Defining parameters
Level: | \( N \) | \(=\) | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2175.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(1200\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2175))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 912 | 266 | 646 |
Cusp forms | 888 | 266 | 622 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(29\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(35\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(26\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(33\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(39\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(28\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(37\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(37\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(31\) |
Plus space | \(+\) | \(148\) | ||
Minus space | \(-\) | \(118\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2175))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2175))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2175)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(435))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(725))\)\(^{\oplus 2}\)