Properties

Label 2175.4.a.k.1.1
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.42717\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.42717 q^{2} -3.00000 q^{3} +21.4542 q^{4} +16.2815 q^{6} +10.2400 q^{7} -73.0180 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-5.42717 q^{2} -3.00000 q^{3} +21.4542 q^{4} +16.2815 q^{6} +10.2400 q^{7} -73.0180 q^{8} +9.00000 q^{9} +12.6318 q^{11} -64.3625 q^{12} -84.2342 q^{13} -55.5740 q^{14} +224.647 q^{16} -6.89181 q^{17} -48.8445 q^{18} -79.7045 q^{19} -30.7199 q^{21} -68.5548 q^{22} +73.8181 q^{23} +219.054 q^{24} +457.153 q^{26} -27.0000 q^{27} +219.690 q^{28} +29.0000 q^{29} +0.254654 q^{31} -635.056 q^{32} -37.8953 q^{33} +37.4030 q^{34} +193.087 q^{36} -40.4065 q^{37} +432.570 q^{38} +252.703 q^{39} +208.354 q^{41} +166.722 q^{42} +194.427 q^{43} +271.004 q^{44} -400.623 q^{46} +522.168 q^{47} -673.942 q^{48} -238.143 q^{49} +20.6754 q^{51} -1807.17 q^{52} +294.893 q^{53} +146.534 q^{54} -747.701 q^{56} +239.114 q^{57} -157.388 q^{58} -196.229 q^{59} +189.313 q^{61} -1.38205 q^{62} +92.1597 q^{63} +1649.38 q^{64} +205.664 q^{66} +570.840 q^{67} -147.858 q^{68} -221.454 q^{69} -1126.87 q^{71} -657.162 q^{72} -581.431 q^{73} +219.293 q^{74} -1709.99 q^{76} +129.349 q^{77} -1371.46 q^{78} -255.631 q^{79} +81.0000 q^{81} -1130.77 q^{82} +983.081 q^{83} -659.069 q^{84} -1055.19 q^{86} -87.0000 q^{87} -922.347 q^{88} +678.642 q^{89} -862.555 q^{91} +1583.70 q^{92} -0.763963 q^{93} -2833.89 q^{94} +1905.17 q^{96} +30.8442 q^{97} +1292.44 q^{98} +113.686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 18 q^{3} + 51 q^{4} + 3 q^{6} - 47 q^{7} - 51 q^{8} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} - 18 q^{3} + 51 q^{4} + 3 q^{6} - 47 q^{7} - 51 q^{8} + 54 q^{9} + 81 q^{11} - 153 q^{12} - 169 q^{13} - 30 q^{14} + 131 q^{16} + q^{17} - 9 q^{18} + 116 q^{19} + 141 q^{21} - 90 q^{22} + 52 q^{23} + 153 q^{24} + 294 q^{26} - 162 q^{27} - 344 q^{28} + 174 q^{29} + 340 q^{31} - 499 q^{32} - 243 q^{33} + 920 q^{34} + 459 q^{36} - 332 q^{37} + 378 q^{38} + 507 q^{39} - 616 q^{41} + 90 q^{42} - 334 q^{43} - 52 q^{44} - 158 q^{46} + 85 q^{47} - 393 q^{48} + 879 q^{49} - 3 q^{51} - 2220 q^{52} + 850 q^{53} + 27 q^{54} - 624 q^{56} - 348 q^{57} - 29 q^{58} - 758 q^{59} - 36 q^{61} + 152 q^{62} - 423 q^{63} + 1795 q^{64} + 270 q^{66} - 939 q^{67} + 186 q^{68} - 156 q^{69} - 1388 q^{71} - 459 q^{72} - 1708 q^{73} - 814 q^{74} + 566 q^{76} - 2585 q^{77} - 882 q^{78} + 1250 q^{79} + 486 q^{81} - 1372 q^{82} + 748 q^{83} + 1032 q^{84} - 800 q^{86} - 522 q^{87} - 536 q^{88} + 1099 q^{89} + 539 q^{91} - 1698 q^{92} - 1020 q^{93} - 4542 q^{94} + 1497 q^{96} + 22 q^{97} + 1433 q^{98} + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.42717 −1.91879 −0.959397 0.282060i \(-0.908982\pi\)
−0.959397 + 0.282060i \(0.908982\pi\)
\(3\) −3.00000 −0.577350
\(4\) 21.4542 2.68177
\(5\) 0 0
\(6\) 16.2815 1.10782
\(7\) 10.2400 0.552906 0.276453 0.961027i \(-0.410841\pi\)
0.276453 + 0.961027i \(0.410841\pi\)
\(8\) −73.0180 −3.22697
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 12.6318 0.346239 0.173119 0.984901i \(-0.444615\pi\)
0.173119 + 0.984901i \(0.444615\pi\)
\(12\) −64.3625 −1.54832
\(13\) −84.2342 −1.79710 −0.898552 0.438866i \(-0.855380\pi\)
−0.898552 + 0.438866i \(0.855380\pi\)
\(14\) −55.5740 −1.06091
\(15\) 0 0
\(16\) 224.647 3.51012
\(17\) −6.89181 −0.0983241 −0.0491621 0.998791i \(-0.515655\pi\)
−0.0491621 + 0.998791i \(0.515655\pi\)
\(18\) −48.8445 −0.639598
\(19\) −79.7045 −0.962393 −0.481196 0.876613i \(-0.659798\pi\)
−0.481196 + 0.876613i \(0.659798\pi\)
\(20\) 0 0
\(21\) −30.7199 −0.319220
\(22\) −68.5548 −0.664361
\(23\) 73.8181 0.669223 0.334612 0.942356i \(-0.391395\pi\)
0.334612 + 0.942356i \(0.391395\pi\)
\(24\) 219.054 1.86309
\(25\) 0 0
\(26\) 457.153 3.44827
\(27\) −27.0000 −0.192450
\(28\) 219.690 1.48277
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 0.254654 0.00147540 0.000737698 1.00000i \(-0.499765\pi\)
0.000737698 1.00000i \(0.499765\pi\)
\(32\) −635.056 −3.50822
\(33\) −37.8953 −0.199901
\(34\) 37.4030 0.188664
\(35\) 0 0
\(36\) 193.087 0.893923
\(37\) −40.4065 −0.179535 −0.0897674 0.995963i \(-0.528612\pi\)
−0.0897674 + 0.995963i \(0.528612\pi\)
\(38\) 432.570 1.84663
\(39\) 252.703 1.03756
\(40\) 0 0
\(41\) 208.354 0.793645 0.396822 0.917895i \(-0.370113\pi\)
0.396822 + 0.917895i \(0.370113\pi\)
\(42\) 166.722 0.612518
\(43\) 194.427 0.689531 0.344766 0.938689i \(-0.387958\pi\)
0.344766 + 0.938689i \(0.387958\pi\)
\(44\) 271.004 0.928532
\(45\) 0 0
\(46\) −400.623 −1.28410
\(47\) 522.168 1.62055 0.810277 0.586047i \(-0.199317\pi\)
0.810277 + 0.586047i \(0.199317\pi\)
\(48\) −673.942 −2.02657
\(49\) −238.143 −0.694295
\(50\) 0 0
\(51\) 20.6754 0.0567675
\(52\) −1807.17 −4.81942
\(53\) 294.893 0.764276 0.382138 0.924105i \(-0.375188\pi\)
0.382138 + 0.924105i \(0.375188\pi\)
\(54\) 146.534 0.369272
\(55\) 0 0
\(56\) −747.701 −1.78421
\(57\) 239.114 0.555638
\(58\) −157.388 −0.356311
\(59\) −196.229 −0.432997 −0.216498 0.976283i \(-0.569464\pi\)
−0.216498 + 0.976283i \(0.569464\pi\)
\(60\) 0 0
\(61\) 189.313 0.397360 0.198680 0.980064i \(-0.436334\pi\)
0.198680 + 0.980064i \(0.436334\pi\)
\(62\) −1.38205 −0.00283098
\(63\) 92.1597 0.184302
\(64\) 1649.38 3.22144
\(65\) 0 0
\(66\) 205.664 0.383569
\(67\) 570.840 1.04088 0.520442 0.853897i \(-0.325767\pi\)
0.520442 + 0.853897i \(0.325767\pi\)
\(68\) −147.858 −0.263683
\(69\) −221.454 −0.386376
\(70\) 0 0
\(71\) −1126.87 −1.88358 −0.941792 0.336196i \(-0.890859\pi\)
−0.941792 + 0.336196i \(0.890859\pi\)
\(72\) −657.162 −1.07566
\(73\) −581.431 −0.932210 −0.466105 0.884729i \(-0.654343\pi\)
−0.466105 + 0.884729i \(0.654343\pi\)
\(74\) 219.293 0.344490
\(75\) 0 0
\(76\) −1709.99 −2.58092
\(77\) 129.349 0.191437
\(78\) −1371.46 −1.99086
\(79\) −255.631 −0.364060 −0.182030 0.983293i \(-0.558267\pi\)
−0.182030 + 0.983293i \(0.558267\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −1130.77 −1.52284
\(83\) 983.081 1.30009 0.650043 0.759897i \(-0.274751\pi\)
0.650043 + 0.759897i \(0.274751\pi\)
\(84\) −659.069 −0.856075
\(85\) 0 0
\(86\) −1055.19 −1.32307
\(87\) −87.0000 −0.107211
\(88\) −922.347 −1.11730
\(89\) 678.642 0.808268 0.404134 0.914700i \(-0.367573\pi\)
0.404134 + 0.914700i \(0.367573\pi\)
\(90\) 0 0
\(91\) −862.555 −0.993630
\(92\) 1583.70 1.79470
\(93\) −0.763963 −0.000851820 0
\(94\) −2833.89 −3.10951
\(95\) 0 0
\(96\) 1905.17 2.02547
\(97\) 30.8442 0.0322861 0.0161431 0.999870i \(-0.494861\pi\)
0.0161431 + 0.999870i \(0.494861\pi\)
\(98\) 1292.44 1.33221
\(99\) 113.686 0.115413
\(100\) 0 0
\(101\) 1749.78 1.72386 0.861930 0.507028i \(-0.169256\pi\)
0.861930 + 0.507028i \(0.169256\pi\)
\(102\) −112.209 −0.108925
\(103\) −1912.26 −1.82933 −0.914663 0.404217i \(-0.867544\pi\)
−0.914663 + 0.404217i \(0.867544\pi\)
\(104\) 6150.61 5.79920
\(105\) 0 0
\(106\) −1600.43 −1.46649
\(107\) −1719.25 −1.55333 −0.776663 0.629916i \(-0.783089\pi\)
−0.776663 + 0.629916i \(0.783089\pi\)
\(108\) −579.262 −0.516107
\(109\) −779.425 −0.684911 −0.342456 0.939534i \(-0.611259\pi\)
−0.342456 + 0.939534i \(0.611259\pi\)
\(110\) 0 0
\(111\) 121.220 0.103654
\(112\) 2300.38 1.94076
\(113\) −766.529 −0.638132 −0.319066 0.947732i \(-0.603369\pi\)
−0.319066 + 0.947732i \(0.603369\pi\)
\(114\) −1297.71 −1.06615
\(115\) 0 0
\(116\) 622.170 0.497992
\(117\) −758.108 −0.599035
\(118\) 1064.97 0.830831
\(119\) −70.5719 −0.0543640
\(120\) 0 0
\(121\) −1171.44 −0.880119
\(122\) −1027.43 −0.762453
\(123\) −625.062 −0.458211
\(124\) 5.46339 0.00395667
\(125\) 0 0
\(126\) −500.166 −0.353637
\(127\) 1363.54 0.952715 0.476358 0.879252i \(-0.341957\pi\)
0.476358 + 0.879252i \(0.341957\pi\)
\(128\) −3870.99 −2.67305
\(129\) −583.281 −0.398101
\(130\) 0 0
\(131\) −1346.83 −0.898269 −0.449134 0.893464i \(-0.648268\pi\)
−0.449134 + 0.893464i \(0.648268\pi\)
\(132\) −813.013 −0.536088
\(133\) −816.171 −0.532113
\(134\) −3098.05 −1.99724
\(135\) 0 0
\(136\) 503.226 0.317289
\(137\) 2508.42 1.56430 0.782148 0.623093i \(-0.214124\pi\)
0.782148 + 0.623093i \(0.214124\pi\)
\(138\) 1201.87 0.741376
\(139\) 1363.95 0.832292 0.416146 0.909298i \(-0.363380\pi\)
0.416146 + 0.909298i \(0.363380\pi\)
\(140\) 0 0
\(141\) −1566.50 −0.935628
\(142\) 6115.69 3.61421
\(143\) −1064.03 −0.622227
\(144\) 2021.83 1.17004
\(145\) 0 0
\(146\) 3155.52 1.78872
\(147\) 714.430 0.400851
\(148\) −866.887 −0.481471
\(149\) 2792.25 1.53523 0.767617 0.640909i \(-0.221442\pi\)
0.767617 + 0.640909i \(0.221442\pi\)
\(150\) 0 0
\(151\) 306.493 0.165179 0.0825897 0.996584i \(-0.473681\pi\)
0.0825897 + 0.996584i \(0.473681\pi\)
\(152\) 5819.86 3.10561
\(153\) −62.0263 −0.0327747
\(154\) −701.999 −0.367329
\(155\) 0 0
\(156\) 5421.52 2.78249
\(157\) 1828.15 0.929315 0.464657 0.885491i \(-0.346178\pi\)
0.464657 + 0.885491i \(0.346178\pi\)
\(158\) 1387.35 0.698556
\(159\) −884.678 −0.441255
\(160\) 0 0
\(161\) 755.894 0.370018
\(162\) −439.601 −0.213199
\(163\) −2101.15 −1.00966 −0.504830 0.863219i \(-0.668445\pi\)
−0.504830 + 0.863219i \(0.668445\pi\)
\(164\) 4470.06 2.12837
\(165\) 0 0
\(166\) −5335.35 −2.49460
\(167\) −1564.53 −0.724950 −0.362475 0.931994i \(-0.618068\pi\)
−0.362475 + 0.931994i \(0.618068\pi\)
\(168\) 2243.10 1.03011
\(169\) 4898.40 2.22959
\(170\) 0 0
\(171\) −717.341 −0.320798
\(172\) 4171.27 1.84916
\(173\) 2695.23 1.18448 0.592239 0.805762i \(-0.298244\pi\)
0.592239 + 0.805762i \(0.298244\pi\)
\(174\) 472.164 0.205716
\(175\) 0 0
\(176\) 2837.70 1.21534
\(177\) 588.686 0.249991
\(178\) −3683.10 −1.55090
\(179\) −3604.16 −1.50496 −0.752480 0.658615i \(-0.771143\pi\)
−0.752480 + 0.658615i \(0.771143\pi\)
\(180\) 0 0
\(181\) −2658.32 −1.09166 −0.545832 0.837894i \(-0.683786\pi\)
−0.545832 + 0.837894i \(0.683786\pi\)
\(182\) 4681.23 1.90657
\(183\) −567.938 −0.229416
\(184\) −5390.05 −2.15956
\(185\) 0 0
\(186\) 4.14615 0.00163447
\(187\) −87.0559 −0.0340436
\(188\) 11202.7 4.34595
\(189\) −276.479 −0.106407
\(190\) 0 0
\(191\) −145.942 −0.0552877 −0.0276439 0.999618i \(-0.508800\pi\)
−0.0276439 + 0.999618i \(0.508800\pi\)
\(192\) −4948.13 −1.85990
\(193\) −1151.46 −0.429451 −0.214725 0.976674i \(-0.568886\pi\)
−0.214725 + 0.976674i \(0.568886\pi\)
\(194\) −167.397 −0.0619504
\(195\) 0 0
\(196\) −5109.16 −1.86194
\(197\) −4328.08 −1.56529 −0.782647 0.622466i \(-0.786131\pi\)
−0.782647 + 0.622466i \(0.786131\pi\)
\(198\) −616.993 −0.221454
\(199\) 1532.72 0.545988 0.272994 0.962016i \(-0.411986\pi\)
0.272994 + 0.962016i \(0.411986\pi\)
\(200\) 0 0
\(201\) −1712.52 −0.600955
\(202\) −9496.36 −3.30773
\(203\) 296.959 0.102672
\(204\) 443.574 0.152237
\(205\) 0 0
\(206\) 10378.2 3.51010
\(207\) 664.363 0.223074
\(208\) −18923.0 −6.30805
\(209\) −1006.81 −0.333218
\(210\) 0 0
\(211\) 5345.39 1.74404 0.872019 0.489472i \(-0.162810\pi\)
0.872019 + 0.489472i \(0.162810\pi\)
\(212\) 6326.67 2.04961
\(213\) 3380.60 1.08749
\(214\) 9330.65 2.98051
\(215\) 0 0
\(216\) 1971.48 0.621030
\(217\) 2.60765 0.000815755 0
\(218\) 4230.07 1.31420
\(219\) 1744.29 0.538212
\(220\) 0 0
\(221\) 580.526 0.176699
\(222\) −657.879 −0.198892
\(223\) −3783.05 −1.13602 −0.568008 0.823023i \(-0.692286\pi\)
−0.568008 + 0.823023i \(0.692286\pi\)
\(224\) −6502.95 −1.93972
\(225\) 0 0
\(226\) 4160.08 1.22444
\(227\) 4348.46 1.27144 0.635721 0.771919i \(-0.280703\pi\)
0.635721 + 0.771919i \(0.280703\pi\)
\(228\) 5129.98 1.49009
\(229\) −3068.67 −0.885517 −0.442759 0.896641i \(-0.646000\pi\)
−0.442759 + 0.896641i \(0.646000\pi\)
\(230\) 0 0
\(231\) −388.047 −0.110526
\(232\) −2117.52 −0.599233
\(233\) 275.696 0.0775170 0.0387585 0.999249i \(-0.487660\pi\)
0.0387585 + 0.999249i \(0.487660\pi\)
\(234\) 4114.38 1.14942
\(235\) 0 0
\(236\) −4209.92 −1.16120
\(237\) 766.894 0.210190
\(238\) 383.006 0.104313
\(239\) 3132.87 0.847901 0.423950 0.905685i \(-0.360643\pi\)
0.423950 + 0.905685i \(0.360643\pi\)
\(240\) 0 0
\(241\) 5699.61 1.52342 0.761710 0.647918i \(-0.224360\pi\)
0.761710 + 0.647918i \(0.224360\pi\)
\(242\) 6357.59 1.68877
\(243\) −243.000 −0.0641500
\(244\) 4061.54 1.06563
\(245\) 0 0
\(246\) 3392.32 0.879212
\(247\) 6713.85 1.72952
\(248\) −18.5943 −0.00476105
\(249\) −2949.24 −0.750605
\(250\) 0 0
\(251\) 1714.12 0.431054 0.215527 0.976498i \(-0.430853\pi\)
0.215527 + 0.976498i \(0.430853\pi\)
\(252\) 1977.21 0.494255
\(253\) 932.454 0.231711
\(254\) −7400.17 −1.82806
\(255\) 0 0
\(256\) 7813.52 1.90760
\(257\) 803.085 0.194922 0.0974612 0.995239i \(-0.468928\pi\)
0.0974612 + 0.995239i \(0.468928\pi\)
\(258\) 3165.56 0.763874
\(259\) −413.761 −0.0992659
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) 7309.48 1.72359
\(263\) 1694.24 0.397230 0.198615 0.980078i \(-0.436356\pi\)
0.198615 + 0.980078i \(0.436356\pi\)
\(264\) 2767.04 0.645074
\(265\) 0 0
\(266\) 4429.50 1.02101
\(267\) −2035.92 −0.466654
\(268\) 12246.9 2.79141
\(269\) 3364.95 0.762693 0.381347 0.924432i \(-0.375460\pi\)
0.381347 + 0.924432i \(0.375460\pi\)
\(270\) 0 0
\(271\) 8044.10 1.80312 0.901558 0.432658i \(-0.142424\pi\)
0.901558 + 0.432658i \(0.142424\pi\)
\(272\) −1548.23 −0.345129
\(273\) 2587.66 0.573673
\(274\) −13613.6 −3.00156
\(275\) 0 0
\(276\) −4751.11 −1.03617
\(277\) 6971.54 1.51220 0.756100 0.654456i \(-0.227102\pi\)
0.756100 + 0.654456i \(0.227102\pi\)
\(278\) −7402.38 −1.59700
\(279\) 2.29189 0.000491798 0
\(280\) 0 0
\(281\) −1916.94 −0.406957 −0.203478 0.979079i \(-0.565225\pi\)
−0.203478 + 0.979079i \(0.565225\pi\)
\(282\) 8501.68 1.79528
\(283\) −2036.63 −0.427792 −0.213896 0.976856i \(-0.568615\pi\)
−0.213896 + 0.976856i \(0.568615\pi\)
\(284\) −24176.0 −5.05134
\(285\) 0 0
\(286\) 5774.66 1.19393
\(287\) 2133.54 0.438811
\(288\) −5715.50 −1.16941
\(289\) −4865.50 −0.990332
\(290\) 0 0
\(291\) −92.5325 −0.0186404
\(292\) −12474.1 −2.49997
\(293\) 1754.55 0.349836 0.174918 0.984583i \(-0.444034\pi\)
0.174918 + 0.984583i \(0.444034\pi\)
\(294\) −3877.33 −0.769151
\(295\) 0 0
\(296\) 2950.40 0.579353
\(297\) −341.058 −0.0666337
\(298\) −15154.0 −2.94580
\(299\) −6218.01 −1.20266
\(300\) 0 0
\(301\) 1990.92 0.381246
\(302\) −1663.39 −0.316945
\(303\) −5249.35 −0.995271
\(304\) −17905.4 −3.37811
\(305\) 0 0
\(306\) 336.627 0.0628879
\(307\) −8909.41 −1.65631 −0.828154 0.560500i \(-0.810609\pi\)
−0.828154 + 0.560500i \(0.810609\pi\)
\(308\) 2775.07 0.513391
\(309\) 5736.78 1.05616
\(310\) 0 0
\(311\) −7422.88 −1.35342 −0.676709 0.736251i \(-0.736595\pi\)
−0.676709 + 0.736251i \(0.736595\pi\)
\(312\) −18451.8 −3.34817
\(313\) 1453.62 0.262504 0.131252 0.991349i \(-0.458100\pi\)
0.131252 + 0.991349i \(0.458100\pi\)
\(314\) −9921.69 −1.78316
\(315\) 0 0
\(316\) −5484.35 −0.976326
\(317\) −5203.30 −0.921912 −0.460956 0.887423i \(-0.652493\pi\)
−0.460956 + 0.887423i \(0.652493\pi\)
\(318\) 4801.29 0.846677
\(319\) 366.322 0.0642949
\(320\) 0 0
\(321\) 5157.74 0.896813
\(322\) −4102.37 −0.709987
\(323\) 549.309 0.0946264
\(324\) 1737.79 0.297974
\(325\) 0 0
\(326\) 11403.3 1.93733
\(327\) 2338.27 0.395434
\(328\) −15213.6 −2.56107
\(329\) 5346.98 0.896014
\(330\) 0 0
\(331\) −10985.0 −1.82414 −0.912070 0.410035i \(-0.865516\pi\)
−0.912070 + 0.410035i \(0.865516\pi\)
\(332\) 21091.2 3.48653
\(333\) −363.659 −0.0598449
\(334\) 8490.94 1.39103
\(335\) 0 0
\(336\) −6901.14 −1.12050
\(337\) −2295.27 −0.371013 −0.185507 0.982643i \(-0.559393\pi\)
−0.185507 + 0.982643i \(0.559393\pi\)
\(338\) −26584.4 −4.27812
\(339\) 2299.59 0.368426
\(340\) 0 0
\(341\) 3.21674 0.000510839 0
\(342\) 3893.13 0.615545
\(343\) −5950.88 −0.936786
\(344\) −14196.7 −2.22510
\(345\) 0 0
\(346\) −14627.5 −2.27277
\(347\) 5313.01 0.821952 0.410976 0.911646i \(-0.365188\pi\)
0.410976 + 0.911646i \(0.365188\pi\)
\(348\) −1866.51 −0.287516
\(349\) 2086.08 0.319958 0.159979 0.987120i \(-0.448857\pi\)
0.159979 + 0.987120i \(0.448857\pi\)
\(350\) 0 0
\(351\) 2274.32 0.345853
\(352\) −8021.89 −1.21468
\(353\) −5382.37 −0.811543 −0.405772 0.913975i \(-0.632997\pi\)
−0.405772 + 0.913975i \(0.632997\pi\)
\(354\) −3194.90 −0.479681
\(355\) 0 0
\(356\) 14559.7 2.16759
\(357\) 211.716 0.0313871
\(358\) 19560.4 2.88771
\(359\) −7990.36 −1.17469 −0.587347 0.809335i \(-0.699827\pi\)
−0.587347 + 0.809335i \(0.699827\pi\)
\(360\) 0 0
\(361\) −506.193 −0.0737998
\(362\) 14427.1 2.09468
\(363\) 3514.31 0.508137
\(364\) −18505.4 −2.66469
\(365\) 0 0
\(366\) 3082.29 0.440202
\(367\) 429.201 0.0610466 0.0305233 0.999534i \(-0.490283\pi\)
0.0305233 + 0.999534i \(0.490283\pi\)
\(368\) 16583.0 2.34905
\(369\) 1875.19 0.264548
\(370\) 0 0
\(371\) 3019.69 0.422572
\(372\) −16.3902 −0.00228438
\(373\) −6270.80 −0.870482 −0.435241 0.900314i \(-0.643337\pi\)
−0.435241 + 0.900314i \(0.643337\pi\)
\(374\) 472.467 0.0653227
\(375\) 0 0
\(376\) −38127.7 −5.22948
\(377\) −2442.79 −0.333714
\(378\) 1500.50 0.204173
\(379\) 10417.0 1.41183 0.705917 0.708294i \(-0.250535\pi\)
0.705917 + 0.708294i \(0.250535\pi\)
\(380\) 0 0
\(381\) −4090.63 −0.550050
\(382\) 792.049 0.106086
\(383\) −10769.3 −1.43677 −0.718387 0.695644i \(-0.755119\pi\)
−0.718387 + 0.695644i \(0.755119\pi\)
\(384\) 11613.0 1.54329
\(385\) 0 0
\(386\) 6249.18 0.824028
\(387\) 1749.84 0.229844
\(388\) 661.736 0.0865839
\(389\) −11121.7 −1.44960 −0.724798 0.688961i \(-0.758067\pi\)
−0.724798 + 0.688961i \(0.758067\pi\)
\(390\) 0 0
\(391\) −508.740 −0.0658008
\(392\) 17388.7 2.24047
\(393\) 4040.49 0.518616
\(394\) 23489.2 3.00348
\(395\) 0 0
\(396\) 2439.04 0.309511
\(397\) −11286.7 −1.42686 −0.713432 0.700724i \(-0.752860\pi\)
−0.713432 + 0.700724i \(0.752860\pi\)
\(398\) −8318.33 −1.04764
\(399\) 2448.51 0.307215
\(400\) 0 0
\(401\) −15418.0 −1.92005 −0.960023 0.279922i \(-0.909691\pi\)
−0.960023 + 0.279922i \(0.909691\pi\)
\(402\) 9294.14 1.15311
\(403\) −21.4506 −0.00265144
\(404\) 37540.1 4.62299
\(405\) 0 0
\(406\) −1611.65 −0.197006
\(407\) −510.406 −0.0621619
\(408\) −1509.68 −0.183187
\(409\) 13849.5 1.67437 0.837183 0.546922i \(-0.184201\pi\)
0.837183 + 0.546922i \(0.184201\pi\)
\(410\) 0 0
\(411\) −7525.25 −0.903147
\(412\) −41025.9 −4.90583
\(413\) −2009.37 −0.239406
\(414\) −3605.61 −0.428034
\(415\) 0 0
\(416\) 53493.4 6.30464
\(417\) −4091.85 −0.480524
\(418\) 5464.13 0.639376
\(419\) −2793.33 −0.325688 −0.162844 0.986652i \(-0.552067\pi\)
−0.162844 + 0.986652i \(0.552067\pi\)
\(420\) 0 0
\(421\) −3643.79 −0.421823 −0.210911 0.977505i \(-0.567643\pi\)
−0.210911 + 0.977505i \(0.567643\pi\)
\(422\) −29010.4 −3.34645
\(423\) 4699.51 0.540185
\(424\) −21532.4 −2.46629
\(425\) 0 0
\(426\) −18347.1 −2.08666
\(427\) 1938.55 0.219703
\(428\) −36885.0 −4.16566
\(429\) 3192.08 0.359243
\(430\) 0 0
\(431\) 5834.03 0.652007 0.326004 0.945369i \(-0.394298\pi\)
0.326004 + 0.945369i \(0.394298\pi\)
\(432\) −6065.48 −0.675522
\(433\) −7919.15 −0.878915 −0.439457 0.898263i \(-0.644829\pi\)
−0.439457 + 0.898263i \(0.644829\pi\)
\(434\) −14.1522 −0.00156527
\(435\) 0 0
\(436\) −16721.9 −1.83677
\(437\) −5883.63 −0.644056
\(438\) −9466.57 −1.03272
\(439\) 11696.0 1.27158 0.635788 0.771864i \(-0.280675\pi\)
0.635788 + 0.771864i \(0.280675\pi\)
\(440\) 0 0
\(441\) −2143.29 −0.231432
\(442\) −3150.61 −0.339049
\(443\) 2786.16 0.298814 0.149407 0.988776i \(-0.452264\pi\)
0.149407 + 0.988776i \(0.452264\pi\)
\(444\) 2600.66 0.277977
\(445\) 0 0
\(446\) 20531.2 2.17978
\(447\) −8376.74 −0.886368
\(448\) 16889.5 1.78115
\(449\) 11013.8 1.15762 0.578811 0.815462i \(-0.303517\pi\)
0.578811 + 0.815462i \(0.303517\pi\)
\(450\) 0 0
\(451\) 2631.88 0.274790
\(452\) −16445.2 −1.71132
\(453\) −919.480 −0.0953663
\(454\) −23599.8 −2.43963
\(455\) 0 0
\(456\) −17459.6 −1.79303
\(457\) −12773.5 −1.30748 −0.653739 0.756720i \(-0.726801\pi\)
−0.653739 + 0.756720i \(0.726801\pi\)
\(458\) 16654.2 1.69912
\(459\) 186.079 0.0189225
\(460\) 0 0
\(461\) −13343.4 −1.34808 −0.674039 0.738696i \(-0.735442\pi\)
−0.674039 + 0.738696i \(0.735442\pi\)
\(462\) 2106.00 0.212077
\(463\) −17265.4 −1.73303 −0.866514 0.499153i \(-0.833645\pi\)
−0.866514 + 0.499153i \(0.833645\pi\)
\(464\) 6514.78 0.651812
\(465\) 0 0
\(466\) −1496.25 −0.148739
\(467\) 16016.7 1.58708 0.793538 0.608521i \(-0.208237\pi\)
0.793538 + 0.608521i \(0.208237\pi\)
\(468\) −16264.6 −1.60647
\(469\) 5845.38 0.575511
\(470\) 0 0
\(471\) −5484.46 −0.536540
\(472\) 14328.2 1.39727
\(473\) 2455.96 0.238742
\(474\) −4162.06 −0.403312
\(475\) 0 0
\(476\) −1514.06 −0.145792
\(477\) 2654.03 0.254759
\(478\) −17002.6 −1.62695
\(479\) −5847.01 −0.557738 −0.278869 0.960329i \(-0.589960\pi\)
−0.278869 + 0.960329i \(0.589960\pi\)
\(480\) 0 0
\(481\) 3403.61 0.322643
\(482\) −30932.7 −2.92313
\(483\) −2267.68 −0.213630
\(484\) −25132.2 −2.36028
\(485\) 0 0
\(486\) 1318.80 0.123091
\(487\) 342.662 0.0318840 0.0159420 0.999873i \(-0.494925\pi\)
0.0159420 + 0.999873i \(0.494925\pi\)
\(488\) −13823.2 −1.28227
\(489\) 6303.44 0.582927
\(490\) 0 0
\(491\) −1673.48 −0.153815 −0.0769073 0.997038i \(-0.524505\pi\)
−0.0769073 + 0.997038i \(0.524505\pi\)
\(492\) −13410.2 −1.22882
\(493\) −199.863 −0.0182583
\(494\) −36437.2 −3.31859
\(495\) 0 0
\(496\) 57.2074 0.00517881
\(497\) −11539.1 −1.04144
\(498\) 16006.0 1.44026
\(499\) 10918.2 0.979487 0.489743 0.871867i \(-0.337090\pi\)
0.489743 + 0.871867i \(0.337090\pi\)
\(500\) 0 0
\(501\) 4693.58 0.418550
\(502\) −9302.84 −0.827103
\(503\) −16957.6 −1.50319 −0.751595 0.659625i \(-0.770715\pi\)
−0.751595 + 0.659625i \(0.770715\pi\)
\(504\) −6729.31 −0.594737
\(505\) 0 0
\(506\) −5060.58 −0.444606
\(507\) −14695.2 −1.28725
\(508\) 29253.6 2.55496
\(509\) −226.179 −0.0196959 −0.00984795 0.999952i \(-0.503135\pi\)
−0.00984795 + 0.999952i \(0.503135\pi\)
\(510\) 0 0
\(511\) −5953.83 −0.515425
\(512\) −11437.3 −0.987234
\(513\) 2152.02 0.185213
\(514\) −4358.48 −0.374016
\(515\) 0 0
\(516\) −12513.8 −1.06762
\(517\) 6595.91 0.561099
\(518\) 2245.55 0.190471
\(519\) −8085.70 −0.683859
\(520\) 0 0
\(521\) −2051.24 −0.172489 −0.0862443 0.996274i \(-0.527487\pi\)
−0.0862443 + 0.996274i \(0.527487\pi\)
\(522\) −1416.49 −0.118770
\(523\) 11922.9 0.996852 0.498426 0.866932i \(-0.333912\pi\)
0.498426 + 0.866932i \(0.333912\pi\)
\(524\) −28895.1 −2.40895
\(525\) 0 0
\(526\) −9194.94 −0.762203
\(527\) −1.75503 −0.000145067 0
\(528\) −8513.09 −0.701676
\(529\) −6717.89 −0.552140
\(530\) 0 0
\(531\) −1766.06 −0.144332
\(532\) −17510.3 −1.42700
\(533\) −17550.5 −1.42626
\(534\) 11049.3 0.895412
\(535\) 0 0
\(536\) −41681.6 −3.35890
\(537\) 10812.5 0.868889
\(538\) −18262.1 −1.46345
\(539\) −3008.17 −0.240392
\(540\) 0 0
\(541\) 12876.2 1.02327 0.511635 0.859203i \(-0.329040\pi\)
0.511635 + 0.859203i \(0.329040\pi\)
\(542\) −43656.7 −3.45981
\(543\) 7974.96 0.630273
\(544\) 4376.69 0.344943
\(545\) 0 0
\(546\) −14043.7 −1.10076
\(547\) −9065.39 −0.708607 −0.354304 0.935130i \(-0.615282\pi\)
−0.354304 + 0.935130i \(0.615282\pi\)
\(548\) 53816.0 4.19508
\(549\) 1703.81 0.132453
\(550\) 0 0
\(551\) −2311.43 −0.178712
\(552\) 16170.1 1.24682
\(553\) −2617.65 −0.201291
\(554\) −37835.7 −2.90160
\(555\) 0 0
\(556\) 29262.4 2.23202
\(557\) 19520.2 1.48492 0.742458 0.669893i \(-0.233660\pi\)
0.742458 + 0.669893i \(0.233660\pi\)
\(558\) −12.4385 −0.000943660 0
\(559\) −16377.4 −1.23916
\(560\) 0 0
\(561\) 261.168 0.0196551
\(562\) 10403.5 0.780866
\(563\) −9786.46 −0.732593 −0.366297 0.930498i \(-0.619374\pi\)
−0.366297 + 0.930498i \(0.619374\pi\)
\(564\) −33608.0 −2.50914
\(565\) 0 0
\(566\) 11053.1 0.820844
\(567\) 829.437 0.0614340
\(568\) 82281.5 6.07826
\(569\) 13236.9 0.975257 0.487628 0.873051i \(-0.337862\pi\)
0.487628 + 0.873051i \(0.337862\pi\)
\(570\) 0 0
\(571\) −21385.2 −1.56733 −0.783663 0.621186i \(-0.786651\pi\)
−0.783663 + 0.621186i \(0.786651\pi\)
\(572\) −22827.8 −1.66867
\(573\) 437.825 0.0319204
\(574\) −11579.1 −0.841987
\(575\) 0 0
\(576\) 14844.4 1.07381
\(577\) −1531.13 −0.110471 −0.0552356 0.998473i \(-0.517591\pi\)
−0.0552356 + 0.998473i \(0.517591\pi\)
\(578\) 26405.9 1.90024
\(579\) 3454.39 0.247944
\(580\) 0 0
\(581\) 10066.7 0.718825
\(582\) 502.190 0.0357671
\(583\) 3725.02 0.264622
\(584\) 42454.9 3.00821
\(585\) 0 0
\(586\) −9522.25 −0.671263
\(587\) −2742.12 −0.192810 −0.0964050 0.995342i \(-0.530734\pi\)
−0.0964050 + 0.995342i \(0.530734\pi\)
\(588\) 15327.5 1.07499
\(589\) −20.2971 −0.00141991
\(590\) 0 0
\(591\) 12984.2 0.903723
\(592\) −9077.22 −0.630188
\(593\) 8476.47 0.586993 0.293497 0.955960i \(-0.405181\pi\)
0.293497 + 0.955960i \(0.405181\pi\)
\(594\) 1850.98 0.127856
\(595\) 0 0
\(596\) 59905.3 4.11714
\(597\) −4598.16 −0.315226
\(598\) 33746.2 2.30767
\(599\) −14839.1 −1.01220 −0.506100 0.862475i \(-0.668913\pi\)
−0.506100 + 0.862475i \(0.668913\pi\)
\(600\) 0 0
\(601\) −13198.6 −0.895814 −0.447907 0.894080i \(-0.647830\pi\)
−0.447907 + 0.894080i \(0.647830\pi\)
\(602\) −10805.1 −0.731532
\(603\) 5137.56 0.346961
\(604\) 6575.56 0.442973
\(605\) 0 0
\(606\) 28489.1 1.90972
\(607\) −2310.67 −0.154509 −0.0772547 0.997011i \(-0.524615\pi\)
−0.0772547 + 0.997011i \(0.524615\pi\)
\(608\) 50616.8 3.37629
\(609\) −890.877 −0.0592777
\(610\) 0 0
\(611\) −43984.4 −2.91231
\(612\) −1330.72 −0.0878942
\(613\) 3944.92 0.259925 0.129962 0.991519i \(-0.458514\pi\)
0.129962 + 0.991519i \(0.458514\pi\)
\(614\) 48352.9 3.17811
\(615\) 0 0
\(616\) −9444.80 −0.617762
\(617\) 26587.7 1.73482 0.867408 0.497598i \(-0.165784\pi\)
0.867408 + 0.497598i \(0.165784\pi\)
\(618\) −31134.5 −2.02656
\(619\) 8691.35 0.564353 0.282177 0.959362i \(-0.408944\pi\)
0.282177 + 0.959362i \(0.408944\pi\)
\(620\) 0 0
\(621\) −1993.09 −0.128792
\(622\) 40285.2 2.59693
\(623\) 6949.26 0.446896
\(624\) 56769.0 3.64195
\(625\) 0 0
\(626\) −7889.06 −0.503690
\(627\) 3020.43 0.192383
\(628\) 39221.5 2.49221
\(629\) 278.474 0.0176526
\(630\) 0 0
\(631\) −19396.9 −1.22374 −0.611869 0.790959i \(-0.709582\pi\)
−0.611869 + 0.790959i \(0.709582\pi\)
\(632\) 18665.7 1.17481
\(633\) −16036.2 −1.00692
\(634\) 28239.2 1.76896
\(635\) 0 0
\(636\) −18980.0 −1.18334
\(637\) 20059.8 1.24772
\(638\) −1988.09 −0.123369
\(639\) −10141.8 −0.627861
\(640\) 0 0
\(641\) −11088.7 −0.683273 −0.341636 0.939832i \(-0.610981\pi\)
−0.341636 + 0.939832i \(0.610981\pi\)
\(642\) −27991.9 −1.72080
\(643\) 3896.33 0.238968 0.119484 0.992836i \(-0.461876\pi\)
0.119484 + 0.992836i \(0.461876\pi\)
\(644\) 16217.1 0.992302
\(645\) 0 0
\(646\) −2981.19 −0.181569
\(647\) −14565.2 −0.885034 −0.442517 0.896760i \(-0.645914\pi\)
−0.442517 + 0.896760i \(0.645914\pi\)
\(648\) −5914.45 −0.358552
\(649\) −2478.72 −0.149920
\(650\) 0 0
\(651\) −7.82295 −0.000470976 0
\(652\) −45078.3 −2.70767
\(653\) −27443.4 −1.64463 −0.822314 0.569034i \(-0.807317\pi\)
−0.822314 + 0.569034i \(0.807317\pi\)
\(654\) −12690.2 −0.758756
\(655\) 0 0
\(656\) 46806.2 2.78579
\(657\) −5232.88 −0.310737
\(658\) −29019.0 −1.71927
\(659\) 10355.6 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(660\) 0 0
\(661\) 9704.01 0.571017 0.285508 0.958376i \(-0.407838\pi\)
0.285508 + 0.958376i \(0.407838\pi\)
\(662\) 59617.4 3.50015
\(663\) −1741.58 −0.102017
\(664\) −71782.6 −4.19534
\(665\) 0 0
\(666\) 1973.64 0.114830
\(667\) 2140.72 0.124272
\(668\) −33565.6 −1.94415
\(669\) 11349.1 0.655879
\(670\) 0 0
\(671\) 2391.35 0.137582
\(672\) 19508.8 1.11990
\(673\) −16876.5 −0.966629 −0.483315 0.875447i \(-0.660567\pi\)
−0.483315 + 0.875447i \(0.660567\pi\)
\(674\) 12456.8 0.711898
\(675\) 0 0
\(676\) 105091. 5.97924
\(677\) 1095.44 0.0621880 0.0310940 0.999516i \(-0.490101\pi\)
0.0310940 + 0.999516i \(0.490101\pi\)
\(678\) −12480.2 −0.706933
\(679\) 315.843 0.0178512
\(680\) 0 0
\(681\) −13045.4 −0.734067
\(682\) −17.4578 −0.000980195 0
\(683\) 23004.5 1.28879 0.644394 0.764693i \(-0.277110\pi\)
0.644394 + 0.764693i \(0.277110\pi\)
\(684\) −15389.9 −0.860305
\(685\) 0 0
\(686\) 32296.4 1.79750
\(687\) 9206.01 0.511254
\(688\) 43677.5 2.42034
\(689\) −24840.0 −1.37348
\(690\) 0 0
\(691\) 4973.91 0.273830 0.136915 0.990583i \(-0.456281\pi\)
0.136915 + 0.990583i \(0.456281\pi\)
\(692\) 57824.0 3.17650
\(693\) 1164.14 0.0638125
\(694\) −28834.6 −1.57716
\(695\) 0 0
\(696\) 6352.56 0.345967
\(697\) −1435.94 −0.0780344
\(698\) −11321.5 −0.613933
\(699\) −827.089 −0.0447545
\(700\) 0 0
\(701\) 19281.6 1.03888 0.519440 0.854507i \(-0.326141\pi\)
0.519440 + 0.854507i \(0.326141\pi\)
\(702\) −12343.1 −0.663621
\(703\) 3220.58 0.172783
\(704\) 20834.6 1.11539
\(705\) 0 0
\(706\) 29211.0 1.55718
\(707\) 17917.7 0.953132
\(708\) 12629.8 0.670417
\(709\) 35391.4 1.87468 0.937342 0.348412i \(-0.113279\pi\)
0.937342 + 0.348412i \(0.113279\pi\)
\(710\) 0 0
\(711\) −2300.68 −0.121353
\(712\) −49553.0 −2.60826
\(713\) 18.7981 0.000987369 0
\(714\) −1149.02 −0.0602253
\(715\) 0 0
\(716\) −77324.3 −4.03596
\(717\) −9398.60 −0.489536
\(718\) 43365.0 2.25399
\(719\) −19325.0 −1.00237 −0.501183 0.865341i \(-0.667102\pi\)
−0.501183 + 0.865341i \(0.667102\pi\)
\(720\) 0 0
\(721\) −19581.5 −1.01145
\(722\) 2747.19 0.141607
\(723\) −17098.8 −0.879547
\(724\) −57032.0 −2.92759
\(725\) 0 0
\(726\) −19072.8 −0.975010
\(727\) −16887.9 −0.861537 −0.430768 0.902462i \(-0.641757\pi\)
−0.430768 + 0.902462i \(0.641757\pi\)
\(728\) 62982.0 3.20641
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −1339.95 −0.0677975
\(732\) −12184.6 −0.615241
\(733\) −6698.16 −0.337520 −0.168760 0.985657i \(-0.553976\pi\)
−0.168760 + 0.985657i \(0.553976\pi\)
\(734\) −2329.35 −0.117136
\(735\) 0 0
\(736\) −46878.6 −2.34778
\(737\) 7210.73 0.360394
\(738\) −10176.9 −0.507613
\(739\) 4934.50 0.245627 0.122814 0.992430i \(-0.460808\pi\)
0.122814 + 0.992430i \(0.460808\pi\)
\(740\) 0 0
\(741\) −20141.5 −0.998540
\(742\) −16388.4 −0.810829
\(743\) 5140.65 0.253825 0.126913 0.991914i \(-0.459493\pi\)
0.126913 + 0.991914i \(0.459493\pi\)
\(744\) 55.7830 0.00274880
\(745\) 0 0
\(746\) 34032.7 1.67027
\(747\) 8847.73 0.433362
\(748\) −1867.71 −0.0912971
\(749\) −17605.0 −0.858843
\(750\) 0 0
\(751\) 9625.37 0.467690 0.233845 0.972274i \(-0.424869\pi\)
0.233845 + 0.972274i \(0.424869\pi\)
\(752\) 117304. 5.68834
\(753\) −5142.37 −0.248869
\(754\) 13257.4 0.640328
\(755\) 0 0
\(756\) −5931.62 −0.285358
\(757\) 5128.83 0.246249 0.123125 0.992391i \(-0.460709\pi\)
0.123125 + 0.992391i \(0.460709\pi\)
\(758\) −56534.8 −2.70902
\(759\) −2797.36 −0.133778
\(760\) 0 0
\(761\) −25024.7 −1.19204 −0.596022 0.802968i \(-0.703253\pi\)
−0.596022 + 0.802968i \(0.703253\pi\)
\(762\) 22200.5 1.05543
\(763\) −7981.28 −0.378692
\(764\) −3131.05 −0.148269
\(765\) 0 0
\(766\) 58446.7 2.75687
\(767\) 16529.2 0.778140
\(768\) −23440.6 −1.10135
\(769\) −26474.8 −1.24149 −0.620746 0.784012i \(-0.713170\pi\)
−0.620746 + 0.784012i \(0.713170\pi\)
\(770\) 0 0
\(771\) −2409.26 −0.112539
\(772\) −24703.6 −1.15169
\(773\) 24685.1 1.14859 0.574295 0.818648i \(-0.305276\pi\)
0.574295 + 0.818648i \(0.305276\pi\)
\(774\) −9496.69 −0.441023
\(775\) 0 0
\(776\) −2252.18 −0.104186
\(777\) 1241.28 0.0573112
\(778\) 60359.4 2.78148
\(779\) −16606.8 −0.763798
\(780\) 0 0
\(781\) −14234.3 −0.652170
\(782\) 2761.02 0.126258
\(783\) −783.000 −0.0357371
\(784\) −53498.3 −2.43706
\(785\) 0 0
\(786\) −21928.4 −0.995116
\(787\) 35383.4 1.60265 0.801323 0.598232i \(-0.204130\pi\)
0.801323 + 0.598232i \(0.204130\pi\)
\(788\) −92855.3 −4.19776
\(789\) −5082.73 −0.229341
\(790\) 0 0
\(791\) −7849.22 −0.352827
\(792\) −8301.12 −0.372434
\(793\) −15946.6 −0.714098
\(794\) 61255.0 2.73786
\(795\) 0 0
\(796\) 32883.2 1.46421
\(797\) 24869.4 1.10529 0.552647 0.833415i \(-0.313618\pi\)
0.552647 + 0.833415i \(0.313618\pi\)
\(798\) −13288.5 −0.589483
\(799\) −3598.69 −0.159340
\(800\) 0 0
\(801\) 6107.77 0.269423
\(802\) 83676.1 3.68417
\(803\) −7344.51 −0.322767
\(804\) −36740.7 −1.61162
\(805\) 0 0
\(806\) 116.416 0.00508757
\(807\) −10094.8 −0.440341
\(808\) −127765. −5.56284
\(809\) 834.568 0.0362693 0.0181346 0.999836i \(-0.494227\pi\)
0.0181346 + 0.999836i \(0.494227\pi\)
\(810\) 0 0
\(811\) −17419.5 −0.754232 −0.377116 0.926166i \(-0.623084\pi\)
−0.377116 + 0.926166i \(0.623084\pi\)
\(812\) 6371.00 0.275343
\(813\) −24132.3 −1.04103
\(814\) 2770.06 0.119276
\(815\) 0 0
\(816\) 4644.69 0.199260
\(817\) −15496.7 −0.663600
\(818\) −75163.8 −3.21276
\(819\) −7762.99 −0.331210
\(820\) 0 0
\(821\) 20163.7 0.857148 0.428574 0.903507i \(-0.359016\pi\)
0.428574 + 0.903507i \(0.359016\pi\)
\(822\) 40840.8 1.73295
\(823\) −10456.9 −0.442898 −0.221449 0.975172i \(-0.571079\pi\)
−0.221449 + 0.975172i \(0.571079\pi\)
\(824\) 139629. 5.90318
\(825\) 0 0
\(826\) 10905.2 0.459371
\(827\) 10943.6 0.460154 0.230077 0.973172i \(-0.426102\pi\)
0.230077 + 0.973172i \(0.426102\pi\)
\(828\) 14253.3 0.598234
\(829\) −33775.8 −1.41506 −0.707528 0.706685i \(-0.750190\pi\)
−0.707528 + 0.706685i \(0.750190\pi\)
\(830\) 0 0
\(831\) −20914.6 −0.873069
\(832\) −138934. −5.78926
\(833\) 1641.24 0.0682660
\(834\) 22207.1 0.922027
\(835\) 0 0
\(836\) −21600.3 −0.893613
\(837\) −6.87567 −0.000283940 0
\(838\) 15159.9 0.624927
\(839\) 39087.3 1.60840 0.804198 0.594361i \(-0.202595\pi\)
0.804198 + 0.594361i \(0.202595\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 19775.4 0.809391
\(843\) 5750.81 0.234957
\(844\) 114681. 4.67711
\(845\) 0 0
\(846\) −25505.1 −1.03650
\(847\) −11995.5 −0.486623
\(848\) 66246.9 2.68270
\(849\) 6109.89 0.246986
\(850\) 0 0
\(851\) −2982.73 −0.120149
\(852\) 72527.9 2.91639
\(853\) −47274.9 −1.89761 −0.948806 0.315859i \(-0.897707\pi\)
−0.948806 + 0.315859i \(0.897707\pi\)
\(854\) −10520.9 −0.421565
\(855\) 0 0
\(856\) 125536. 5.01254
\(857\) −15482.0 −0.617099 −0.308550 0.951208i \(-0.599844\pi\)
−0.308550 + 0.951208i \(0.599844\pi\)
\(858\) −17324.0 −0.689313
\(859\) −32719.1 −1.29960 −0.649802 0.760103i \(-0.725148\pi\)
−0.649802 + 0.760103i \(0.725148\pi\)
\(860\) 0 0
\(861\) −6400.61 −0.253348
\(862\) −31662.2 −1.25107
\(863\) 1741.34 0.0686858 0.0343429 0.999410i \(-0.489066\pi\)
0.0343429 + 0.999410i \(0.489066\pi\)
\(864\) 17146.5 0.675158
\(865\) 0 0
\(866\) 42978.6 1.68646
\(867\) 14596.5 0.571769
\(868\) 55.9449 0.00218767
\(869\) −3229.08 −0.126052
\(870\) 0 0
\(871\) −48084.3 −1.87058
\(872\) 56912.0 2.21019
\(873\) 277.598 0.0107620
\(874\) 31931.5 1.23581
\(875\) 0 0
\(876\) 37422.3 1.44336
\(877\) −11848.6 −0.456213 −0.228106 0.973636i \(-0.573253\pi\)
−0.228106 + 0.973636i \(0.573253\pi\)
\(878\) −63476.4 −2.43989
\(879\) −5263.65 −0.201978
\(880\) 0 0
\(881\) −29332.3 −1.12171 −0.560857 0.827913i \(-0.689528\pi\)
−0.560857 + 0.827913i \(0.689528\pi\)
\(882\) 11632.0 0.444070
\(883\) 25723.3 0.980360 0.490180 0.871621i \(-0.336931\pi\)
0.490180 + 0.871621i \(0.336931\pi\)
\(884\) 12454.7 0.473865
\(885\) 0 0
\(886\) −15121.0 −0.573362
\(887\) −10959.8 −0.414875 −0.207437 0.978248i \(-0.566512\pi\)
−0.207437 + 0.978248i \(0.566512\pi\)
\(888\) −8851.20 −0.334490
\(889\) 13962.6 0.526762
\(890\) 0 0
\(891\) 1023.17 0.0384710
\(892\) −81162.1 −3.04653
\(893\) −41619.2 −1.55961
\(894\) 45462.0 1.70076
\(895\) 0 0
\(896\) −39638.8 −1.47795
\(897\) 18654.0 0.694359
\(898\) −59773.6 −2.22124
\(899\) 7.38497 0.000273974 0
\(900\) 0 0
\(901\) −2032.34 −0.0751467
\(902\) −14283.7 −0.527266
\(903\) −5972.77 −0.220112
\(904\) 55970.3 2.05923
\(905\) 0 0
\(906\) 4990.17 0.182988
\(907\) 3053.42 0.111783 0.0558915 0.998437i \(-0.482200\pi\)
0.0558915 + 0.998437i \(0.482200\pi\)
\(908\) 93292.4 3.40971
\(909\) 15748.0 0.574620
\(910\) 0 0
\(911\) −32880.5 −1.19581 −0.597903 0.801568i \(-0.703999\pi\)
−0.597903 + 0.801568i \(0.703999\pi\)
\(912\) 53716.2 1.95035
\(913\) 12418.1 0.450140
\(914\) 69323.8 2.50878
\(915\) 0 0
\(916\) −65835.7 −2.37475
\(917\) −13791.5 −0.496658
\(918\) −1009.88 −0.0363083
\(919\) −49962.9 −1.79339 −0.896694 0.442650i \(-0.854038\pi\)
−0.896694 + 0.442650i \(0.854038\pi\)
\(920\) 0 0
\(921\) 26728.2 0.956270
\(922\) 72416.8 2.58668
\(923\) 94920.7 3.38500
\(924\) −8325.22 −0.296406
\(925\) 0 0
\(926\) 93702.3 3.32532
\(927\) −17210.3 −0.609775
\(928\) −18416.6 −0.651460
\(929\) −48163.6 −1.70096 −0.850482 0.526004i \(-0.823690\pi\)
−0.850482 + 0.526004i \(0.823690\pi\)
\(930\) 0 0
\(931\) 18981.1 0.668185
\(932\) 5914.83 0.207883
\(933\) 22268.6 0.781396
\(934\) −86925.3 −3.04527
\(935\) 0 0
\(936\) 55355.5 1.93307
\(937\) −32244.1 −1.12419 −0.562097 0.827071i \(-0.690005\pi\)
−0.562097 + 0.827071i \(0.690005\pi\)
\(938\) −31723.9 −1.10429
\(939\) −4360.87 −0.151557
\(940\) 0 0
\(941\) 37391.5 1.29535 0.647677 0.761915i \(-0.275740\pi\)
0.647677 + 0.761915i \(0.275740\pi\)
\(942\) 29765.1 1.02951
\(943\) 15380.3 0.531125
\(944\) −44082.3 −1.51987
\(945\) 0 0
\(946\) −13328.9 −0.458097
\(947\) −17887.8 −0.613807 −0.306903 0.951741i \(-0.599293\pi\)
−0.306903 + 0.951741i \(0.599293\pi\)
\(948\) 16453.1 0.563682
\(949\) 48976.4 1.67528
\(950\) 0 0
\(951\) 15609.9 0.532266
\(952\) 5153.02 0.175431
\(953\) −20302.3 −0.690090 −0.345045 0.938586i \(-0.612136\pi\)
−0.345045 + 0.938586i \(0.612136\pi\)
\(954\) −14403.9 −0.488829
\(955\) 0 0
\(956\) 67213.0 2.27387
\(957\) −1098.97 −0.0371207
\(958\) 31732.7 1.07018
\(959\) 25686.1 0.864908
\(960\) 0 0
\(961\) −29790.9 −0.999998
\(962\) −18472.0 −0.619085
\(963\) −15473.2 −0.517776
\(964\) 122280. 4.08546
\(965\) 0 0
\(966\) 12307.1 0.409911
\(967\) 19313.4 0.642273 0.321137 0.947033i \(-0.395935\pi\)
0.321137 + 0.947033i \(0.395935\pi\)
\(968\) 85536.0 2.84012
\(969\) −1647.93 −0.0546326
\(970\) 0 0
\(971\) −25297.3 −0.836077 −0.418038 0.908429i \(-0.637282\pi\)
−0.418038 + 0.908429i \(0.637282\pi\)
\(972\) −5213.36 −0.172036
\(973\) 13966.8 0.460179
\(974\) −1859.68 −0.0611787
\(975\) 0 0
\(976\) 42528.6 1.39478
\(977\) −21461.4 −0.702776 −0.351388 0.936230i \(-0.614290\pi\)
−0.351388 + 0.936230i \(0.614290\pi\)
\(978\) −34209.8 −1.11852
\(979\) 8572.45 0.279854
\(980\) 0 0
\(981\) −7014.82 −0.228304
\(982\) 9082.24 0.295138
\(983\) −14059.8 −0.456193 −0.228096 0.973639i \(-0.573250\pi\)
−0.228096 + 0.973639i \(0.573250\pi\)
\(984\) 45640.7 1.47863
\(985\) 0 0
\(986\) 1084.69 0.0350340
\(987\) −16040.9 −0.517314
\(988\) 144040. 4.63818
\(989\) 14352.2 0.461450
\(990\) 0 0
\(991\) −60932.3 −1.95316 −0.976578 0.215162i \(-0.930972\pi\)
−0.976578 + 0.215162i \(0.930972\pi\)
\(992\) −161.720 −0.00517601
\(993\) 32955.0 1.05317
\(994\) 62624.5 1.99832
\(995\) 0 0
\(996\) −63273.5 −2.01295
\(997\) 4183.32 0.132886 0.0664428 0.997790i \(-0.478835\pi\)
0.0664428 + 0.997790i \(0.478835\pi\)
\(998\) −59254.7 −1.87943
\(999\) 1090.98 0.0345515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.k.1.1 6
5.4 even 2 435.4.a.h.1.6 6
15.14 odd 2 1305.4.a.h.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.6 6 5.4 even 2
1305.4.a.h.1.1 6 15.14 odd 2
2175.4.a.k.1.1 6 1.1 even 1 trivial