 2734.14 1.76264
\(135\) 0 0
\(136\) 1218.82 0.768476
\(137\) 433.723 0.270478 0.135239 0.990813i \(-0.456820\pi\)
0.135239 + 0.990813i \(0.456820\pi\)
\(138\) −409.518 −0.252613
\(139\) −504.659 −0.307947 −0.153974 0.988075i \(-0.549207\pi\)
−0.153974 + 0.988075i \(0.549207\pi\)
\(140\) 0 0
\(141\) −788.393 −0.470884
\(142\) −1438.91 −0.850355
\(143\) −31.6641 −0.0185167
\(144\) −243.240 −0.140764
\(145\) 0 0
\(146\) −3659.73 −2.07453
\(147\) −1954.11 −1.09641
\(148\) 87.5391 0.0486194
\(149\) −354.655 −0.194997 −0.0974983 0.995236i \(-0.531084\pi\)
−0.0974983 + 0.995236i \(0.531084\pi\)
\(150\) 0 0
\(151\) −325.611 −0.175483 −0.0877413 0.996143i \(-0.527965\pi\)
−0.0877413 + 0.996143i \(0.527965\pi\)
\(152\) −825.464 −0.440487
\(153\) −762.082 −0.402684
\(154\) −732.222 −0.383144
\(155\) 0 0
\(156\) −202.580 −0.103970
\(157\) 2690.09 1.36747 0.683733 0.729732i \(-0.260355\pi\)
0.683733 + 0.729732i \(0.260355\pi\)
\(158\) 2926.22 1.47340
\(159\) −194.978 −0.0972499
\(160\) 0 0
\(161\) 980.374 0.479902
\(162\) −355.647 −0.172483
\(163\) −1411.51 −0.678270 −0.339135 0.940738i \(-0.610134\pi\)
−0.339135 + 0.940738i \(0.610134\pi\)
\(164\) −4509.81 −2.14730
\(165\) 0 0
\(166\) −5798.89 −2.71133
\(167\) 2538.25 1.17614 0.588072 0.808809i \(-0.299887\pi\)
0.588072 + 0.808809i \(0.299887\pi\)
\(168\) −1361.68 −0.625332
\(169\) −2161.15 −0.983683
\(170\) 0 0
\(171\) 516.132 0.230816
\(172\) 202.971 0.0899791
\(173\) 305.030 0.134052 0.0670260 0.997751i \(-0.478649\pi\)
0.0670260 + 0.997751i \(0.478649\pi\)
\(174\) 381.991 0.166429
\(175\) 0 0
\(176\) 142.932 0.0612152
\(177\) −368.363 −0.156429
\(178\) 830.104 0.349545
\(179\) 3093.43 1.29170 0.645849 0.763465i \(-0.276504\pi\)
0.645849 + 0.763465i \(0.276504\pi\)
\(180\) 0 0
\(181\) 2800.38 1.15000 0.575001 0.818153i \(-0.305002\pi\)
0.575001 + 0.818153i \(0.305002\pi\)
\(182\) 828.971 0.337623
\(183\) −793.151 −0.320390
\(184\) 447.505 0.179296
\(185\) 0 0
\(186\) −193.463 −0.0762656
\(187\) 447.811 0.175118
\(188\) 2963.91 1.14981
\(189\) 851.407 0.327676
\(190\) 0 0
\(191\) 4208.78 1.59443 0.797217 0.603693i \(-0.206305\pi\)
0.797217 + 0.603693i \(0.206305\pi\)
\(192\) 2431.23 0.913849
\(193\) 247.563 0.0923315 0.0461658 0.998934i \(-0.485300\pi\)
0.0461658 + 0.998934i \(0.485300\pi\)
\(194\) −604.293 −0.223638
\(195\) 0 0
\(196\) 7346.31 2.67723
\(197\) 4574.07 1.65426 0.827129 0.562013i \(-0.189973\pi\)
0.827129 + 0.562013i \(0.189973\pi\)
\(198\) 208.983 0.0750091
\(199\) 2601.05 0.926551 0.463276 0.886214i \(-0.346674\pi\)
0.463276 + 0.886214i \(0.346674\pi\)
\(200\) 0 0
\(201\) 1868.13 0.655563
\(202\) 7557.06 2.63224
\(203\) −914.475 −0.316175
\(204\) 2864.99 0.983281
\(205\) 0 0
\(206\) 3501.96 1.18443
\(207\) −279.808 −0.0939518
\(208\) −161.817 −0.0539423
\(209\) −303.287 −0.100377
\(210\) 0 0
\(211\) 244.148 0.0796582 0.0398291 0.999207i \(-0.487319\pi\)
0.0398291 + 0.999207i \(0.487319\pi\)
\(212\) 733.004 0.237467
\(213\) −983.150 −0.316265
\(214\) −3417.95 −1.09181
\(215\) 0 0
\(216\) 388.636 0.122423
\(217\) 463.144 0.144886
\(218\) −3166.60 −0.983803
\(219\) −2500.56 −0.771561
\(220\) 0 0
\(221\) −506.980 −0.154313
\(222\) 102.239 0.0309090
\(223\) −4179.26 −1.25500 −0.627498 0.778618i \(-0.715921\pi\)
−0.627498 + 0.778618i \(0.715921\pi\)
\(224\) −7373.12 −2.19927
\(225\) 0 0
\(226\) −2454.51 −0.722441
\(227\) −4034.64 −1.17968 −0.589842 0.807518i \(-0.700810\pi\)
−0.589842 + 0.807518i \(0.700810\pi\)
\(228\) −1940.36 −0.563612
\(229\) 4501.53 1.29899 0.649497 0.760364i \(-0.274980\pi\)
0.649497 + 0.760364i \(0.274980\pi\)
\(230\) 0 0
\(231\) −500.300 −0.142499
\(232\) −417.424 −0.118126
\(233\) 4710.72 1.32450 0.662252 0.749282i \(-0.269601\pi\)
0.662252 + 0.749282i \(0.269601\pi\)
\(234\) −236.597 −0.0660974
\(235\) 0 0
\(236\) 1384.83 0.381970
\(237\) 1999.37 0.547988
\(238\) −11723.8 −3.19302
\(239\) −496.634 −0.134412 −0.0672062 0.997739i \(-0.521409\pi\)
−0.0672062 + 0.997739i \(0.521409\pi\)
\(240\) 0 0
\(241\) 6414.62 1.71453 0.857266 0.514874i \(-0.172161\pi\)
0.857266 + 0.514874i \(0.172161\pi\)
\(242\) 5721.22 1.51973
\(243\) −243.000 −0.0641500
\(244\) 2981.79 0.782335
\(245\) 0 0
\(246\) −5267.09 −1.36511
\(247\) 343.360 0.0884514
\(248\) 211.409 0.0541309
\(249\) −3962.16 −1.00840
\(250\) 0 0
\(251\) 4741.55 1.19237 0.596183 0.802848i \(-0.296683\pi\)
0.596183 + 0.802848i \(0.296683\pi\)
\(252\) −3200.80 −0.800126
\(253\) 164.420 0.0408576
\(254\) −2750.00 −0.679333
\(255\) 0 0
\(256\) −927.044 −0.226329
\(257\) 6110.47 1.48312 0.741558 0.670889i \(-0.234087\pi\)
0.741558 + 0.670889i \(0.234087\pi\)
\(258\) 237.054 0.0572028
\(259\) −244.756 −0.0587196
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −7745.72 −1.82646
\(263\) 3905.40 0.915654 0.457827 0.889041i \(-0.348628\pi\)
0.457827 + 0.889041i \(0.348628\pi\)
\(264\) −228.369 −0.0532391
\(265\) 0 0
\(266\) 7940.10 1.83022
\(267\) 567.178 0.130003
\(268\) −7023.11 −1.60076
\(269\) −6684.63 −1.51513 −0.757563 0.652762i \(-0.773610\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(270\) 0 0
\(271\) −6784.76 −1.52083 −0.760415 0.649438i \(-0.775004\pi\)
−0.760415 + 0.649438i \(0.775004\pi\)
\(272\) 2288.50 0.510151
\(273\) 566.404 0.125569
\(274\) −1904.35 −0.419875
\(275\) 0 0
\(276\) 1051.92 0.229413
\(277\) −3811.10 −0.826666 −0.413333 0.910580i \(-0.635636\pi\)
−0.413333 + 0.910580i \(0.635636\pi\)
\(278\) 2215.81 0.478041
\(279\) −132.186 −0.0283647
\(280\) 0 0
\(281\) 1848.27 0.392380 0.196190 0.980566i \(-0.437143\pi\)
0.196190 + 0.980566i \(0.437143\pi\)
\(282\) 3461.60 0.730976
\(283\) −1381.94 −0.290275 −0.145138 0.989411i \(-0.546362\pi\)
−0.145138 + 0.989411i \(0.546362\pi\)
\(284\) 3696.08 0.772261
\(285\) 0 0
\(286\) 139.028 0.0287443
\(287\) 12609.2 2.59338
\(288\) 2104.36 0.430557
\(289\) 2256.98 0.459390
\(290\) 0 0
\(291\) −412.890 −0.0831755
\(292\) 9400.65 1.88401
\(293\) −6221.44 −1.24048 −0.620239 0.784413i \(-0.712964\pi\)
−0.620239 + 0.784413i \(0.712964\pi\)
\(294\) 8579.90 1.70201
\(295\) 0 0
\(296\) −111.722 −0.0219382
\(297\) 142.790 0.0278974
\(298\) 1557.19 0.302702
\(299\) −186.144 −0.0360034
\(300\) 0 0
\(301\) −567.499 −0.108671
\(302\) 1429.66 0.272410
\(303\) 5163.45 0.978985
\(304\) −1549.93 −0.292416
\(305\) 0 0
\(306\) 3346.08 0.625106
\(307\) −8135.50 −1.51244 −0.756218 0.654320i \(-0.772955\pi\)
−0.756218 + 0.654320i \(0.772955\pi\)
\(308\) 1880.84 0.347957
\(309\) 2392.75 0.440515
\(310\) 0 0
\(311\) 3117.65 0.568444 0.284222 0.958759i \(-0.408265\pi\)
0.284222 + 0.958759i \(0.408265\pi\)
\(312\) 258.543 0.0469138
\(313\) −7536.36 −1.36096 −0.680480 0.732767i \(-0.738229\pi\)
−0.680480 + 0.732767i \(0.738229\pi\)
\(314\) −11811.4 −2.12278
\(315\) 0 0
\(316\) −7516.49 −1.33809
\(317\) −3579.28 −0.634172 −0.317086 0.948397i \(-0.602704\pi\)
−0.317086 + 0.948397i \(0.602704\pi\)
\(318\) 856.089 0.150966
\(319\) −153.367 −0.0269183
\(320\) 0 0
\(321\) −2335.35 −0.406065
\(322\) −4304.53 −0.744976
\(323\) −4855.98 −0.836515
\(324\) 913.540 0.156643
\(325\) 0 0
\(326\) 6197.52 1.05291
\(327\) −2163.62 −0.365897
\(328\) 5755.66 0.968911
\(329\) −8286.96 −1.38868
\(330\) 0 0
\(331\) −6257.20 −1.03905 −0.519527 0.854454i \(-0.673892\pi\)
−0.519527 + 0.854454i \(0.673892\pi\)
\(332\) 14895.5 2.46233
\(333\) 69.8557 0.0114957
\(334\) −11144.7 −1.82578
\(335\) 0 0
\(336\) −2556.75 −0.415125
\(337\) 4034.64 0.652168 0.326084 0.945341i \(-0.394271\pi\)
0.326084 + 0.945341i \(0.394271\pi\)
\(338\) 9488.98 1.52702
\(339\) −1677.07 −0.268691
\(340\) 0 0
\(341\) 77.6744 0.0123352
\(342\) −2266.18 −0.358307
\(343\) −9723.97 −1.53074
\(344\) −259.043 −0.0406007
\(345\) 0 0
\(346\) −1339.30 −0.208095
\(347\) 10221.1 1.58126 0.790630 0.612294i \(-0.209753\pi\)
0.790630 + 0.612294i \(0.209753\pi\)
\(348\) −981.210 −0.151145
\(349\) −2543.26 −0.390079 −0.195040 0.980795i \(-0.562484\pi\)
−0.195040 + 0.980795i \(0.562484\pi\)
\(350\) 0 0
\(351\) −161.657 −0.0245830
\(352\) −1236.55 −0.187240
\(353\) −11741.3 −1.77034 −0.885168 0.465272i \(-0.845956\pi\)
−0.885168 + 0.465272i \(0.845956\pi\)
\(354\) 1617.37 0.242832
\(355\) 0 0
\(356\) −2132.27 −0.317443
\(357\) −8010.40 −1.18755
\(358\) −13582.3 −2.00517
\(359\) 5475.18 0.804927 0.402463 0.915436i \(-0.368154\pi\)
0.402463 + 0.915436i \(0.368154\pi\)
\(360\) 0 0
\(361\) −3570.21 −0.520514
\(362\) −12295.6 −1.78520
\(363\) 3909.09 0.565218
\(364\) −2129.36 −0.306617
\(365\) 0 0
\(366\) 3482.49 0.497357
\(367\) −11158.0 −1.58704 −0.793522 0.608542i \(-0.791755\pi\)
−0.793522 + 0.608542i \(0.791755\pi\)
\(368\) 840.254 0.119025
\(369\) −3598.80 −0.507713
\(370\) 0 0
\(371\) −2049.45 −0.286798
\(372\) 496.943 0.0692616
\(373\) −5823.05 −0.808327 −0.404163 0.914687i \(-0.632437\pi\)
−0.404163 + 0.914687i \(0.632437\pi\)
\(374\) −1966.20 −0.271845
\(375\) 0 0
\(376\) −3782.70 −0.518823
\(377\) 173.632 0.0237202
\(378\) −3738.28 −0.508667
\(379\) 2272.79 0.308036 0.154018 0.988068i \(-0.450779\pi\)
0.154018 + 0.988068i \(0.450779\pi\)
\(380\) 0 0
\(381\) −1878.97 −0.252658
\(382\) −18479.5 −2.47512
\(383\) −8686.06 −1.15884 −0.579422 0.815028i \(-0.696722\pi\)
−0.579422 + 0.815028i \(0.696722\pi\)
\(384\) −5063.19 −0.672865
\(385\) 0 0
\(386\) −1086.98 −0.143331
\(387\) 161.970 0.0212749
\(388\) 1552.23 0.203099
\(389\) 5410.18 0.705159 0.352580 0.935782i \(-0.385305\pi\)
0.352580 + 0.935782i \(0.385305\pi\)
\(390\) 0 0
\(391\) 2632.55 0.340496
\(392\) −9375.76 −1.20803
\(393\) −5292.35 −0.679298
\(394\) −20083.4 −2.56798
\(395\) 0 0
\(396\) −536.810 −0.0681205
\(397\) −13470.8 −1.70297 −0.851486 0.524377i \(-0.824298\pi\)
−0.851486 + 0.524377i \(0.824298\pi\)
\(398\) −11420.4 −1.43833
\(399\) 5425.17 0.680697
\(400\) 0 0
\(401\) 1749.26 0.217840 0.108920 0.994050i \(-0.465261\pi\)
0.108920 + 0.994050i \(0.465261\pi\)
\(402\) −8202.43 −1.01766
\(403\) −87.9376 −0.0108697
\(404\) −19411.6 −2.39050
\(405\) 0 0
\(406\) 4015.19 0.490814
\(407\) −41.0482 −0.00499923
\(408\) −3656.45 −0.443680
\(409\) −4261.47 −0.515198 −0.257599 0.966252i \(-0.582931\pi\)
−0.257599 + 0.966252i \(0.582931\pi\)
\(410\) 0 0
\(411\) −1301.17 −0.156160
\(412\) −8995.38 −1.07566
\(413\) −3871.94 −0.461321
\(414\) 1228.56 0.145846
\(415\) 0 0
\(416\) 1399.94 0.164994
\(417\) 1513.98 0.177793
\(418\) 1331.64 0.155820
\(419\) −3355.37 −0.391218 −0.195609 0.980682i \(-0.562668\pi\)
−0.195609 + 0.980682i \(0.562668\pi\)
\(420\) 0 0
\(421\) −7859.86 −0.909896 −0.454948 0.890518i \(-0.650342\pi\)
−0.454948 + 0.890518i \(0.650342\pi\)
\(422\) −1071.98 −0.123657
\(423\) 2365.18 0.271865
\(424\) −935.499 −0.107151
\(425\) 0 0
\(426\) 4316.72 0.490953
\(427\) −8336.98 −0.944858
\(428\) 8779.59 0.991537
\(429\) 94.9923 0.0106906
\(430\) 0 0
\(431\) −9083.57 −1.01517 −0.507587 0.861600i \(-0.669463\pi\)
−0.507587 + 0.861600i \(0.669463\pi\)
\(432\) 729.720 0.0812701
\(433\) −10303.2 −1.14351 −0.571756 0.820424i \(-0.693738\pi\)
−0.571756 + 0.820424i \(0.693738\pi\)
\(434\) −2033.53 −0.224914
\(435\) 0 0
\(436\) 8133.95 0.893453
\(437\) −1782.94 −0.195171
\(438\) 10979.2 1.19773
\(439\) 10285.7 1.11824 0.559122 0.829086i \(-0.311139\pi\)
0.559122 + 0.829086i \(0.311139\pi\)
\(440\) 0 0
\(441\) 5862.32 0.633011
\(442\) 2226.00 0.239547
\(443\) −11628.0 −1.24710 −0.623549 0.781784i \(-0.714310\pi\)
−0.623549 + 0.781784i \(0.714310\pi\)
\(444\) −262.617 −0.0280704
\(445\) 0 0
\(446\) 18349.9 1.94819
\(447\) 1063.97 0.112581
\(448\) 25555.2 2.69502
\(449\) −13543.0 −1.42346 −0.711730 0.702453i \(-0.752088\pi\)
−0.711730 + 0.702453i \(0.752088\pi\)
\(450\) 0 0
\(451\) 2114.71 0.220793
\(452\) 6304.83 0.656094
\(453\) 976.834 0.101315
\(454\) 17714.9 1.83128
\(455\) 0 0
\(456\) 2476.39 0.254315
\(457\) −16383.2 −1.67696 −0.838481 0.544930i \(-0.816556\pi\)
−0.838481 + 0.544930i \(0.816556\pi\)
\(458\) −19764.9 −2.01649
\(459\) 2286.25 0.232490
\(460\) 0 0
\(461\) 13577.7 1.37175 0.685877 0.727717i \(-0.259419\pi\)
0.685877 + 0.727717i \(0.259419\pi\)
\(462\) 2196.67 0.221208
\(463\) 17986.2 1.80538 0.902688 0.430297i \(-0.141591\pi\)
0.902688 + 0.430297i \(0.141591\pi\)
\(464\) −783.774 −0.0784176
\(465\) 0 0
\(466\) −20683.4 −2.05609
\(467\) −792.472 −0.0785251 −0.0392625 0.999229i \(-0.512501\pi\)
−0.0392625 + 0.999229i \(0.512501\pi\)
\(468\) 607.739 0.0600272
\(469\) 19636.3 1.93331
\(470\) 0 0
\(471\) −8070.26 −0.789507
\(472\) −1767.40 −0.172354
\(473\) −95.1759 −0.00925199
\(474\) −8778.65 −0.850668
\(475\) 0 0
\(476\) 30114.5 2.89978
\(477\) 584.933 0.0561472
\(478\) 2180.57 0.208655
\(479\) −6655.02 −0.634813 −0.317407 0.948290i \(-0.602812\pi\)
−0.317407 + 0.948290i \(0.602812\pi\)
\(480\) 0 0
\(481\) 46.4719 0.00440528
\(482\) −28164.7 −2.66155
\(483\) −2941.12 −0.277072
\(484\) −14695.9 −1.38016
\(485\) 0 0
\(486\) 1066.94 0.0995832
\(487\) 13972.7 1.30013 0.650064 0.759880i \(-0.274742\pi\)
0.650064 + 0.759880i \(0.274742\pi\)
\(488\) −3805.53 −0.353008
\(489\) 4234.53 0.391600
\(490\) 0 0
\(491\) 3638.63 0.334438 0.167219 0.985920i \(-0.446521\pi\)
0.167219 + 0.985920i \(0.446521\pi\)
\(492\) 13529.4 1.23974
\(493\) −2455.60 −0.224330
\(494\) −1507.59 −0.137307
\(495\) 0 0
\(496\) 396.950 0.0359346
\(497\) −10334.1 −0.932691
\(498\) 17396.7 1.56539
\(499\) 11313.5 1.01496 0.507478 0.861665i \(-0.330578\pi\)
0.507478 + 0.861665i \(0.330578\pi\)
\(500\) 0 0
\(501\) −7614.76 −0.679047
\(502\) −20818.7 −1.85097
\(503\) 4598.92 0.407665 0.203833 0.979006i \(-0.434660\pi\)
0.203833 + 0.979006i \(0.434660\pi\)
\(504\) 4085.04 0.361036
\(505\) 0 0
\(506\) −721.917 −0.0634252
\(507\) 6483.46 0.567930
\(508\) 7063.86 0.616945
\(509\) 6967.41 0.606729 0.303364 0.952875i \(-0.401890\pi\)
0.303364 + 0.952875i \(0.401890\pi\)
\(510\) 0 0
\(511\) −26283.8 −2.27540
\(512\) −9431.48 −0.814095
\(513\) −1548.40 −0.133262
\(514\) −26829.3 −2.30231
\(515\) 0 0
\(516\) −608.914 −0.0519495
\(517\) −1389.81 −0.118228
\(518\) 1074.65 0.0911533
\(519\) −915.090 −0.0773949
\(520\) 0 0
\(521\) −11038.5 −0.928228 −0.464114 0.885776i \(-0.653627\pi\)
−0.464114 + 0.885776i \(0.653627\pi\)
\(522\) −1145.97 −0.0960879
\(523\) 15368.6 1.28493 0.642467 0.766314i \(-0.277911\pi\)
0.642467 + 0.766314i \(0.277911\pi\)
\(524\) 19896.2 1.65872
\(525\) 0 0
\(526\) −17147.4 −1.42141
\(527\) 1243.66 0.102798
\(528\) −428.795 −0.0353426
\(529\) −11200.4 −0.920558
\(530\) 0 0
\(531\) 1105.09 0.0903141
\(532\) −20395.5 −1.66214
\(533\) −2394.12 −0.194561
\(534\) −2490.31 −0.201810
\(535\) 0 0
\(536\) 8963.28 0.722303
\(537\) −9280.30 −0.745762
\(538\) 29350.2 2.35200
\(539\) −3444.78 −0.275283
\(540\) 0 0
\(541\) −10945.5 −0.869839 −0.434920 0.900469i \(-0.643223\pi\)
−0.434920 + 0.900469i \(0.643223\pi\)
\(542\) 29789.9 2.36086
\(543\) −8401.13 −0.663954
\(544\) −19798.7 −1.56041
\(545\) 0 0
\(546\) −2486.91 −0.194927
\(547\) −10140.1 −0.792616 −0.396308 0.918118i \(-0.629709\pi\)
−0.396308 + 0.918118i \(0.629709\pi\)
\(548\) 4891.64 0.381315
\(549\) 2379.45 0.184977
\(550\) 0 0
\(551\) 1663.09 0.128585
\(552\) −1342.52 −0.103517
\(553\) 21015.8 1.61606
\(554\) 16733.4 1.28327
\(555\) 0 0
\(556\) −5691.69 −0.434139
\(557\) −18329.0 −1.39430 −0.697151 0.716925i \(-0.745549\pi\)
−0.697151 + 0.716925i \(0.745549\pi\)
\(558\) 580.389 0.0440320
\(559\) 107.752 0.00815278
\(560\) 0 0
\(561\) −1343.43 −0.101105
\(562\) −8115.21 −0.609110
\(563\) −2868.99 −0.214766 −0.107383 0.994218i \(-0.534247\pi\)
−0.107383 + 0.994218i \(0.534247\pi\)
\(564\) −8891.72 −0.663845
\(565\) 0 0
\(566\) 6067.69 0.450608
\(567\) −2554.22 −0.189184
\(568\) −4717.14 −0.348462
\(569\) 18562.0 1.36759 0.683795 0.729674i \(-0.260328\pi\)
0.683795 + 0.729674i \(0.260328\pi\)
\(570\) 0 0
\(571\) −10162.6 −0.744815 −0.372408 0.928069i \(-0.621468\pi\)
−0.372408 + 0.928069i \(0.621468\pi\)
\(572\) −357.116 −0.0261045
\(573\) −12626.4 −0.920547
\(574\) −55363.4 −4.02583
\(575\) 0 0
\(576\) −7293.70 −0.527611
\(577\) −2525.24 −0.182196 −0.0910981 0.995842i \(-0.529038\pi\)
−0.0910981 + 0.995842i \(0.529038\pi\)
\(578\) −9909.74 −0.713133
\(579\) −742.689 −0.0533076
\(580\) 0 0
\(581\) −41647.1 −2.97386
\(582\) 1812.88 0.129117
\(583\) −343.715 −0.0244172
\(584\) −11997.6 −0.850111
\(585\) 0 0
\(586\) 27316.5 1.92565
\(587\) −3327.35 −0.233960 −0.116980 0.993134i \(-0.537321\pi\)
−0.116980 + 0.993134i \(0.537321\pi\)
\(588\) −22038.9 −1.54570
\(589\) −842.289 −0.0589234
\(590\) 0 0
\(591\) −13722.2 −0.955086
\(592\) −209.774 −0.0145636
\(593\) 16731.4 1.15864 0.579321 0.815099i \(-0.303318\pi\)
0.579321 + 0.815099i \(0.303318\pi\)
\(594\) −626.950 −0.0433065
\(595\) 0 0
\(596\) −3999.90 −0.274903
\(597\) −7803.16 −0.534945
\(598\) 817.305 0.0558898
\(599\) −12851.1 −0.876600 −0.438300 0.898829i \(-0.644419\pi\)
−0.438300 + 0.898829i \(0.644419\pi\)
\(600\) 0 0
\(601\) −8773.05 −0.595441 −0.297720 0.954653i \(-0.596226\pi\)
−0.297720 + 0.954653i \(0.596226\pi\)
\(602\) 2491.72 0.168696
\(603\) −5604.40 −0.378489
\(604\) −3672.33 −0.247393
\(605\) 0 0
\(606\) −22671.2 −1.51973
\(607\) 19083.1 1.27605 0.638023 0.770017i \(-0.279753\pi\)
0.638023 + 0.770017i \(0.279753\pi\)
\(608\) 13409.0 0.894417
\(609\) 2743.42 0.182544
\(610\) 0 0
\(611\) 1573.45 0.104182
\(612\) −8594.97 −0.567698
\(613\) −20976.8 −1.38213 −0.691063 0.722794i \(-0.742858\pi\)
−0.691063 + 0.722794i \(0.742858\pi\)
\(614\) 35720.6 2.34783
\(615\) 0 0
\(616\) −2400.43 −0.157007
\(617\) 15290.1 0.997658 0.498829 0.866700i \(-0.333764\pi\)
0.498829 + 0.866700i \(0.333764\pi\)
\(618\) −10505.9 −0.683832
\(619\) 18786.8 1.21988 0.609938 0.792449i \(-0.291194\pi\)
0.609938 + 0.792449i \(0.291194\pi\)
\(620\) 0 0
\(621\) 839.425 0.0542431
\(622\) −13688.7 −0.882422
\(623\) 5961.73 0.383389
\(624\) 485.451 0.0311436
\(625\) 0 0
\(626\) 33089.9 2.11268
\(627\) 909.860 0.0579527
\(628\) 30339.5 1.92783
\(629\) −657.231 −0.0416622
\(630\) 0 0
\(631\) 14273.7 0.900516 0.450258 0.892898i \(-0.351332\pi\)
0.450258 + 0.892898i \(0.351332\pi\)
\(632\) 9592.94 0.603777
\(633\) −732.445 −0.0459907
\(634\) 15715.6 0.984456
\(635\) 0 0
\(636\) −2199.01 −0.137101
\(637\) 3899.95 0.242577
\(638\) 673.391 0.0417865
\(639\) 2949.45 0.182595
\(640\) 0 0
\(641\) 10936.9 0.673919 0.336959 0.941519i \(-0.390602\pi\)
0.336959 + 0.941519i \(0.390602\pi\)
\(642\) 10253.9 0.630354
\(643\) −5329.32 −0.326855 −0.163427 0.986555i \(-0.552255\pi\)
−0.163427 + 0.986555i \(0.552255\pi\)
\(644\) 11056.9 0.676559
\(645\) 0 0
\(646\) 21321.2 1.29856
\(647\) 15807.3 0.960509 0.480255 0.877129i \(-0.340544\pi\)
0.480255 + 0.877129i \(0.340544\pi\)
\(648\) −1165.91 −0.0706809
\(649\) −649.367 −0.0392756
\(650\) 0 0
\(651\) −1389.43 −0.0836500
\(652\) −15919.4 −0.956215
\(653\) 11047.2 0.662037 0.331019 0.943624i \(-0.392608\pi\)
0.331019 + 0.943624i \(0.392608\pi\)
\(654\) 9499.79 0.567999
\(655\) 0 0
\(656\) 10807.1 0.643209
\(657\) 7501.67 0.445461
\(658\) 36385.6 2.15571
\(659\) −20355.2 −1.20322 −0.601612 0.798789i \(-0.705475\pi\)
−0.601612 + 0.798789i \(0.705475\pi\)
\(660\) 0 0
\(661\) −27873.5 −1.64017 −0.820086 0.572241i \(-0.806074\pi\)
−0.820086 + 0.572241i \(0.806074\pi\)
\(662\) 27473.5 1.61297
\(663\) 1520.94 0.0890926
\(664\) −19010.4 −1.11106
\(665\) 0 0
\(666\) −306.716 −0.0178453
\(667\) −901.605 −0.0523392
\(668\) 28627.1 1.65811
\(669\) 12537.8 0.724572
\(670\) 0 0
\(671\) −1398.20 −0.0804427
\(672\) 22119.3 1.26975
\(673\) 9555.18 0.547288 0.273644 0.961831i \(-0.411771\pi\)
0.273644 + 0.961831i \(0.411771\pi\)
\(674\) −17714.9 −1.01239
\(675\) 0 0
\(676\) −24374.1 −1.38678
\(677\) −17556.1 −0.996658 −0.498329 0.866988i \(-0.666053\pi\)
−0.498329 + 0.866988i \(0.666053\pi\)
\(678\) 7363.53 0.417101
\(679\) −4339.97 −0.245292
\(680\) 0 0
\(681\) 12103.9 0.681091
\(682\) −341.045 −0.0191485
\(683\) −11046.7 −0.618875 −0.309437 0.950920i \(-0.600141\pi\)
−0.309437 + 0.950920i \(0.600141\pi\)
\(684\) 5821.08 0.325401
\(685\) 0 0
\(686\) 42695.1 2.37625
\(687\) −13504.6 −0.749974
\(688\) −486.390 −0.0269527
\(689\) 389.130 0.0215162
\(690\) 0 0
\(691\) −7999.45 −0.440396 −0.220198 0.975455i \(-0.570670\pi\)
−0.220198 + 0.975455i \(0.570670\pi\)
\(692\) 3440.21 0.188984
\(693\) 1500.90 0.0822719
\(694\) −44877.8 −2.45467
\(695\) 0 0
\(696\) 1252.27 0.0682001
\(697\) 33859.0 1.84003
\(698\) 11166.7 0.605538
\(699\) −14132.1 −0.764702
\(700\) 0 0
\(701\) −25401.3 −1.36861 −0.684303 0.729198i \(-0.739893\pi\)
−0.684303 + 0.729198i \(0.739893\pi\)
\(702\) 709.790 0.0381614
\(703\) 445.120 0.0238806
\(704\) 4285.88 0.229447
\(705\) 0 0
\(706\) 51552.7 2.74818
\(707\) 54274.1 2.88711
\(708\) −4154.50 −0.220531
\(709\) −9479.34 −0.502122 −0.251061 0.967971i \(-0.580779\pi\)
−0.251061 + 0.967971i \(0.580779\pi\)
\(710\) 0 0
\(711\) −5998.11 −0.316381
\(712\) 2721.31 0.143238
\(713\) 456.626 0.0239843
\(714\) 35171.3 1.84349
\(715\) 0 0
\(716\) 34888.6 1.82102
\(717\) 1489.90 0.0776030
\(718\) −24039.9 −1.24953
\(719\) −32420.3 −1.68161 −0.840803 0.541341i \(-0.817917\pi\)
−0.840803 + 0.541341i \(0.817917\pi\)
\(720\) 0 0
\(721\) 25150.7 1.29912
\(722\) 15675.7 0.808019
\(723\) −19243.9 −0.989885
\(724\) 31583.4 1.62126
\(725\) 0 0
\(726\) −17163.7 −0.877416
\(727\) 6808.51 0.347337 0.173668 0.984804i \(-0.444438\pi\)
0.173668 + 0.984804i \(0.444438\pi\)
\(728\) 2717.60 0.138353
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −1523.88 −0.0771036
\(732\) −8945.38 −0.451681
\(733\) −20190.4 −1.01740 −0.508698 0.860945i \(-0.669873\pi\)
−0.508698 + 0.860945i \(0.669873\pi\)
\(734\) 48991.6 2.46364
\(735\) 0 0
\(736\) −7269.35 −0.364065
\(737\) 3293.23 0.164597
\(738\) 15801.3 0.788147
\(739\) 15130.0 0.753134 0.376567 0.926389i \(-0.377105\pi\)
0.376567 + 0.926389i \(0.377105\pi\)
\(740\) 0 0
\(741\) −1030.08 −0.0510674
\(742\) 8998.52 0.445210
\(743\) 13315.6 0.657470 0.328735 0.944422i \(-0.393378\pi\)
0.328735 + 0.944422i \(0.393378\pi\)
\(744\) −634.226 −0.0312525
\(745\) 0 0
\(746\) 25567.3 1.25480
\(747\) 11886.5 0.582200
\(748\) 5050.53 0.246879
\(749\) −24547.4 −1.19752
\(750\) 0 0
\(751\) −18846.4 −0.915734 −0.457867 0.889021i \(-0.651386\pi\)
−0.457867 + 0.889021i \(0.651386\pi\)
\(752\) −7102.55 −0.344419
\(753\) −14224.7 −0.688413
\(754\) −762.367 −0.0368220
\(755\) 0 0
\(756\) 9602.41 0.461953
\(757\) −699.522 −0.0335859 −0.0167930 0.999859i \(-0.505346\pi\)
−0.0167930 + 0.999859i \(0.505346\pi\)
\(758\) −9979.16 −0.478178
\(759\) −493.259 −0.0235891
\(760\) 0 0
\(761\) −37430.3 −1.78298 −0.891489 0.453041i \(-0.850339\pi\)
−0.891489 + 0.453041i \(0.850339\pi\)
\(762\) 8250.01 0.392213
\(763\) −22742.2 −1.07906
\(764\) 47467.8 2.24781
\(765\) 0 0
\(766\) 38137.9 1.79893
\(767\) 735.168 0.0346093
\(768\) 2781.13 0.130671
\(769\) 30299.7 1.42085 0.710426 0.703772i \(-0.248502\pi\)
0.710426 + 0.703772i \(0.248502\pi\)
\(770\) 0 0
\(771\) −18331.4 −0.856277
\(772\) 2792.09 0.130168
\(773\) −16926.9 −0.787603 −0.393802 0.919195i \(-0.628840\pi\)
−0.393802 + 0.919195i \(0.628840\pi\)
\(774\) −711.162 −0.0330261
\(775\) 0 0
\(776\) −1981.04 −0.0916433
\(777\) 734.267 0.0339018
\(778\) −23754.5 −1.09465
\(779\) −22931.5 −1.05470
\(780\) 0 0
\(781\) −1733.14 −0.0794068
\(782\) −11558.8 −0.528568
\(783\) −783.000 −0.0357371
\(784\) −17604.3 −0.801946
\(785\) 0 0
\(786\) 23237.2 1.05451
\(787\) 20726.9 0.938799 0.469400 0.882986i \(-0.344470\pi\)
0.469400 + 0.882986i \(0.344470\pi\)
\(788\) 51587.6 2.33215
\(789\) −11716.2 −0.528653
\(790\) 0 0
\(791\) −17628.1 −0.792391
\(792\) 685.106 0.0307376
\(793\) 1582.95 0.0708854
\(794\) 59146.3 2.64361
\(795\) 0 0
\(796\) 29335.4 1.30624
\(797\) 25560.6 1.13601 0.568006 0.823025i \(-0.307715\pi\)
0.568006 + 0.823025i \(0.307715\pi\)
\(798\) −23820.3 −1.05668
\(799\) −22252.6 −0.985282
\(800\) 0 0
\(801\) −1701.54 −0.0750572
\(802\) −7680.49 −0.338164
\(803\) −4408.09 −0.193721
\(804\) 21069.3 0.924202
\(805\) 0 0
\(806\) 386.108 0.0168735
\(807\) 20053.9 0.874758
\(808\) 24774.1 1.07865
\(809\) −45525.7 −1.97849 −0.989244 0.146273i \(-0.953272\pi\)
−0.989244 + 0.146273i \(0.953272\pi\)
\(810\) 0 0
\(811\) 8515.77 0.368717 0.184358 0.982859i \(-0.440979\pi\)
0.184358 + 0.982859i \(0.440979\pi\)
\(812\) −10313.7 −0.445739
\(813\) 20354.3 0.878051
\(814\) 180.231 0.00776054
\(815\) 0 0
\(816\) −6865.51 −0.294536
\(817\) 1032.07 0.0441954
\(818\) 18710.8 0.799767
\(819\) −1699.21 −0.0724973
\(820\) 0 0
\(821\) 18922.1 0.804369 0.402185 0.915559i \(-0.368251\pi\)
0.402185 + 0.915559i \(0.368251\pi\)
\(822\) 5713.04 0.242415
\(823\) 13297.5 0.563210 0.281605 0.959530i \(-0.409133\pi\)
0.281605 + 0.959530i \(0.409133\pi\)
\(824\) 11480.4 0.485362
\(825\) 0 0
\(826\) 17000.5 0.716131
\(827\) 26020.8 1.09411 0.547056 0.837096i \(-0.315748\pi\)
0.547056 + 0.837096i \(0.315748\pi\)
\(828\) −3155.76 −0.132452
\(829\) 8756.88 0.366874 0.183437 0.983031i \(-0.441278\pi\)
0.183437 + 0.983031i \(0.441278\pi\)
\(830\) 0 0
\(831\) 11433.3 0.477276
\(832\) −4852.18 −0.202186
\(833\) −55155.1 −2.29413
\(834\) −6647.43 −0.275997
\(835\) 0 0
\(836\) −3420.55 −0.141510
\(837\) 396.558 0.0163764
\(838\) 14732.4 0.607307
\(839\) −1131.02 −0.0465400 −0.0232700 0.999729i \(-0.507408\pi\)
−0.0232700 + 0.999729i \(0.507408\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 34510.3 1.41248
\(843\) −5544.82 −0.226540
\(844\) 2753.57 0.112301
\(845\) 0 0
\(846\) −10384.8 −0.422029
\(847\) 41089.3 1.66688
\(848\) −1756.53 −0.0711316
\(849\) 4145.82 0.167590
\(850\) 0 0
\(851\) −241.311 −0.00972037
\(852\) −11088.2 −0.445865
\(853\) 12199.3 0.489679 0.244839 0.969564i \(-0.421265\pi\)
0.244839 + 0.969564i \(0.421265\pi\)
\(854\) 36605.2 1.46675
\(855\) 0 0
\(856\) −11205.0 −0.447405
\(857\) −37800.4 −1.50670 −0.753348 0.657622i \(-0.771562\pi\)
−0.753348 + 0.657622i \(0.771562\pi\)
\(858\) −417.083 −0.0165955
\(859\) 30888.1 1.22688 0.613438 0.789743i \(-0.289786\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(860\) 0 0
\(861\) −37827.7 −1.49729
\(862\) 39883.3 1.57590
\(863\) −38008.4 −1.49921 −0.749607 0.661883i \(-0.769758\pi\)
−0.749607 + 0.661883i \(0.769758\pi\)
\(864\) −6313.08 −0.248582
\(865\) 0 0
\(866\) 45238.3 1.77513
\(867\) −6770.95 −0.265229
\(868\) 5223.47 0.204258
\(869\) 3524.58 0.137587
\(870\) 0 0
\(871\) −3728.37 −0.145041
\(872\) −10381.0 −0.403147
\(873\) 1238.67 0.0480214
\(874\) 7828.35 0.302973
\(875\) 0 0
\(876\) −28202.0 −1.08773
\(877\) −45609.0 −1.75611 −0.878055 0.478561i \(-0.841159\pi\)
−0.878055 + 0.478561i \(0.841159\pi\)
\(878\) −45161.4 −1.73590
\(879\) 18664.3 0.716191
\(880\) 0 0
\(881\) 15306.9 0.585360 0.292680 0.956210i \(-0.405453\pi\)
0.292680 + 0.956210i \(0.405453\pi\)
\(882\) −25739.7 −0.982654
\(883\) 4293.37 0.163628 0.0818140 0.996648i \(-0.473929\pi\)
0.0818140 + 0.996648i \(0.473929\pi\)
\(884\) −5717.86 −0.217548
\(885\) 0 0
\(886\) 51055.3 1.93593
\(887\) −15161.7 −0.573935 −0.286968 0.957940i \(-0.592647\pi\)
−0.286968 + 0.957940i \(0.592647\pi\)
\(888\) 335.166 0.0126660
\(889\) −19750.3 −0.745110
\(890\) 0 0
\(891\) −428.371 −0.0161066
\(892\) −47134.9 −1.76927
\(893\) 15070.9 0.564758
\(894\) −4671.56 −0.174765
\(895\) 0 0
\(896\) −53220.3 −1.98434
\(897\) 558.433 0.0207866
\(898\) 59463.3 2.20971
\(899\) −425.932 −0.0158016
\(900\) 0 0
\(901\) −5503.29 −0.203486
\(902\) −9285.05 −0.342748
\(903\) 1702.50 0.0627415
\(904\) −8046.57 −0.296045
\(905\) 0 0
\(906\) −4288.99 −0.157276
\(907\) −45095.6 −1.65091 −0.825454 0.564469i \(-0.809081\pi\)
−0.825454 + 0.564469i \(0.809081\pi\)
\(908\) −45503.8 −1.66310
\(909\) −15490.3 −0.565217
\(910\) 0 0
\(911\) 10578.3 0.384714 0.192357 0.981325i \(-0.438387\pi\)
0.192357 + 0.981325i \(0.438387\pi\)
\(912\) 4649.78 0.168826
\(913\) −6984.67 −0.253186
\(914\) 71933.6 2.60323
\(915\) 0 0
\(916\) 50769.5 1.83130
\(917\) −55629.0 −2.00331
\(918\) −10038.2 −0.360905
\(919\) 50326.0 1.80642 0.903210 0.429198i \(-0.141204\pi\)
0.903210 + 0.429198i \(0.141204\pi\)
\(920\) 0 0
\(921\) 24406.5 0.873205
\(922\) −59615.9 −2.12944
\(923\) 1962.14 0.0699726
\(924\) −5642.52 −0.200893
\(925\) 0 0
\(926\) −78972.0 −2.80257
\(927\) −7178.26 −0.254331
\(928\) 6780.71 0.239858
\(929\) 8373.10 0.295708 0.147854 0.989009i \(-0.452763\pi\)
0.147854 + 0.989009i \(0.452763\pi\)
\(930\) 0 0
\(931\) 37354.7 1.31498
\(932\) 53128.8 1.86726
\(933\) −9352.96 −0.328191
\(934\) 3479.51 0.121898
\(935\) 0 0
\(936\) −775.629 −0.0270857
\(937\) −53048.3 −1.84953 −0.924766 0.380537i \(-0.875739\pi\)
−0.924766 + 0.380537i \(0.875739\pi\)
\(938\) −86217.4 −3.00117
\(939\) 22609.1 0.785750
\(940\) 0 0
\(941\) −1015.79 −0.0351899 −0.0175949 0.999845i \(-0.505601\pi\)
−0.0175949 + 0.999845i \(0.505601\pi\)
\(942\) 35434.1 1.22559
\(943\) 12431.8 0.429305
\(944\) −3318.54 −0.114417
\(945\) 0 0
\(946\) 417.889 0.0143623
\(947\) 26038.4 0.893490 0.446745 0.894661i \(-0.352583\pi\)
0.446745 + 0.894661i \(0.352583\pi\)
\(948\) 22549.5 0.772545
\(949\) 4990.53 0.170706
\(950\) 0 0
\(951\) 10737.9 0.366140
\(952\) −38433.7 −1.30845
\(953\) 22396.1 0.761260 0.380630 0.924727i \(-0.375707\pi\)
0.380630 + 0.924727i \(0.375707\pi\)
\(954\) −2568.27 −0.0871601
\(955\) 0 0
\(956\) −5601.17 −0.189492
\(957\) 460.102 0.0155413
\(958\) 29220.2 0.985451
\(959\) −13676.8 −0.460530
\(960\) 0 0
\(961\) −29575.3 −0.992759
\(962\) −204.045 −0.00683852
\(963\) 7006.06 0.234442
\(964\) 72345.9 2.41712
\(965\) 0 0
\(966\) 12913.6 0.430112
\(967\) 33614.9 1.11787 0.558936 0.829211i \(-0.311210\pi\)
0.558936 + 0.829211i \(0.311210\pi\)
\(968\) 18755.8 0.622761
\(969\) 14568.0 0.482962
\(970\) 0 0
\(971\) −30440.6 −1.00606 −0.503030 0.864269i \(-0.667781\pi\)
−0.503030 + 0.864269i \(0.667781\pi\)
\(972\) −2740.62 −0.0904377
\(973\) 15913.7 0.524328
\(974\) −61349.8 −2.01825
\(975\) 0 0
\(976\) −7145.42 −0.234343
\(977\) −18698.6 −0.612305 −0.306153 0.951982i \(-0.599042\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(978\) −18592.6 −0.607899
\(979\) 999.847 0.0326407
\(980\) 0 0
\(981\) 6490.85 0.211251
\(982\) −15976.1 −0.519164
\(983\) 10438.4 0.338692 0.169346 0.985557i \(-0.445834\pi\)
0.169346 + 0.985557i \(0.445834\pi\)
\(984\) −17267.0 −0.559401
\(985\) 0 0
\(986\) 10781.8 0.348238
\(987\) 24860.9 0.801753
\(988\) 3872.51 0.124697
\(989\) −559.513 −0.0179893
\(990\) 0 0
\(991\) 20547.5 0.658641 0.329320 0.944218i \(-0.393180\pi\)
0.329320 + 0.944218i \(0.393180\pi\)
\(992\) −3434.16 −0.109914
\(993\) 18771.6 0.599898
\(994\) 45373.9 1.44786
\(995\) 0 0
\(996\) −44686.4 −1.42163
\(997\) −6486.05 −0.206033 −0.103017 0.994680i \(-0.532850\pi\)
−0.103017 + 0.994680i \(0.532850\pi\)
\(998\) −49674.3 −1.57556
\(999\) −209.567 −0.00663704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.k.1.2 6
5.4 even 2 435.4.a.h.1.5 6
15.14 odd 2 1305.4.a.h.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.5 6 5.4 even 2
1305.4.a.h.1.2 6 15.14 odd 2
2175.4.a.k.1.2 6 1.1 even 1 trivial