Properties

Label 2175.4.a.c.1.1
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} -4.00000 q^{4} +6.00000 q^{6} -29.0000 q^{7} -24.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} +3.00000 q^{3} -4.00000 q^{4} +6.00000 q^{6} -29.0000 q^{7} -24.0000 q^{8} +9.00000 q^{9} -15.0000 q^{11} -12.0000 q^{12} -3.00000 q^{13} -58.0000 q^{14} -16.0000 q^{16} -121.000 q^{17} +18.0000 q^{18} -40.0000 q^{19} -87.0000 q^{21} -30.0000 q^{22} +116.000 q^{23} -72.0000 q^{24} -6.00000 q^{26} +27.0000 q^{27} +116.000 q^{28} +29.0000 q^{29} -116.000 q^{31} +160.000 q^{32} -45.0000 q^{33} -242.000 q^{34} -36.0000 q^{36} -36.0000 q^{37} -80.0000 q^{38} -9.00000 q^{39} -170.000 q^{41} -174.000 q^{42} -230.000 q^{43} +60.0000 q^{44} +232.000 q^{46} -231.000 q^{47} -48.0000 q^{48} +498.000 q^{49} -363.000 q^{51} +12.0000 q^{52} -456.000 q^{53} +54.0000 q^{54} +696.000 q^{56} -120.000 q^{57} +58.0000 q^{58} +576.000 q^{59} +342.000 q^{61} -232.000 q^{62} -261.000 q^{63} +448.000 q^{64} -90.0000 q^{66} +269.000 q^{67} +484.000 q^{68} +348.000 q^{69} +302.000 q^{71} -216.000 q^{72} +372.000 q^{73} -72.0000 q^{74} +160.000 q^{76} +435.000 q^{77} -18.0000 q^{78} -348.000 q^{79} +81.0000 q^{81} -340.000 q^{82} +512.000 q^{83} +348.000 q^{84} -460.000 q^{86} +87.0000 q^{87} +360.000 q^{88} +1525.00 q^{89} +87.0000 q^{91} -464.000 q^{92} -348.000 q^{93} -462.000 q^{94} +480.000 q^{96} +560.000 q^{97} +996.000 q^{98} -135.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 3.00000 0.577350
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 6.00000 0.408248
\(7\) −29.0000 −1.56585 −0.782926 0.622114i \(-0.786274\pi\)
−0.782926 + 0.622114i \(0.786274\pi\)
\(8\) −24.0000 −1.06066
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −15.0000 −0.411152 −0.205576 0.978641i \(-0.565907\pi\)
−0.205576 + 0.978641i \(0.565907\pi\)
\(12\) −12.0000 −0.288675
\(13\) −3.00000 −0.0640039 −0.0320019 0.999488i \(-0.510188\pi\)
−0.0320019 + 0.999488i \(0.510188\pi\)
\(14\) −58.0000 −1.10723
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) −121.000 −1.72628 −0.863141 0.504962i \(-0.831506\pi\)
−0.863141 + 0.504962i \(0.831506\pi\)
\(18\) 18.0000 0.235702
\(19\) −40.0000 −0.482980 −0.241490 0.970403i \(-0.577636\pi\)
−0.241490 + 0.970403i \(0.577636\pi\)
\(20\) 0 0
\(21\) −87.0000 −0.904046
\(22\) −30.0000 −0.290728
\(23\) 116.000 1.05164 0.525819 0.850597i \(-0.323759\pi\)
0.525819 + 0.850597i \(0.323759\pi\)
\(24\) −72.0000 −0.612372
\(25\) 0 0
\(26\) −6.00000 −0.0452576
\(27\) 27.0000 0.192450
\(28\) 116.000 0.782926
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −116.000 −0.672071 −0.336036 0.941849i \(-0.609086\pi\)
−0.336036 + 0.941849i \(0.609086\pi\)
\(32\) 160.000 0.883883
\(33\) −45.0000 −0.237379
\(34\) −242.000 −1.22067
\(35\) 0 0
\(36\) −36.0000 −0.166667
\(37\) −36.0000 −0.159956 −0.0799779 0.996797i \(-0.525485\pi\)
−0.0799779 + 0.996797i \(0.525485\pi\)
\(38\) −80.0000 −0.341519
\(39\) −9.00000 −0.0369527
\(40\) 0 0
\(41\) −170.000 −0.647550 −0.323775 0.946134i \(-0.604952\pi\)
−0.323775 + 0.946134i \(0.604952\pi\)
\(42\) −174.000 −0.639257
\(43\) −230.000 −0.815690 −0.407845 0.913051i \(-0.633720\pi\)
−0.407845 + 0.913051i \(0.633720\pi\)
\(44\) 60.0000 0.205576
\(45\) 0 0
\(46\) 232.000 0.743620
\(47\) −231.000 −0.716911 −0.358455 0.933547i \(-0.616697\pi\)
−0.358455 + 0.933547i \(0.616697\pi\)
\(48\) −48.0000 −0.144338
\(49\) 498.000 1.45190
\(50\) 0 0
\(51\) −363.000 −0.996670
\(52\) 12.0000 0.0320019
\(53\) −456.000 −1.18182 −0.590910 0.806738i \(-0.701231\pi\)
−0.590910 + 0.806738i \(0.701231\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) 696.000 1.66084
\(57\) −120.000 −0.278849
\(58\) 58.0000 0.131306
\(59\) 576.000 1.27100 0.635498 0.772102i \(-0.280795\pi\)
0.635498 + 0.772102i \(0.280795\pi\)
\(60\) 0 0
\(61\) 342.000 0.717846 0.358923 0.933367i \(-0.383144\pi\)
0.358923 + 0.933367i \(0.383144\pi\)
\(62\) −232.000 −0.475226
\(63\) −261.000 −0.521951
\(64\) 448.000 0.875000
\(65\) 0 0
\(66\) −90.0000 −0.167852
\(67\) 269.000 0.490501 0.245251 0.969460i \(-0.421130\pi\)
0.245251 + 0.969460i \(0.421130\pi\)
\(68\) 484.000 0.863141
\(69\) 348.000 0.607163
\(70\) 0 0
\(71\) 302.000 0.504800 0.252400 0.967623i \(-0.418780\pi\)
0.252400 + 0.967623i \(0.418780\pi\)
\(72\) −216.000 −0.353553
\(73\) 372.000 0.596429 0.298214 0.954499i \(-0.403609\pi\)
0.298214 + 0.954499i \(0.403609\pi\)
\(74\) −72.0000 −0.113106
\(75\) 0 0
\(76\) 160.000 0.241490
\(77\) 435.000 0.643803
\(78\) −18.0000 −0.0261295
\(79\) −348.000 −0.495608 −0.247804 0.968810i \(-0.579709\pi\)
−0.247804 + 0.968810i \(0.579709\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −340.000 −0.457887
\(83\) 512.000 0.677100 0.338550 0.940948i \(-0.390064\pi\)
0.338550 + 0.940948i \(0.390064\pi\)
\(84\) 348.000 0.452023
\(85\) 0 0
\(86\) −460.000 −0.576780
\(87\) 87.0000 0.107211
\(88\) 360.000 0.436092
\(89\) 1525.00 1.81629 0.908144 0.418657i \(-0.137499\pi\)
0.908144 + 0.418657i \(0.137499\pi\)
\(90\) 0 0
\(91\) 87.0000 0.100221
\(92\) −464.000 −0.525819
\(93\) −348.000 −0.388021
\(94\) −462.000 −0.506933
\(95\) 0 0
\(96\) 480.000 0.510310
\(97\) 560.000 0.586179 0.293090 0.956085i \(-0.405317\pi\)
0.293090 + 0.956085i \(0.405317\pi\)
\(98\) 996.000 1.02664
\(99\) −135.000 −0.137051
\(100\) 0 0
\(101\) 1447.00 1.42556 0.712782 0.701386i \(-0.247435\pi\)
0.712782 + 0.701386i \(0.247435\pi\)
\(102\) −726.000 −0.704752
\(103\) −556.000 −0.531886 −0.265943 0.963989i \(-0.585683\pi\)
−0.265943 + 0.963989i \(0.585683\pi\)
\(104\) 72.0000 0.0678864
\(105\) 0 0
\(106\) −912.000 −0.835672
\(107\) −1558.00 −1.40764 −0.703820 0.710378i \(-0.748524\pi\)
−0.703820 + 0.710378i \(0.748524\pi\)
\(108\) −108.000 −0.0962250
\(109\) −881.000 −0.774170 −0.387085 0.922044i \(-0.626518\pi\)
−0.387085 + 0.922044i \(0.626518\pi\)
\(110\) 0 0
\(111\) −108.000 −0.0923505
\(112\) 464.000 0.391463
\(113\) −313.000 −0.260571 −0.130286 0.991476i \(-0.541589\pi\)
−0.130286 + 0.991476i \(0.541589\pi\)
\(114\) −240.000 −0.197176
\(115\) 0 0
\(116\) −116.000 −0.0928477
\(117\) −27.0000 −0.0213346
\(118\) 1152.00 0.898730
\(119\) 3509.00 2.70311
\(120\) 0 0
\(121\) −1106.00 −0.830954
\(122\) 684.000 0.507594
\(123\) −510.000 −0.373863
\(124\) 464.000 0.336036
\(125\) 0 0
\(126\) −522.000 −0.369075
\(127\) 494.000 0.345161 0.172580 0.984995i \(-0.444790\pi\)
0.172580 + 0.984995i \(0.444790\pi\)
\(128\) −384.000 −0.265165
\(129\) −690.000 −0.470939
\(130\) 0 0
\(131\) −2007.00 −1.33857 −0.669284 0.743007i \(-0.733399\pi\)
−0.669284 + 0.743007i \(0.733399\pi\)
\(132\) 180.000 0.118689
\(133\) 1160.00 0.756276
\(134\) 538.000 0.346837
\(135\) 0 0
\(136\) 2904.00 1.83100
\(137\) −918.000 −0.572482 −0.286241 0.958158i \(-0.592406\pi\)
−0.286241 + 0.958158i \(0.592406\pi\)
\(138\) 696.000 0.429329
\(139\) 1619.00 0.987927 0.493963 0.869483i \(-0.335548\pi\)
0.493963 + 0.869483i \(0.335548\pi\)
\(140\) 0 0
\(141\) −693.000 −0.413909
\(142\) 604.000 0.356948
\(143\) 45.0000 0.0263153
\(144\) −144.000 −0.0833333
\(145\) 0 0
\(146\) 744.000 0.421739
\(147\) 1494.00 0.838252
\(148\) 144.000 0.0799779
\(149\) 3046.00 1.67475 0.837376 0.546627i \(-0.184089\pi\)
0.837376 + 0.546627i \(0.184089\pi\)
\(150\) 0 0
\(151\) 1576.00 0.849358 0.424679 0.905344i \(-0.360387\pi\)
0.424679 + 0.905344i \(0.360387\pi\)
\(152\) 960.000 0.512278
\(153\) −1089.00 −0.575428
\(154\) 870.000 0.455238
\(155\) 0 0
\(156\) 36.0000 0.0184763
\(157\) 3544.00 1.80154 0.900771 0.434295i \(-0.143002\pi\)
0.900771 + 0.434295i \(0.143002\pi\)
\(158\) −696.000 −0.350448
\(159\) −1368.00 −0.682324
\(160\) 0 0
\(161\) −3364.00 −1.64671
\(162\) 162.000 0.0785674
\(163\) 768.000 0.369045 0.184523 0.982828i \(-0.440926\pi\)
0.184523 + 0.982828i \(0.440926\pi\)
\(164\) 680.000 0.323775
\(165\) 0 0
\(166\) 1024.00 0.478782
\(167\) 1624.00 0.752508 0.376254 0.926516i \(-0.377212\pi\)
0.376254 + 0.926516i \(0.377212\pi\)
\(168\) 2088.00 0.958885
\(169\) −2188.00 −0.995904
\(170\) 0 0
\(171\) −360.000 −0.160993
\(172\) 920.000 0.407845
\(173\) −1700.00 −0.747102 −0.373551 0.927610i \(-0.621860\pi\)
−0.373551 + 0.927610i \(0.621860\pi\)
\(174\) 174.000 0.0758098
\(175\) 0 0
\(176\) 240.000 0.102788
\(177\) 1728.00 0.733810
\(178\) 3050.00 1.28431
\(179\) 3870.00 1.61596 0.807982 0.589208i \(-0.200560\pi\)
0.807982 + 0.589208i \(0.200560\pi\)
\(180\) 0 0
\(181\) 1757.00 0.721529 0.360765 0.932657i \(-0.382516\pi\)
0.360765 + 0.932657i \(0.382516\pi\)
\(182\) 174.000 0.0708667
\(183\) 1026.00 0.414449
\(184\) −2784.00 −1.11543
\(185\) 0 0
\(186\) −696.000 −0.274372
\(187\) 1815.00 0.709764
\(188\) 924.000 0.358455
\(189\) −783.000 −0.301349
\(190\) 0 0
\(191\) −2048.00 −0.775854 −0.387927 0.921690i \(-0.626809\pi\)
−0.387927 + 0.921690i \(0.626809\pi\)
\(192\) 1344.00 0.505181
\(193\) 2398.00 0.894362 0.447181 0.894444i \(-0.352428\pi\)
0.447181 + 0.894444i \(0.352428\pi\)
\(194\) 1120.00 0.414491
\(195\) 0 0
\(196\) −1992.00 −0.725948
\(197\) −3966.00 −1.43434 −0.717172 0.696896i \(-0.754564\pi\)
−0.717172 + 0.696896i \(0.754564\pi\)
\(198\) −270.000 −0.0969094
\(199\) 641.000 0.228338 0.114169 0.993461i \(-0.463579\pi\)
0.114169 + 0.993461i \(0.463579\pi\)
\(200\) 0 0
\(201\) 807.000 0.283191
\(202\) 2894.00 1.00803
\(203\) −841.000 −0.290772
\(204\) 1452.00 0.498335
\(205\) 0 0
\(206\) −1112.00 −0.376101
\(207\) 1044.00 0.350546
\(208\) 48.0000 0.0160010
\(209\) 600.000 0.198578
\(210\) 0 0
\(211\) 5438.00 1.77425 0.887126 0.461526i \(-0.152698\pi\)
0.887126 + 0.461526i \(0.152698\pi\)
\(212\) 1824.00 0.590910
\(213\) 906.000 0.291446
\(214\) −3116.00 −0.995352
\(215\) 0 0
\(216\) −648.000 −0.204124
\(217\) 3364.00 1.05236
\(218\) −1762.00 −0.547421
\(219\) 1116.00 0.344348
\(220\) 0 0
\(221\) 363.000 0.110489
\(222\) −216.000 −0.0653017
\(223\) −2799.00 −0.840515 −0.420258 0.907405i \(-0.638060\pi\)
−0.420258 + 0.907405i \(0.638060\pi\)
\(224\) −4640.00 −1.38403
\(225\) 0 0
\(226\) −626.000 −0.184252
\(227\) −1492.00 −0.436245 −0.218122 0.975921i \(-0.569993\pi\)
−0.218122 + 0.975921i \(0.569993\pi\)
\(228\) 480.000 0.139424
\(229\) 4622.00 1.33376 0.666879 0.745166i \(-0.267630\pi\)
0.666879 + 0.745166i \(0.267630\pi\)
\(230\) 0 0
\(231\) 1305.00 0.371700
\(232\) −696.000 −0.196960
\(233\) −4170.00 −1.17247 −0.586236 0.810141i \(-0.699391\pi\)
−0.586236 + 0.810141i \(0.699391\pi\)
\(234\) −54.0000 −0.0150859
\(235\) 0 0
\(236\) −2304.00 −0.635498
\(237\) −1044.00 −0.286140
\(238\) 7018.00 1.91138
\(239\) 1686.00 0.456311 0.228155 0.973625i \(-0.426731\pi\)
0.228155 + 0.973625i \(0.426731\pi\)
\(240\) 0 0
\(241\) −3925.00 −1.04909 −0.524547 0.851382i \(-0.675765\pi\)
−0.524547 + 0.851382i \(0.675765\pi\)
\(242\) −2212.00 −0.587573
\(243\) 243.000 0.0641500
\(244\) −1368.00 −0.358923
\(245\) 0 0
\(246\) −1020.00 −0.264361
\(247\) 120.000 0.0309126
\(248\) 2784.00 0.712839
\(249\) 1536.00 0.390924
\(250\) 0 0
\(251\) −5775.00 −1.45225 −0.726125 0.687563i \(-0.758681\pi\)
−0.726125 + 0.687563i \(0.758681\pi\)
\(252\) 1044.00 0.260975
\(253\) −1740.00 −0.432383
\(254\) 988.000 0.244065
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 3146.00 0.763588 0.381794 0.924247i \(-0.375306\pi\)
0.381794 + 0.924247i \(0.375306\pi\)
\(258\) −1380.00 −0.333004
\(259\) 1044.00 0.250467
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −4014.00 −0.946510
\(263\) 5768.00 1.35236 0.676179 0.736737i \(-0.263635\pi\)
0.676179 + 0.736737i \(0.263635\pi\)
\(264\) 1080.00 0.251778
\(265\) 0 0
\(266\) 2320.00 0.534768
\(267\) 4575.00 1.04863
\(268\) −1076.00 −0.245251
\(269\) −7341.00 −1.66390 −0.831949 0.554852i \(-0.812775\pi\)
−0.831949 + 0.554852i \(0.812775\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.00313815 −0.00156908 0.999999i \(-0.500499\pi\)
−0.00156908 + 0.999999i \(0.500499\pi\)
\(272\) 1936.00 0.431571
\(273\) 261.000 0.0578624
\(274\) −1836.00 −0.404806
\(275\) 0 0
\(276\) −1392.00 −0.303582
\(277\) −3721.00 −0.807124 −0.403562 0.914952i \(-0.632228\pi\)
−0.403562 + 0.914952i \(0.632228\pi\)
\(278\) 3238.00 0.698570
\(279\) −1044.00 −0.224024
\(280\) 0 0
\(281\) 924.000 0.196161 0.0980805 0.995178i \(-0.468730\pi\)
0.0980805 + 0.995178i \(0.468730\pi\)
\(282\) −1386.00 −0.292678
\(283\) −1940.00 −0.407495 −0.203747 0.979023i \(-0.565312\pi\)
−0.203747 + 0.979023i \(0.565312\pi\)
\(284\) −1208.00 −0.252400
\(285\) 0 0
\(286\) 90.0000 0.0186077
\(287\) 4930.00 1.01397
\(288\) 1440.00 0.294628
\(289\) 9728.00 1.98005
\(290\) 0 0
\(291\) 1680.00 0.338431
\(292\) −1488.00 −0.298214
\(293\) −5267.00 −1.05018 −0.525088 0.851048i \(-0.675968\pi\)
−0.525088 + 0.851048i \(0.675968\pi\)
\(294\) 2988.00 0.592734
\(295\) 0 0
\(296\) 864.000 0.169659
\(297\) −405.000 −0.0791262
\(298\) 6092.00 1.18423
\(299\) −348.000 −0.0673089
\(300\) 0 0
\(301\) 6670.00 1.27725
\(302\) 3152.00 0.600587
\(303\) 4341.00 0.823049
\(304\) 640.000 0.120745
\(305\) 0 0
\(306\) −2178.00 −0.406889
\(307\) −6856.00 −1.27457 −0.637284 0.770629i \(-0.719942\pi\)
−0.637284 + 0.770629i \(0.719942\pi\)
\(308\) −1740.00 −0.321902
\(309\) −1668.00 −0.307085
\(310\) 0 0
\(311\) −2447.00 −0.446163 −0.223081 0.974800i \(-0.571612\pi\)
−0.223081 + 0.974800i \(0.571612\pi\)
\(312\) 216.000 0.0391942
\(313\) −511.000 −0.0922793 −0.0461397 0.998935i \(-0.514692\pi\)
−0.0461397 + 0.998935i \(0.514692\pi\)
\(314\) 7088.00 1.27388
\(315\) 0 0
\(316\) 1392.00 0.247804
\(317\) −7167.00 −1.26984 −0.634919 0.772578i \(-0.718967\pi\)
−0.634919 + 0.772578i \(0.718967\pi\)
\(318\) −2736.00 −0.482476
\(319\) −435.000 −0.0763490
\(320\) 0 0
\(321\) −4674.00 −0.812702
\(322\) −6728.00 −1.16440
\(323\) 4840.00 0.833761
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) 1536.00 0.260955
\(327\) −2643.00 −0.446967
\(328\) 4080.00 0.686830
\(329\) 6699.00 1.12258
\(330\) 0 0
\(331\) −8962.00 −1.48821 −0.744103 0.668065i \(-0.767123\pi\)
−0.744103 + 0.668065i \(0.767123\pi\)
\(332\) −2048.00 −0.338550
\(333\) −324.000 −0.0533186
\(334\) 3248.00 0.532104
\(335\) 0 0
\(336\) 1392.00 0.226011
\(337\) −2706.00 −0.437404 −0.218702 0.975792i \(-0.570182\pi\)
−0.218702 + 0.975792i \(0.570182\pi\)
\(338\) −4376.00 −0.704210
\(339\) −939.000 −0.150441
\(340\) 0 0
\(341\) 1740.00 0.276323
\(342\) −720.000 −0.113840
\(343\) −4495.00 −0.707601
\(344\) 5520.00 0.865170
\(345\) 0 0
\(346\) −3400.00 −0.528281
\(347\) −2232.00 −0.345303 −0.172651 0.984983i \(-0.555233\pi\)
−0.172651 + 0.984983i \(0.555233\pi\)
\(348\) −348.000 −0.0536056
\(349\) 9742.00 1.49420 0.747102 0.664709i \(-0.231445\pi\)
0.747102 + 0.664709i \(0.231445\pi\)
\(350\) 0 0
\(351\) −81.0000 −0.0123176
\(352\) −2400.00 −0.363410
\(353\) 2694.00 0.406196 0.203098 0.979158i \(-0.434899\pi\)
0.203098 + 0.979158i \(0.434899\pi\)
\(354\) 3456.00 0.518882
\(355\) 0 0
\(356\) −6100.00 −0.908144
\(357\) 10527.0 1.56064
\(358\) 7740.00 1.14266
\(359\) −960.000 −0.141133 −0.0705667 0.997507i \(-0.522481\pi\)
−0.0705667 + 0.997507i \(0.522481\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 3514.00 0.510198
\(363\) −3318.00 −0.479752
\(364\) −348.000 −0.0501103
\(365\) 0 0
\(366\) 2052.00 0.293059
\(367\) 4632.00 0.658824 0.329412 0.944186i \(-0.393149\pi\)
0.329412 + 0.944186i \(0.393149\pi\)
\(368\) −1856.00 −0.262909
\(369\) −1530.00 −0.215850
\(370\) 0 0
\(371\) 13224.0 1.85055
\(372\) 1392.00 0.194010
\(373\) 6682.00 0.927563 0.463781 0.885950i \(-0.346492\pi\)
0.463781 + 0.885950i \(0.346492\pi\)
\(374\) 3630.00 0.501879
\(375\) 0 0
\(376\) 5544.00 0.760399
\(377\) −87.0000 −0.0118852
\(378\) −1566.00 −0.213086
\(379\) 11270.0 1.52744 0.763722 0.645546i \(-0.223370\pi\)
0.763722 + 0.645546i \(0.223370\pi\)
\(380\) 0 0
\(381\) 1482.00 0.199279
\(382\) −4096.00 −0.548611
\(383\) −1016.00 −0.135549 −0.0677744 0.997701i \(-0.521590\pi\)
−0.0677744 + 0.997701i \(0.521590\pi\)
\(384\) −1152.00 −0.153093
\(385\) 0 0
\(386\) 4796.00 0.632409
\(387\) −2070.00 −0.271897
\(388\) −2240.00 −0.293090
\(389\) −3727.00 −0.485775 −0.242887 0.970054i \(-0.578095\pi\)
−0.242887 + 0.970054i \(0.578095\pi\)
\(390\) 0 0
\(391\) −14036.0 −1.81542
\(392\) −11952.0 −1.53997
\(393\) −6021.00 −0.772823
\(394\) −7932.00 −1.01423
\(395\) 0 0
\(396\) 540.000 0.0685253
\(397\) −1990.00 −0.251575 −0.125787 0.992057i \(-0.540146\pi\)
−0.125787 + 0.992057i \(0.540146\pi\)
\(398\) 1282.00 0.161459
\(399\) 3480.00 0.436636
\(400\) 0 0
\(401\) 6696.00 0.833871 0.416936 0.908936i \(-0.363104\pi\)
0.416936 + 0.908936i \(0.363104\pi\)
\(402\) 1614.00 0.200246
\(403\) 348.000 0.0430152
\(404\) −5788.00 −0.712782
\(405\) 0 0
\(406\) −1682.00 −0.205607
\(407\) 540.000 0.0657661
\(408\) 8712.00 1.05713
\(409\) 252.000 0.0304660 0.0152330 0.999884i \(-0.495151\pi\)
0.0152330 + 0.999884i \(0.495151\pi\)
\(410\) 0 0
\(411\) −2754.00 −0.330523
\(412\) 2224.00 0.265943
\(413\) −16704.0 −1.99019
\(414\) 2088.00 0.247873
\(415\) 0 0
\(416\) −480.000 −0.0565720
\(417\) 4857.00 0.570380
\(418\) 1200.00 0.140416
\(419\) 7418.00 0.864900 0.432450 0.901658i \(-0.357649\pi\)
0.432450 + 0.901658i \(0.357649\pi\)
\(420\) 0 0
\(421\) 11268.0 1.30444 0.652219 0.758030i \(-0.273838\pi\)
0.652219 + 0.758030i \(0.273838\pi\)
\(422\) 10876.0 1.25459
\(423\) −2079.00 −0.238970
\(424\) 10944.0 1.25351
\(425\) 0 0
\(426\) 1812.00 0.206084
\(427\) −9918.00 −1.12404
\(428\) 6232.00 0.703820
\(429\) 135.000 0.0151932
\(430\) 0 0
\(431\) −11600.0 −1.29641 −0.648205 0.761466i \(-0.724480\pi\)
−0.648205 + 0.761466i \(0.724480\pi\)
\(432\) −432.000 −0.0481125
\(433\) −1072.00 −0.118977 −0.0594885 0.998229i \(-0.518947\pi\)
−0.0594885 + 0.998229i \(0.518947\pi\)
\(434\) 6728.00 0.744134
\(435\) 0 0
\(436\) 3524.00 0.387085
\(437\) −4640.00 −0.507921
\(438\) 2232.00 0.243491
\(439\) −12339.0 −1.34148 −0.670738 0.741694i \(-0.734023\pi\)
−0.670738 + 0.741694i \(0.734023\pi\)
\(440\) 0 0
\(441\) 4482.00 0.483965
\(442\) 726.000 0.0781274
\(443\) 15263.0 1.63695 0.818473 0.574545i \(-0.194821\pi\)
0.818473 + 0.574545i \(0.194821\pi\)
\(444\) 432.000 0.0461753
\(445\) 0 0
\(446\) −5598.00 −0.594334
\(447\) 9138.00 0.966918
\(448\) −12992.0 −1.37012
\(449\) 11019.0 1.15817 0.579085 0.815267i \(-0.303410\pi\)
0.579085 + 0.815267i \(0.303410\pi\)
\(450\) 0 0
\(451\) 2550.00 0.266241
\(452\) 1252.00 0.130286
\(453\) 4728.00 0.490377
\(454\) −2984.00 −0.308471
\(455\) 0 0
\(456\) 2880.00 0.295764
\(457\) 6769.00 0.692868 0.346434 0.938074i \(-0.387393\pi\)
0.346434 + 0.938074i \(0.387393\pi\)
\(458\) 9244.00 0.943109
\(459\) −3267.00 −0.332223
\(460\) 0 0
\(461\) −5514.00 −0.557077 −0.278539 0.960425i \(-0.589850\pi\)
−0.278539 + 0.960425i \(0.589850\pi\)
\(462\) 2610.00 0.262832
\(463\) 14205.0 1.42584 0.712918 0.701247i \(-0.247373\pi\)
0.712918 + 0.701247i \(0.247373\pi\)
\(464\) −464.000 −0.0464238
\(465\) 0 0
\(466\) −8340.00 −0.829062
\(467\) 9660.00 0.957198 0.478599 0.878034i \(-0.341145\pi\)
0.478599 + 0.878034i \(0.341145\pi\)
\(468\) 108.000 0.0106673
\(469\) −7801.00 −0.768053
\(470\) 0 0
\(471\) 10632.0 1.04012
\(472\) −13824.0 −1.34810
\(473\) 3450.00 0.335372
\(474\) −2088.00 −0.202331
\(475\) 0 0
\(476\) −14036.0 −1.35155
\(477\) −4104.00 −0.393940
\(478\) 3372.00 0.322660
\(479\) −7656.00 −0.730296 −0.365148 0.930950i \(-0.618982\pi\)
−0.365148 + 0.930950i \(0.618982\pi\)
\(480\) 0 0
\(481\) 108.000 0.0102378
\(482\) −7850.00 −0.741821
\(483\) −10092.0 −0.950729
\(484\) 4424.00 0.415477
\(485\) 0 0
\(486\) 486.000 0.0453609
\(487\) 15968.0 1.48579 0.742894 0.669409i \(-0.233452\pi\)
0.742894 + 0.669409i \(0.233452\pi\)
\(488\) −8208.00 −0.761391
\(489\) 2304.00 0.213068
\(490\) 0 0
\(491\) 4236.00 0.389344 0.194672 0.980868i \(-0.437636\pi\)
0.194672 + 0.980868i \(0.437636\pi\)
\(492\) 2040.00 0.186932
\(493\) −3509.00 −0.320563
\(494\) 240.000 0.0218585
\(495\) 0 0
\(496\) 1856.00 0.168018
\(497\) −8758.00 −0.790443
\(498\) 3072.00 0.276425
\(499\) −16941.0 −1.51981 −0.759903 0.650036i \(-0.774754\pi\)
−0.759903 + 0.650036i \(0.774754\pi\)
\(500\) 0 0
\(501\) 4872.00 0.434461
\(502\) −11550.0 −1.02690
\(503\) 1857.00 0.164611 0.0823057 0.996607i \(-0.473772\pi\)
0.0823057 + 0.996607i \(0.473772\pi\)
\(504\) 6264.00 0.553613
\(505\) 0 0
\(506\) −3480.00 −0.305741
\(507\) −6564.00 −0.574985
\(508\) −1976.00 −0.172580
\(509\) −3096.00 −0.269603 −0.134801 0.990873i \(-0.543040\pi\)
−0.134801 + 0.990873i \(0.543040\pi\)
\(510\) 0 0
\(511\) −10788.0 −0.933920
\(512\) −5632.00 −0.486136
\(513\) −1080.00 −0.0929496
\(514\) 6292.00 0.539938
\(515\) 0 0
\(516\) 2760.00 0.235469
\(517\) 3465.00 0.294759
\(518\) 2088.00 0.177107
\(519\) −5100.00 −0.431339
\(520\) 0 0
\(521\) 7530.00 0.633196 0.316598 0.948560i \(-0.397459\pi\)
0.316598 + 0.948560i \(0.397459\pi\)
\(522\) 522.000 0.0437688
\(523\) 5767.00 0.482167 0.241083 0.970504i \(-0.422497\pi\)
0.241083 + 0.970504i \(0.422497\pi\)
\(524\) 8028.00 0.669284
\(525\) 0 0
\(526\) 11536.0 0.956261
\(527\) 14036.0 1.16019
\(528\) 720.000 0.0593447
\(529\) 1289.00 0.105942
\(530\) 0 0
\(531\) 5184.00 0.423666
\(532\) −4640.00 −0.378138
\(533\) 510.000 0.0414457
\(534\) 9150.00 0.741497
\(535\) 0 0
\(536\) −6456.00 −0.520255
\(537\) 11610.0 0.932977
\(538\) −14682.0 −1.17655
\(539\) −7470.00 −0.596949
\(540\) 0 0
\(541\) −21122.0 −1.67857 −0.839284 0.543693i \(-0.817026\pi\)
−0.839284 + 0.543693i \(0.817026\pi\)
\(542\) −28.0000 −0.00221901
\(543\) 5271.00 0.416575
\(544\) −19360.0 −1.52583
\(545\) 0 0
\(546\) 522.000 0.0409149
\(547\) −17857.0 −1.39581 −0.697907 0.716188i \(-0.745885\pi\)
−0.697907 + 0.716188i \(0.745885\pi\)
\(548\) 3672.00 0.286241
\(549\) 3078.00 0.239282
\(550\) 0 0
\(551\) −1160.00 −0.0896872
\(552\) −8352.00 −0.643994
\(553\) 10092.0 0.776050
\(554\) −7442.00 −0.570723
\(555\) 0 0
\(556\) −6476.00 −0.493963
\(557\) −6040.00 −0.459467 −0.229733 0.973254i \(-0.573785\pi\)
−0.229733 + 0.973254i \(0.573785\pi\)
\(558\) −2088.00 −0.158409
\(559\) 690.000 0.0522073
\(560\) 0 0
\(561\) 5445.00 0.409783
\(562\) 1848.00 0.138707
\(563\) 15371.0 1.15064 0.575320 0.817928i \(-0.304877\pi\)
0.575320 + 0.817928i \(0.304877\pi\)
\(564\) 2772.00 0.206954
\(565\) 0 0
\(566\) −3880.00 −0.288142
\(567\) −2349.00 −0.173984
\(568\) −7248.00 −0.535421
\(569\) 17901.0 1.31889 0.659445 0.751752i \(-0.270791\pi\)
0.659445 + 0.751752i \(0.270791\pi\)
\(570\) 0 0
\(571\) −10056.0 −0.737006 −0.368503 0.929627i \(-0.620130\pi\)
−0.368503 + 0.929627i \(0.620130\pi\)
\(572\) −180.000 −0.0131577
\(573\) −6144.00 −0.447939
\(574\) 9860.00 0.716983
\(575\) 0 0
\(576\) 4032.00 0.291667
\(577\) −3068.00 −0.221356 −0.110678 0.993856i \(-0.535302\pi\)
−0.110678 + 0.993856i \(0.535302\pi\)
\(578\) 19456.0 1.40011
\(579\) 7194.00 0.516360
\(580\) 0 0
\(581\) −14848.0 −1.06024
\(582\) 3360.00 0.239307
\(583\) 6840.00 0.485907
\(584\) −8928.00 −0.632608
\(585\) 0 0
\(586\) −10534.0 −0.742586
\(587\) 2984.00 0.209817 0.104909 0.994482i \(-0.466545\pi\)
0.104909 + 0.994482i \(0.466545\pi\)
\(588\) −5976.00 −0.419126
\(589\) 4640.00 0.324597
\(590\) 0 0
\(591\) −11898.0 −0.828119
\(592\) 576.000 0.0399889
\(593\) −5952.00 −0.412174 −0.206087 0.978534i \(-0.566073\pi\)
−0.206087 + 0.978534i \(0.566073\pi\)
\(594\) −810.000 −0.0559507
\(595\) 0 0
\(596\) −12184.0 −0.837376
\(597\) 1923.00 0.131831
\(598\) −696.000 −0.0475946
\(599\) −12999.0 −0.886686 −0.443343 0.896352i \(-0.646208\pi\)
−0.443343 + 0.896352i \(0.646208\pi\)
\(600\) 0 0
\(601\) 23398.0 1.58806 0.794030 0.607878i \(-0.207979\pi\)
0.794030 + 0.607878i \(0.207979\pi\)
\(602\) 13340.0 0.903153
\(603\) 2421.00 0.163500
\(604\) −6304.00 −0.424679
\(605\) 0 0
\(606\) 8682.00 0.581984
\(607\) −26116.0 −1.74632 −0.873160 0.487434i \(-0.837933\pi\)
−0.873160 + 0.487434i \(0.837933\pi\)
\(608\) −6400.00 −0.426898
\(609\) −2523.00 −0.167877
\(610\) 0 0
\(611\) 693.000 0.0458851
\(612\) 4356.00 0.287714
\(613\) 24185.0 1.59351 0.796756 0.604301i \(-0.206548\pi\)
0.796756 + 0.604301i \(0.206548\pi\)
\(614\) −13712.0 −0.901256
\(615\) 0 0
\(616\) −10440.0 −0.682856
\(617\) −2214.00 −0.144461 −0.0722304 0.997388i \(-0.523012\pi\)
−0.0722304 + 0.997388i \(0.523012\pi\)
\(618\) −3336.00 −0.217142
\(619\) −19586.0 −1.27177 −0.635887 0.771782i \(-0.719365\pi\)
−0.635887 + 0.771782i \(0.719365\pi\)
\(620\) 0 0
\(621\) 3132.00 0.202388
\(622\) −4894.00 −0.315485
\(623\) −44225.0 −2.84404
\(624\) 144.000 0.00923816
\(625\) 0 0
\(626\) −1022.00 −0.0652513
\(627\) 1800.00 0.114649
\(628\) −14176.0 −0.900771
\(629\) 4356.00 0.276129
\(630\) 0 0
\(631\) 4377.00 0.276142 0.138071 0.990422i \(-0.455910\pi\)
0.138071 + 0.990422i \(0.455910\pi\)
\(632\) 8352.00 0.525672
\(633\) 16314.0 1.02437
\(634\) −14334.0 −0.897911
\(635\) 0 0
\(636\) 5472.00 0.341162
\(637\) −1494.00 −0.0929269
\(638\) −870.000 −0.0539869
\(639\) 2718.00 0.168267
\(640\) 0 0
\(641\) −24015.0 −1.47977 −0.739887 0.672731i \(-0.765121\pi\)
−0.739887 + 0.672731i \(0.765121\pi\)
\(642\) −9348.00 −0.574667
\(643\) 19465.0 1.19382 0.596909 0.802309i \(-0.296395\pi\)
0.596909 + 0.802309i \(0.296395\pi\)
\(644\) 13456.0 0.823355
\(645\) 0 0
\(646\) 9680.00 0.589558
\(647\) 19954.0 1.21248 0.606239 0.795283i \(-0.292678\pi\)
0.606239 + 0.795283i \(0.292678\pi\)
\(648\) −1944.00 −0.117851
\(649\) −8640.00 −0.522573
\(650\) 0 0
\(651\) 10092.0 0.607583
\(652\) −3072.00 −0.184523
\(653\) 22597.0 1.35419 0.677097 0.735894i \(-0.263238\pi\)
0.677097 + 0.735894i \(0.263238\pi\)
\(654\) −5286.00 −0.316053
\(655\) 0 0
\(656\) 2720.00 0.161887
\(657\) 3348.00 0.198810
\(658\) 13398.0 0.793782
\(659\) 7467.00 0.441385 0.220693 0.975343i \(-0.429168\pi\)
0.220693 + 0.975343i \(0.429168\pi\)
\(660\) 0 0
\(661\) 16601.0 0.976859 0.488430 0.872603i \(-0.337570\pi\)
0.488430 + 0.872603i \(0.337570\pi\)
\(662\) −17924.0 −1.05232
\(663\) 1089.00 0.0637907
\(664\) −12288.0 −0.718173
\(665\) 0 0
\(666\) −648.000 −0.0377019
\(667\) 3364.00 0.195284
\(668\) −6496.00 −0.376254
\(669\) −8397.00 −0.485272
\(670\) 0 0
\(671\) −5130.00 −0.295144
\(672\) −13920.0 −0.799071
\(673\) −23571.0 −1.35007 −0.675034 0.737787i \(-0.735871\pi\)
−0.675034 + 0.737787i \(0.735871\pi\)
\(674\) −5412.00 −0.309291
\(675\) 0 0
\(676\) 8752.00 0.497952
\(677\) 16963.0 0.962985 0.481493 0.876450i \(-0.340095\pi\)
0.481493 + 0.876450i \(0.340095\pi\)
\(678\) −1878.00 −0.106378
\(679\) −16240.0 −0.917870
\(680\) 0 0
\(681\) −4476.00 −0.251866
\(682\) 3480.00 0.195390
\(683\) −6144.00 −0.344207 −0.172104 0.985079i \(-0.555056\pi\)
−0.172104 + 0.985079i \(0.555056\pi\)
\(684\) 1440.00 0.0804967
\(685\) 0 0
\(686\) −8990.00 −0.500350
\(687\) 13866.0 0.770045
\(688\) 3680.00 0.203923
\(689\) 1368.00 0.0756410
\(690\) 0 0
\(691\) 18461.0 1.01634 0.508169 0.861257i \(-0.330323\pi\)
0.508169 + 0.861257i \(0.330323\pi\)
\(692\) 6800.00 0.373551
\(693\) 3915.00 0.214601
\(694\) −4464.00 −0.244166
\(695\) 0 0
\(696\) −2088.00 −0.113715
\(697\) 20570.0 1.11785
\(698\) 19484.0 1.05656
\(699\) −12510.0 −0.676927
\(700\) 0 0
\(701\) −7550.00 −0.406790 −0.203395 0.979097i \(-0.565198\pi\)
−0.203395 + 0.979097i \(0.565198\pi\)
\(702\) −162.000 −0.00870982
\(703\) 1440.00 0.0772555
\(704\) −6720.00 −0.359758
\(705\) 0 0
\(706\) 5388.00 0.287224
\(707\) −41963.0 −2.23222
\(708\) −6912.00 −0.366905
\(709\) 29126.0 1.54281 0.771403 0.636347i \(-0.219555\pi\)
0.771403 + 0.636347i \(0.219555\pi\)
\(710\) 0 0
\(711\) −3132.00 −0.165203
\(712\) −36600.0 −1.92646
\(713\) −13456.0 −0.706776
\(714\) 21054.0 1.10354
\(715\) 0 0
\(716\) −15480.0 −0.807982
\(717\) 5058.00 0.263451
\(718\) −1920.00 −0.0997963
\(719\) −31670.0 −1.64269 −0.821343 0.570434i \(-0.806775\pi\)
−0.821343 + 0.570434i \(0.806775\pi\)
\(720\) 0 0
\(721\) 16124.0 0.832856
\(722\) −10518.0 −0.542160
\(723\) −11775.0 −0.605694
\(724\) −7028.00 −0.360765
\(725\) 0 0
\(726\) −6636.00 −0.339236
\(727\) −21080.0 −1.07540 −0.537699 0.843137i \(-0.680706\pi\)
−0.537699 + 0.843137i \(0.680706\pi\)
\(728\) −2088.00 −0.106300
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 27830.0 1.40811
\(732\) −4104.00 −0.207224
\(733\) 31730.0 1.59887 0.799437 0.600750i \(-0.205131\pi\)
0.799437 + 0.600750i \(0.205131\pi\)
\(734\) 9264.00 0.465859
\(735\) 0 0
\(736\) 18560.0 0.929525
\(737\) −4035.00 −0.201670
\(738\) −3060.00 −0.152629
\(739\) −35010.0 −1.74271 −0.871356 0.490652i \(-0.836759\pi\)
−0.871356 + 0.490652i \(0.836759\pi\)
\(740\) 0 0
\(741\) 360.000 0.0178474
\(742\) 26448.0 1.30854
\(743\) 36625.0 1.80840 0.904200 0.427110i \(-0.140468\pi\)
0.904200 + 0.427110i \(0.140468\pi\)
\(744\) 8352.00 0.411558
\(745\) 0 0
\(746\) 13364.0 0.655886
\(747\) 4608.00 0.225700
\(748\) −7260.00 −0.354882
\(749\) 45182.0 2.20416
\(750\) 0 0
\(751\) 8420.00 0.409121 0.204561 0.978854i \(-0.434423\pi\)
0.204561 + 0.978854i \(0.434423\pi\)
\(752\) 3696.00 0.179228
\(753\) −17325.0 −0.838457
\(754\) −174.000 −0.00840412
\(755\) 0 0
\(756\) 3132.00 0.150674
\(757\) 14404.0 0.691575 0.345788 0.938313i \(-0.387612\pi\)
0.345788 + 0.938313i \(0.387612\pi\)
\(758\) 22540.0 1.08007
\(759\) −5220.00 −0.249636
\(760\) 0 0
\(761\) 7208.00 0.343351 0.171675 0.985154i \(-0.445082\pi\)
0.171675 + 0.985154i \(0.445082\pi\)
\(762\) 2964.00 0.140911
\(763\) 25549.0 1.21224
\(764\) 8192.00 0.387927
\(765\) 0 0
\(766\) −2032.00 −0.0958474
\(767\) −1728.00 −0.0813487
\(768\) −13056.0 −0.613435
\(769\) −31638.0 −1.48361 −0.741805 0.670616i \(-0.766030\pi\)
−0.741805 + 0.670616i \(0.766030\pi\)
\(770\) 0 0
\(771\) 9438.00 0.440858
\(772\) −9592.00 −0.447181
\(773\) 930.000 0.0432727 0.0216363 0.999766i \(-0.493112\pi\)
0.0216363 + 0.999766i \(0.493112\pi\)
\(774\) −4140.00 −0.192260
\(775\) 0 0
\(776\) −13440.0 −0.621737
\(777\) 3132.00 0.144607
\(778\) −7454.00 −0.343495
\(779\) 6800.00 0.312754
\(780\) 0 0
\(781\) −4530.00 −0.207549
\(782\) −28072.0 −1.28370
\(783\) 783.000 0.0357371
\(784\) −7968.00 −0.362974
\(785\) 0 0
\(786\) −12042.0 −0.546468
\(787\) −7188.00 −0.325571 −0.162786 0.986661i \(-0.552048\pi\)
−0.162786 + 0.986661i \(0.552048\pi\)
\(788\) 15864.0 0.717172
\(789\) 17304.0 0.780784
\(790\) 0 0
\(791\) 9077.00 0.408016
\(792\) 3240.00 0.145364
\(793\) −1026.00 −0.0459449
\(794\) −3980.00 −0.177890
\(795\) 0 0
\(796\) −2564.00 −0.114169
\(797\) 31986.0 1.42158 0.710792 0.703402i \(-0.248337\pi\)
0.710792 + 0.703402i \(0.248337\pi\)
\(798\) 6960.00 0.308749
\(799\) 27951.0 1.23759
\(800\) 0 0
\(801\) 13725.0 0.605430
\(802\) 13392.0 0.589636
\(803\) −5580.00 −0.245223
\(804\) −3228.00 −0.141596
\(805\) 0 0
\(806\) 696.000 0.0304163
\(807\) −22023.0 −0.960652
\(808\) −34728.0 −1.51204
\(809\) 8235.00 0.357883 0.178941 0.983860i \(-0.442733\pi\)
0.178941 + 0.983860i \(0.442733\pi\)
\(810\) 0 0
\(811\) −9031.00 −0.391025 −0.195513 0.980701i \(-0.562637\pi\)
−0.195513 + 0.980701i \(0.562637\pi\)
\(812\) 3364.00 0.145386
\(813\) −42.0000 −0.00181181
\(814\) 1080.00 0.0465037
\(815\) 0 0
\(816\) 5808.00 0.249167
\(817\) 9200.00 0.393962
\(818\) 504.000 0.0215427
\(819\) 783.000 0.0334069
\(820\) 0 0
\(821\) 41318.0 1.75640 0.878202 0.478289i \(-0.158743\pi\)
0.878202 + 0.478289i \(0.158743\pi\)
\(822\) −5508.00 −0.233715
\(823\) −31150.0 −1.31934 −0.659672 0.751553i \(-0.729305\pi\)
−0.659672 + 0.751553i \(0.729305\pi\)
\(824\) 13344.0 0.564151
\(825\) 0 0
\(826\) −33408.0 −1.40728
\(827\) −7584.00 −0.318889 −0.159445 0.987207i \(-0.550970\pi\)
−0.159445 + 0.987207i \(0.550970\pi\)
\(828\) −4176.00 −0.175273
\(829\) −28316.0 −1.18632 −0.593158 0.805086i \(-0.702119\pi\)
−0.593158 + 0.805086i \(0.702119\pi\)
\(830\) 0 0
\(831\) −11163.0 −0.465993
\(832\) −1344.00 −0.0560034
\(833\) −60258.0 −2.50638
\(834\) 9714.00 0.403319
\(835\) 0 0
\(836\) −2400.00 −0.0992892
\(837\) −3132.00 −0.129340
\(838\) 14836.0 0.611577
\(839\) −26615.0 −1.09518 −0.547588 0.836748i \(-0.684454\pi\)
−0.547588 + 0.836748i \(0.684454\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 22536.0 0.922377
\(843\) 2772.00 0.113254
\(844\) −21752.0 −0.887126
\(845\) 0 0
\(846\) −4158.00 −0.168978
\(847\) 32074.0 1.30115
\(848\) 7296.00 0.295455
\(849\) −5820.00 −0.235267
\(850\) 0 0
\(851\) −4176.00 −0.168216
\(852\) −3624.00 −0.145723
\(853\) −33538.0 −1.34621 −0.673106 0.739546i \(-0.735040\pi\)
−0.673106 + 0.739546i \(0.735040\pi\)
\(854\) −19836.0 −0.794817
\(855\) 0 0
\(856\) 37392.0 1.49303
\(857\) 26394.0 1.05204 0.526022 0.850471i \(-0.323683\pi\)
0.526022 + 0.850471i \(0.323683\pi\)
\(858\) 270.000 0.0107432
\(859\) −12076.0 −0.479660 −0.239830 0.970815i \(-0.577092\pi\)
−0.239830 + 0.970815i \(0.577092\pi\)
\(860\) 0 0
\(861\) 14790.0 0.585414
\(862\) −23200.0 −0.916700
\(863\) 2450.00 0.0966384 0.0483192 0.998832i \(-0.484614\pi\)
0.0483192 + 0.998832i \(0.484614\pi\)
\(864\) 4320.00 0.170103
\(865\) 0 0
\(866\) −2144.00 −0.0841294
\(867\) 29184.0 1.14318
\(868\) −13456.0 −0.526182
\(869\) 5220.00 0.203770
\(870\) 0 0
\(871\) −807.000 −0.0313940
\(872\) 21144.0 0.821131
\(873\) 5040.00 0.195393
\(874\) −9280.00 −0.359154
\(875\) 0 0
\(876\) −4464.00 −0.172174
\(877\) 15566.0 0.599346 0.299673 0.954042i \(-0.403122\pi\)
0.299673 + 0.954042i \(0.403122\pi\)
\(878\) −24678.0 −0.948567
\(879\) −15801.0 −0.606319
\(880\) 0 0
\(881\) 34497.0 1.31922 0.659610 0.751608i \(-0.270721\pi\)
0.659610 + 0.751608i \(0.270721\pi\)
\(882\) 8964.00 0.342215
\(883\) −17044.0 −0.649577 −0.324788 0.945787i \(-0.605293\pi\)
−0.324788 + 0.945787i \(0.605293\pi\)
\(884\) −1452.00 −0.0552444
\(885\) 0 0
\(886\) 30526.0 1.15750
\(887\) 16903.0 0.639850 0.319925 0.947443i \(-0.396342\pi\)
0.319925 + 0.947443i \(0.396342\pi\)
\(888\) 2592.00 0.0979525
\(889\) −14326.0 −0.540471
\(890\) 0 0
\(891\) −1215.00 −0.0456835
\(892\) 11196.0 0.420258
\(893\) 9240.00 0.346254
\(894\) 18276.0 0.683715
\(895\) 0 0
\(896\) 11136.0 0.415209
\(897\) −1044.00 −0.0388608
\(898\) 22038.0 0.818951
\(899\) −3364.00 −0.124801
\(900\) 0 0
\(901\) 55176.0 2.04015
\(902\) 5100.00 0.188261
\(903\) 20010.0 0.737421
\(904\) 7512.00 0.276378
\(905\) 0 0
\(906\) 9456.00 0.346749
\(907\) −40504.0 −1.48282 −0.741408 0.671055i \(-0.765841\pi\)
−0.741408 + 0.671055i \(0.765841\pi\)
\(908\) 5968.00 0.218122
\(909\) 13023.0 0.475188
\(910\) 0 0
\(911\) −14783.0 −0.537632 −0.268816 0.963192i \(-0.586632\pi\)
−0.268816 + 0.963192i \(0.586632\pi\)
\(912\) 1920.00 0.0697122
\(913\) −7680.00 −0.278391
\(914\) 13538.0 0.489931
\(915\) 0 0
\(916\) −18488.0 −0.666879
\(917\) 58203.0 2.09600
\(918\) −6534.00 −0.234917
\(919\) 42241.0 1.51622 0.758108 0.652129i \(-0.226124\pi\)
0.758108 + 0.652129i \(0.226124\pi\)
\(920\) 0 0
\(921\) −20568.0 −0.735873
\(922\) −11028.0 −0.393913
\(923\) −906.000 −0.0323092
\(924\) −5220.00 −0.185850
\(925\) 0 0
\(926\) 28410.0 1.00822
\(927\) −5004.00 −0.177295
\(928\) 4640.00 0.164133
\(929\) 28686.0 1.01309 0.506543 0.862215i \(-0.330923\pi\)
0.506543 + 0.862215i \(0.330923\pi\)
\(930\) 0 0
\(931\) −19920.0 −0.701237
\(932\) 16680.0 0.586236
\(933\) −7341.00 −0.257592
\(934\) 19320.0 0.676841
\(935\) 0 0
\(936\) 648.000 0.0226288
\(937\) 53063.0 1.85005 0.925023 0.379912i \(-0.124046\pi\)
0.925023 + 0.379912i \(0.124046\pi\)
\(938\) −15602.0 −0.543095
\(939\) −1533.00 −0.0532775
\(940\) 0 0
\(941\) −16542.0 −0.573065 −0.286532 0.958071i \(-0.592503\pi\)
−0.286532 + 0.958071i \(0.592503\pi\)
\(942\) 21264.0 0.735476
\(943\) −19720.0 −0.680988
\(944\) −9216.00 −0.317749
\(945\) 0 0
\(946\) 6900.00 0.237144
\(947\) −30839.0 −1.05822 −0.529109 0.848554i \(-0.677474\pi\)
−0.529109 + 0.848554i \(0.677474\pi\)
\(948\) 4176.00 0.143070
\(949\) −1116.00 −0.0381738
\(950\) 0 0
\(951\) −21501.0 −0.733142
\(952\) −84216.0 −2.86708
\(953\) −46314.0 −1.57425 −0.787124 0.616795i \(-0.788431\pi\)
−0.787124 + 0.616795i \(0.788431\pi\)
\(954\) −8208.00 −0.278557
\(955\) 0 0
\(956\) −6744.00 −0.228155
\(957\) −1305.00 −0.0440801
\(958\) −15312.0 −0.516397
\(959\) 26622.0 0.896423
\(960\) 0 0
\(961\) −16335.0 −0.548320
\(962\) 216.000 0.00723921
\(963\) −14022.0 −0.469214
\(964\) 15700.0 0.524547
\(965\) 0 0
\(966\) −20184.0 −0.672267
\(967\) 12904.0 0.429126 0.214563 0.976710i \(-0.431167\pi\)
0.214563 + 0.976710i \(0.431167\pi\)
\(968\) 26544.0 0.881360
\(969\) 14520.0 0.481372
\(970\) 0 0
\(971\) −900.000 −0.0297450 −0.0148725 0.999889i \(-0.504734\pi\)
−0.0148725 + 0.999889i \(0.504734\pi\)
\(972\) −972.000 −0.0320750
\(973\) −46951.0 −1.54695
\(974\) 31936.0 1.05061
\(975\) 0 0
\(976\) −5472.00 −0.179462
\(977\) 20376.0 0.667232 0.333616 0.942709i \(-0.391731\pi\)
0.333616 + 0.942709i \(0.391731\pi\)
\(978\) 4608.00 0.150662
\(979\) −22875.0 −0.746770
\(980\) 0 0
\(981\) −7929.00 −0.258057
\(982\) 8472.00 0.275308
\(983\) −13456.0 −0.436602 −0.218301 0.975881i \(-0.570051\pi\)
−0.218301 + 0.975881i \(0.570051\pi\)
\(984\) 12240.0 0.396542
\(985\) 0 0
\(986\) −7018.00 −0.226672
\(987\) 20097.0 0.648120
\(988\) −480.000 −0.0154563
\(989\) −26680.0 −0.857811
\(990\) 0 0
\(991\) −27245.0 −0.873326 −0.436663 0.899625i \(-0.643840\pi\)
−0.436663 + 0.899625i \(0.643840\pi\)
\(992\) −18560.0 −0.594033
\(993\) −26886.0 −0.859216
\(994\) −17516.0 −0.558927
\(995\) 0 0
\(996\) −6144.00 −0.195462
\(997\) 1552.00 0.0493002 0.0246501 0.999696i \(-0.492153\pi\)
0.0246501 + 0.999696i \(0.492153\pi\)
\(998\) −33882.0 −1.07467
\(999\) −972.000 −0.0307835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.c.1.1 1
5.4 even 2 435.4.a.a.1.1 1
15.14 odd 2 1305.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.a.1.1 1 5.4 even 2
1305.4.a.d.1.1 1 15.14 odd 2
2175.4.a.c.1.1 1 1.1 even 1 trivial