Defining parameters
| Level: | \( N \) | \(=\) | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2175.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 28 \) | ||
| Sturm bound: | \(1200\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2175))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 912 | 266 | 646 |
| Cusp forms | 888 | 266 | 622 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(123\) | \(35\) | \(88\) | \(120\) | \(35\) | \(85\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(105\) | \(26\) | \(79\) | \(102\) | \(26\) | \(76\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(108\) | \(33\) | \(75\) | \(105\) | \(33\) | \(72\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(120\) | \(39\) | \(81\) | \(117\) | \(39\) | \(78\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(114\) | \(28\) | \(86\) | \(111\) | \(28\) | \(83\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(114\) | \(37\) | \(77\) | \(111\) | \(37\) | \(74\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(117\) | \(37\) | \(80\) | \(114\) | \(37\) | \(77\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(111\) | \(31\) | \(80\) | \(108\) | \(31\) | \(77\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(474\) | \(148\) | \(326\) | \(462\) | \(148\) | \(314\) | \(12\) | \(0\) | \(12\) | |||||
| Minus space | \(-\) | \(438\) | \(118\) | \(320\) | \(426\) | \(118\) | \(308\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2175))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2175))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2175)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(435))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(725))\)\(^{\oplus 2}\)