Properties

Label 2175.2.c.p.349.3
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 308x^{12} + 1671x^{10} + 4568x^{8} + 5616x^{6} + 2105x^{4} + 256x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.3
Root \(-2.57789i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.p.349.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57789i q^{2} +1.00000i q^{3} -4.64553 q^{4} +2.57789 q^{6} -4.69867i q^{7} +6.81989i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-2.57789i q^{2} +1.00000i q^{3} -4.64553 q^{4} +2.57789 q^{6} -4.69867i q^{7} +6.81989i q^{8} -1.00000 q^{9} -3.11503 q^{11} -4.64553i q^{12} -5.07945i q^{13} -12.1127 q^{14} +8.28989 q^{16} -1.40020i q^{17} +2.57789i q^{18} +3.76514 q^{19} +4.69867 q^{21} +8.03022i q^{22} +5.71483i q^{23} -6.81989 q^{24} -13.0943 q^{26} -1.00000i q^{27} +21.8278i q^{28} -1.00000 q^{29} -2.23218 q^{31} -7.73067i q^{32} -3.11503i q^{33} -3.60957 q^{34} +4.64553 q^{36} -5.79088i q^{37} -9.70614i q^{38} +5.07945 q^{39} -10.6968 q^{41} -12.1127i q^{42} -8.89527i q^{43} +14.4710 q^{44} +14.7322 q^{46} -3.62785i q^{47} +8.28989i q^{48} -15.0775 q^{49} +1.40020 q^{51} +23.5967i q^{52} -0.948260i q^{53} -2.57789 q^{54} +32.0445 q^{56} +3.76514i q^{57} +2.57789i q^{58} +8.53886 q^{59} -6.21467 q^{61} +5.75432i q^{62} +4.69867i q^{63} -3.34905 q^{64} -8.03022 q^{66} +13.9099i q^{67} +6.50468i q^{68} -5.71483 q^{69} +5.88726 q^{71} -6.81989i q^{72} +7.08398i q^{73} -14.9283 q^{74} -17.4911 q^{76} +14.6365i q^{77} -13.0943i q^{78} -7.31672 q^{79} +1.00000 q^{81} +27.5751i q^{82} +13.6579i q^{83} -21.8278 q^{84} -22.9311 q^{86} -1.00000i q^{87} -21.2442i q^{88} +7.98017 q^{89} -23.8667 q^{91} -26.5484i q^{92} -2.23218i q^{93} -9.35221 q^{94} +7.73067 q^{96} +13.8343i q^{97} +38.8683i q^{98} +3.11503 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9} + 12 q^{11} - 18 q^{14} + 64 q^{16} - 4 q^{21} - 6 q^{24} + 36 q^{26} - 16 q^{29} + 16 q^{31} + 26 q^{34} + 24 q^{36} + 12 q^{39} + 4 q^{41} + 30 q^{44} + 48 q^{46} - 76 q^{49} + 24 q^{51} - 4 q^{54} + 116 q^{56} - 36 q^{59} + 24 q^{61} - 42 q^{64} - 6 q^{66} - 28 q^{69} + 48 q^{71} + 44 q^{74} - 20 q^{79} + 16 q^{81} + 28 q^{84} + 16 q^{86} - 68 q^{89} + 52 q^{91} + 86 q^{94} - 4 q^{96} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.57789i − 1.82285i −0.411471 0.911423i \(-0.634985\pi\)
0.411471 0.911423i \(-0.365015\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.64553 −2.32277
\(5\) 0 0
\(6\) 2.57789 1.05242
\(7\) − 4.69867i − 1.77593i −0.459909 0.887966i \(-0.652118\pi\)
0.459909 0.887966i \(-0.347882\pi\)
\(8\) 6.81989i 2.41120i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.11503 −0.939218 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(12\) − 4.64553i − 1.34105i
\(13\) − 5.07945i − 1.40879i −0.709810 0.704393i \(-0.751219\pi\)
0.709810 0.704393i \(-0.248781\pi\)
\(14\) −12.1127 −3.23725
\(15\) 0 0
\(16\) 8.28989 2.07247
\(17\) − 1.40020i − 0.339599i −0.985479 0.169799i \(-0.945688\pi\)
0.985479 0.169799i \(-0.0543120\pi\)
\(18\) 2.57789i 0.607615i
\(19\) 3.76514 0.863783 0.431892 0.901925i \(-0.357846\pi\)
0.431892 + 0.901925i \(0.357846\pi\)
\(20\) 0 0
\(21\) 4.69867 1.02533
\(22\) 8.03022i 1.71205i
\(23\) 5.71483i 1.19162i 0.803124 + 0.595812i \(0.203170\pi\)
−0.803124 + 0.595812i \(0.796830\pi\)
\(24\) −6.81989 −1.39211
\(25\) 0 0
\(26\) −13.0943 −2.56800
\(27\) − 1.00000i − 0.192450i
\(28\) 21.8278i 4.12507i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −2.23218 −0.400911 −0.200456 0.979703i \(-0.564242\pi\)
−0.200456 + 0.979703i \(0.564242\pi\)
\(32\) − 7.73067i − 1.36660i
\(33\) − 3.11503i − 0.542258i
\(34\) −3.60957 −0.619036
\(35\) 0 0
\(36\) 4.64553 0.774255
\(37\) − 5.79088i − 0.952015i −0.879441 0.476008i \(-0.842083\pi\)
0.879441 0.476008i \(-0.157917\pi\)
\(38\) − 9.70614i − 1.57454i
\(39\) 5.07945 0.813363
\(40\) 0 0
\(41\) −10.6968 −1.67055 −0.835276 0.549830i \(-0.814692\pi\)
−0.835276 + 0.549830i \(0.814692\pi\)
\(42\) − 12.1127i − 1.86903i
\(43\) − 8.89527i − 1.35652i −0.734824 0.678258i \(-0.762735\pi\)
0.734824 0.678258i \(-0.237265\pi\)
\(44\) 14.4710 2.18158
\(45\) 0 0
\(46\) 14.7322 2.17215
\(47\) − 3.62785i − 0.529176i −0.964362 0.264588i \(-0.914764\pi\)
0.964362 0.264588i \(-0.0852360\pi\)
\(48\) 8.28989i 1.19654i
\(49\) −15.0775 −2.15393
\(50\) 0 0
\(51\) 1.40020 0.196067
\(52\) 23.5967i 3.27228i
\(53\) − 0.948260i − 0.130254i −0.997877 0.0651268i \(-0.979255\pi\)
0.997877 0.0651268i \(-0.0207452\pi\)
\(54\) −2.57789 −0.350807
\(55\) 0 0
\(56\) 32.0445 4.28212
\(57\) 3.76514i 0.498706i
\(58\) 2.57789i 0.338494i
\(59\) 8.53886 1.11166 0.555832 0.831294i \(-0.312400\pi\)
0.555832 + 0.831294i \(0.312400\pi\)
\(60\) 0 0
\(61\) −6.21467 −0.795707 −0.397853 0.917449i \(-0.630245\pi\)
−0.397853 + 0.917449i \(0.630245\pi\)
\(62\) 5.75432i 0.730799i
\(63\) 4.69867i 0.591977i
\(64\) −3.34905 −0.418631
\(65\) 0 0
\(66\) −8.03022 −0.988452
\(67\) 13.9099i 1.69937i 0.527291 + 0.849685i \(0.323208\pi\)
−0.527291 + 0.849685i \(0.676792\pi\)
\(68\) 6.50468i 0.788808i
\(69\) −5.71483 −0.687985
\(70\) 0 0
\(71\) 5.88726 0.698690 0.349345 0.936994i \(-0.386404\pi\)
0.349345 + 0.936994i \(0.386404\pi\)
\(72\) − 6.81989i − 0.803732i
\(73\) 7.08398i 0.829117i 0.910023 + 0.414559i \(0.136064\pi\)
−0.910023 + 0.414559i \(0.863936\pi\)
\(74\) −14.9283 −1.73538
\(75\) 0 0
\(76\) −17.4911 −2.00637
\(77\) 14.6365i 1.66799i
\(78\) − 13.0943i − 1.48263i
\(79\) −7.31672 −0.823195 −0.411598 0.911366i \(-0.635029\pi\)
−0.411598 + 0.911366i \(0.635029\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 27.5751i 3.04516i
\(83\) 13.6579i 1.49915i 0.661917 + 0.749577i \(0.269743\pi\)
−0.661917 + 0.749577i \(0.730257\pi\)
\(84\) −21.8278 −2.38161
\(85\) 0 0
\(86\) −22.9311 −2.47272
\(87\) − 1.00000i − 0.107211i
\(88\) − 21.2442i − 2.26464i
\(89\) 7.98017 0.845897 0.422948 0.906154i \(-0.360995\pi\)
0.422948 + 0.906154i \(0.360995\pi\)
\(90\) 0 0
\(91\) −23.8667 −2.50191
\(92\) − 26.5484i − 2.76786i
\(93\) − 2.23218i − 0.231466i
\(94\) −9.35221 −0.964607
\(95\) 0 0
\(96\) 7.73067 0.789008
\(97\) 13.8343i 1.40466i 0.711853 + 0.702329i \(0.247856\pi\)
−0.711853 + 0.702329i \(0.752144\pi\)
\(98\) 38.8683i 3.92629i
\(99\) 3.11503 0.313073
\(100\) 0 0
\(101\) 12.7461 1.26829 0.634144 0.773215i \(-0.281353\pi\)
0.634144 + 0.773215i \(0.281353\pi\)
\(102\) − 3.60957i − 0.357401i
\(103\) 8.20406i 0.808370i 0.914677 + 0.404185i \(0.132445\pi\)
−0.914677 + 0.404185i \(0.867555\pi\)
\(104\) 34.6413 3.39686
\(105\) 0 0
\(106\) −2.44451 −0.237432
\(107\) − 3.28873i − 0.317933i −0.987284 0.158967i \(-0.949184\pi\)
0.987284 0.158967i \(-0.0508162\pi\)
\(108\) 4.64553i 0.447016i
\(109\) 0.246732 0.0236326 0.0118163 0.999930i \(-0.496239\pi\)
0.0118163 + 0.999930i \(0.496239\pi\)
\(110\) 0 0
\(111\) 5.79088 0.549646
\(112\) − 38.9515i − 3.68057i
\(113\) 14.4273i 1.35721i 0.734505 + 0.678603i \(0.237414\pi\)
−0.734505 + 0.678603i \(0.762586\pi\)
\(114\) 9.70614 0.909063
\(115\) 0 0
\(116\) 4.64553 0.431327
\(117\) 5.07945i 0.469595i
\(118\) − 22.0123i − 2.02639i
\(119\) −6.57909 −0.603104
\(120\) 0 0
\(121\) −1.29657 −0.117870
\(122\) 16.0207i 1.45045i
\(123\) − 10.6968i − 0.964494i
\(124\) 10.3697 0.931223
\(125\) 0 0
\(126\) 12.1127 1.07908
\(127\) − 21.1707i − 1.87860i −0.343101 0.939299i \(-0.611477\pi\)
0.343101 0.939299i \(-0.388523\pi\)
\(128\) − 6.82785i − 0.603503i
\(129\) 8.89527 0.783185
\(130\) 0 0
\(131\) −8.18994 −0.715559 −0.357779 0.933806i \(-0.616466\pi\)
−0.357779 + 0.933806i \(0.616466\pi\)
\(132\) 14.4710i 1.25954i
\(133\) − 17.6912i − 1.53402i
\(134\) 35.8583 3.09769
\(135\) 0 0
\(136\) 9.54923 0.818840
\(137\) 17.4054i 1.48704i 0.668714 + 0.743520i \(0.266845\pi\)
−0.668714 + 0.743520i \(0.733155\pi\)
\(138\) 14.7322i 1.25409i
\(139\) 6.81900 0.578380 0.289190 0.957272i \(-0.406614\pi\)
0.289190 + 0.957272i \(0.406614\pi\)
\(140\) 0 0
\(141\) 3.62785 0.305520
\(142\) − 15.1767i − 1.27360i
\(143\) 15.8226i 1.32316i
\(144\) −8.28989 −0.690825
\(145\) 0 0
\(146\) 18.2617 1.51135
\(147\) − 15.0775i − 1.24357i
\(148\) 26.9017i 2.21131i
\(149\) −23.7335 −1.94432 −0.972162 0.234311i \(-0.924717\pi\)
−0.972162 + 0.234311i \(0.924717\pi\)
\(150\) 0 0
\(151\) −17.3095 −1.40863 −0.704315 0.709888i \(-0.748746\pi\)
−0.704315 + 0.709888i \(0.748746\pi\)
\(152\) 25.6779i 2.08275i
\(153\) 1.40020i 0.113200i
\(154\) 37.7314 3.04048
\(155\) 0 0
\(156\) −23.5967 −1.88925
\(157\) 10.0537i 0.802375i 0.915996 + 0.401188i \(0.131402\pi\)
−0.915996 + 0.401188i \(0.868598\pi\)
\(158\) 18.8617i 1.50056i
\(159\) 0.948260 0.0752019
\(160\) 0 0
\(161\) 26.8521 2.11624
\(162\) − 2.57789i − 0.202538i
\(163\) − 12.2602i − 0.960291i −0.877189 0.480145i \(-0.840584\pi\)
0.877189 0.480145i \(-0.159416\pi\)
\(164\) 49.6921 3.88030
\(165\) 0 0
\(166\) 35.2087 2.73273
\(167\) − 13.5990i − 1.05232i −0.850386 0.526160i \(-0.823631\pi\)
0.850386 0.526160i \(-0.176369\pi\)
\(168\) 32.0445i 2.47228i
\(169\) −12.8008 −0.984677
\(170\) 0 0
\(171\) −3.76514 −0.287928
\(172\) 41.3233i 3.15087i
\(173\) − 8.35226i − 0.635011i −0.948256 0.317505i \(-0.897155\pi\)
0.948256 0.317505i \(-0.102845\pi\)
\(174\) −2.57789 −0.195430
\(175\) 0 0
\(176\) −25.8233 −1.94650
\(177\) 8.53886i 0.641820i
\(178\) − 20.5720i − 1.54194i
\(179\) −26.5865 −1.98717 −0.993583 0.113109i \(-0.963919\pi\)
−0.993583 + 0.113109i \(0.963919\pi\)
\(180\) 0 0
\(181\) 3.72547 0.276912 0.138456 0.990369i \(-0.455786\pi\)
0.138456 + 0.990369i \(0.455786\pi\)
\(182\) 61.5257i 4.56059i
\(183\) − 6.21467i − 0.459401i
\(184\) −38.9745 −2.87324
\(185\) 0 0
\(186\) −5.75432 −0.421927
\(187\) 4.36167i 0.318957i
\(188\) 16.8533i 1.22915i
\(189\) −4.69867 −0.341778
\(190\) 0 0
\(191\) 6.76433 0.489450 0.244725 0.969593i \(-0.421302\pi\)
0.244725 + 0.969593i \(0.421302\pi\)
\(192\) − 3.34905i − 0.241697i
\(193\) − 0.140715i − 0.0101289i −0.999987 0.00506444i \(-0.998388\pi\)
0.999987 0.00506444i \(-0.00161207\pi\)
\(194\) 35.6633 2.56047
\(195\) 0 0
\(196\) 70.0431 5.00308
\(197\) − 1.48273i − 0.105640i −0.998604 0.0528200i \(-0.983179\pi\)
0.998604 0.0528200i \(-0.0168210\pi\)
\(198\) − 8.03022i − 0.570683i
\(199\) −25.8626 −1.83335 −0.916677 0.399628i \(-0.869139\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(200\) 0 0
\(201\) −13.9099 −0.981132
\(202\) − 32.8582i − 2.31189i
\(203\) 4.69867i 0.329782i
\(204\) −6.50468 −0.455419
\(205\) 0 0
\(206\) 21.1492 1.47353
\(207\) − 5.71483i − 0.397208i
\(208\) − 42.1081i − 2.91967i
\(209\) −11.7285 −0.811281
\(210\) 0 0
\(211\) 23.3428 1.60698 0.803491 0.595317i \(-0.202974\pi\)
0.803491 + 0.595317i \(0.202974\pi\)
\(212\) 4.40517i 0.302548i
\(213\) 5.88726i 0.403389i
\(214\) −8.47799 −0.579543
\(215\) 0 0
\(216\) 6.81989 0.464035
\(217\) 10.4883i 0.711991i
\(218\) − 0.636049i − 0.0430787i
\(219\) −7.08398 −0.478691
\(220\) 0 0
\(221\) −7.11225 −0.478422
\(222\) − 14.9283i − 1.00192i
\(223\) − 22.4256i − 1.50173i −0.660455 0.750865i \(-0.729637\pi\)
0.660455 0.750865i \(-0.270363\pi\)
\(224\) −36.3239 −2.42699
\(225\) 0 0
\(226\) 37.1920 2.47398
\(227\) − 4.07327i − 0.270353i −0.990822 0.135176i \(-0.956840\pi\)
0.990822 0.135176i \(-0.0431601\pi\)
\(228\) − 17.4911i − 1.15838i
\(229\) 15.7170 1.03861 0.519303 0.854590i \(-0.326192\pi\)
0.519303 + 0.854590i \(0.326192\pi\)
\(230\) 0 0
\(231\) −14.6365 −0.963012
\(232\) − 6.81989i − 0.447748i
\(233\) − 16.4568i − 1.07812i −0.842268 0.539059i \(-0.818780\pi\)
0.842268 0.539059i \(-0.181220\pi\)
\(234\) 13.0943 0.856000
\(235\) 0 0
\(236\) −39.6675 −2.58214
\(237\) − 7.31672i − 0.475272i
\(238\) 16.9602i 1.09937i
\(239\) −3.18702 −0.206151 −0.103075 0.994674i \(-0.532868\pi\)
−0.103075 + 0.994674i \(0.532868\pi\)
\(240\) 0 0
\(241\) 11.1482 0.718118 0.359059 0.933315i \(-0.383098\pi\)
0.359059 + 0.933315i \(0.383098\pi\)
\(242\) 3.34243i 0.214859i
\(243\) 1.00000i 0.0641500i
\(244\) 28.8704 1.84824
\(245\) 0 0
\(246\) −27.5751 −1.75812
\(247\) − 19.1249i − 1.21689i
\(248\) − 15.2232i − 0.966676i
\(249\) −13.6579 −0.865537
\(250\) 0 0
\(251\) −3.23388 −0.204121 −0.102060 0.994778i \(-0.532543\pi\)
−0.102060 + 0.994778i \(0.532543\pi\)
\(252\) − 21.8278i − 1.37502i
\(253\) − 17.8019i − 1.11919i
\(254\) −54.5758 −3.42439
\(255\) 0 0
\(256\) −24.2996 −1.51872
\(257\) 3.96761i 0.247493i 0.992314 + 0.123746i \(0.0394909\pi\)
−0.992314 + 0.123746i \(0.960509\pi\)
\(258\) − 22.9311i − 1.42763i
\(259\) −27.2095 −1.69071
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 21.1128i 1.30435i
\(263\) − 16.6865i − 1.02893i −0.857510 0.514467i \(-0.827990\pi\)
0.857510 0.514467i \(-0.172010\pi\)
\(264\) 21.2442 1.30749
\(265\) 0 0
\(266\) −45.6060 −2.79628
\(267\) 7.98017i 0.488379i
\(268\) − 64.6191i − 3.94724i
\(269\) −7.94329 −0.484311 −0.242155 0.970237i \(-0.577854\pi\)
−0.242155 + 0.970237i \(0.577854\pi\)
\(270\) 0 0
\(271\) −17.3087 −1.05143 −0.525714 0.850662i \(-0.676202\pi\)
−0.525714 + 0.850662i \(0.676202\pi\)
\(272\) − 11.6075i − 0.703810i
\(273\) − 23.8667i − 1.44448i
\(274\) 44.8691 2.71064
\(275\) 0 0
\(276\) 26.5484 1.59803
\(277\) 10.2791i 0.617612i 0.951125 + 0.308806i \(0.0999294\pi\)
−0.951125 + 0.308806i \(0.900071\pi\)
\(278\) − 17.5786i − 1.05430i
\(279\) 2.23218 0.133637
\(280\) 0 0
\(281\) 4.57869 0.273142 0.136571 0.990630i \(-0.456392\pi\)
0.136571 + 0.990630i \(0.456392\pi\)
\(282\) − 9.35221i − 0.556916i
\(283\) − 19.2431i − 1.14388i −0.820294 0.571941i \(-0.806190\pi\)
0.820294 0.571941i \(-0.193810\pi\)
\(284\) −27.3495 −1.62289
\(285\) 0 0
\(286\) 40.7891 2.41191
\(287\) 50.2606i 2.96679i
\(288\) 7.73067i 0.455534i
\(289\) 15.0394 0.884673
\(290\) 0 0
\(291\) −13.8343 −0.810979
\(292\) − 32.9089i − 1.92584i
\(293\) − 14.6045i − 0.853203i −0.904440 0.426602i \(-0.859711\pi\)
0.904440 0.426602i \(-0.140289\pi\)
\(294\) −38.8683 −2.26684
\(295\) 0 0
\(296\) 39.4932 2.29550
\(297\) 3.11503i 0.180753i
\(298\) 61.1824i 3.54420i
\(299\) 29.0282 1.67874
\(300\) 0 0
\(301\) −41.7960 −2.40908
\(302\) 44.6221i 2.56771i
\(303\) 12.7461i 0.732246i
\(304\) 31.2127 1.79017
\(305\) 0 0
\(306\) 3.60957 0.206345
\(307\) 12.3324i 0.703850i 0.936028 + 0.351925i \(0.114473\pi\)
−0.936028 + 0.351925i \(0.885527\pi\)
\(308\) − 67.9944i − 3.87434i
\(309\) −8.20406 −0.466713
\(310\) 0 0
\(311\) 12.3084 0.697943 0.348971 0.937133i \(-0.386531\pi\)
0.348971 + 0.937133i \(0.386531\pi\)
\(312\) 34.6413i 1.96118i
\(313\) − 16.7306i − 0.945672i −0.881150 0.472836i \(-0.843230\pi\)
0.881150 0.472836i \(-0.156770\pi\)
\(314\) 25.9174 1.46261
\(315\) 0 0
\(316\) 33.9901 1.91209
\(317\) − 10.9429i − 0.614617i −0.951610 0.307308i \(-0.900572\pi\)
0.951610 0.307308i \(-0.0994283\pi\)
\(318\) − 2.44451i − 0.137081i
\(319\) 3.11503 0.174408
\(320\) 0 0
\(321\) 3.28873 0.183559
\(322\) − 69.2219i − 3.85759i
\(323\) − 5.27196i − 0.293340i
\(324\) −4.64553 −0.258085
\(325\) 0 0
\(326\) −31.6054 −1.75046
\(327\) 0.246732i 0.0136443i
\(328\) − 72.9508i − 4.02803i
\(329\) −17.0461 −0.939781
\(330\) 0 0
\(331\) −19.1431 −1.05220 −0.526099 0.850423i \(-0.676346\pi\)
−0.526099 + 0.850423i \(0.676346\pi\)
\(332\) − 63.4484i − 3.48218i
\(333\) 5.79088i 0.317338i
\(334\) −35.0567 −1.91822
\(335\) 0 0
\(336\) 38.9515 2.12498
\(337\) − 17.0294i − 0.927650i −0.885927 0.463825i \(-0.846477\pi\)
0.885927 0.463825i \(-0.153523\pi\)
\(338\) 32.9991i 1.79491i
\(339\) −14.4273 −0.783583
\(340\) 0 0
\(341\) 6.95331 0.376543
\(342\) 9.70614i 0.524848i
\(343\) 37.9537i 2.04931i
\(344\) 60.6648 3.27083
\(345\) 0 0
\(346\) −21.5312 −1.15753
\(347\) − 17.2564i − 0.926373i −0.886261 0.463186i \(-0.846706\pi\)
0.886261 0.463186i \(-0.153294\pi\)
\(348\) 4.64553i 0.249027i
\(349\) −13.3969 −0.717118 −0.358559 0.933507i \(-0.616732\pi\)
−0.358559 + 0.933507i \(0.616732\pi\)
\(350\) 0 0
\(351\) −5.07945 −0.271121
\(352\) 24.0813i 1.28354i
\(353\) − 2.04594i − 0.108894i −0.998517 0.0544472i \(-0.982660\pi\)
0.998517 0.0544472i \(-0.0173397\pi\)
\(354\) 22.0123 1.16994
\(355\) 0 0
\(356\) −37.0721 −1.96482
\(357\) − 6.57909i − 0.348202i
\(358\) 68.5370i 3.62229i
\(359\) 25.2336 1.33178 0.665889 0.746051i \(-0.268053\pi\)
0.665889 + 0.746051i \(0.268053\pi\)
\(360\) 0 0
\(361\) −4.82368 −0.253878
\(362\) − 9.60387i − 0.504768i
\(363\) − 1.29657i − 0.0680525i
\(364\) 110.873 5.81134
\(365\) 0 0
\(366\) −16.0207 −0.837418
\(367\) − 9.13285i − 0.476731i −0.971176 0.238366i \(-0.923388\pi\)
0.971176 0.238366i \(-0.0766116\pi\)
\(368\) 47.3753i 2.46961i
\(369\) 10.6968 0.556851
\(370\) 0 0
\(371\) −4.45557 −0.231321
\(372\) 10.3697i 0.537642i
\(373\) − 5.41148i − 0.280196i −0.990138 0.140098i \(-0.955258\pi\)
0.990138 0.140098i \(-0.0447418\pi\)
\(374\) 11.2439 0.581410
\(375\) 0 0
\(376\) 24.7416 1.27595
\(377\) 5.07945i 0.261605i
\(378\) 12.1127i 0.623009i
\(379\) −19.8284 −1.01852 −0.509258 0.860614i \(-0.670080\pi\)
−0.509258 + 0.860614i \(0.670080\pi\)
\(380\) 0 0
\(381\) 21.1707 1.08461
\(382\) − 17.4377i − 0.892191i
\(383\) − 14.8919i − 0.760941i −0.924793 0.380470i \(-0.875762\pi\)
0.924793 0.380470i \(-0.124238\pi\)
\(384\) 6.82785 0.348432
\(385\) 0 0
\(386\) −0.362748 −0.0184634
\(387\) 8.89527i 0.452172i
\(388\) − 64.2675i − 3.26269i
\(389\) 15.7680 0.799470 0.399735 0.916631i \(-0.369102\pi\)
0.399735 + 0.916631i \(0.369102\pi\)
\(390\) 0 0
\(391\) 8.00192 0.404674
\(392\) − 102.827i − 5.19356i
\(393\) − 8.18994i − 0.413128i
\(394\) −3.82232 −0.192566
\(395\) 0 0
\(396\) −14.4710 −0.727194
\(397\) − 26.5318i − 1.33159i −0.746134 0.665796i \(-0.768092\pi\)
0.746134 0.665796i \(-0.231908\pi\)
\(398\) 66.6711i 3.34192i
\(399\) 17.6912 0.885667
\(400\) 0 0
\(401\) 9.71205 0.484997 0.242498 0.970152i \(-0.422033\pi\)
0.242498 + 0.970152i \(0.422033\pi\)
\(402\) 35.8583i 1.78845i
\(403\) 11.3382i 0.564798i
\(404\) −59.2126 −2.94593
\(405\) 0 0
\(406\) 12.1127 0.601142
\(407\) 18.0388i 0.894150i
\(408\) 9.54923i 0.472757i
\(409\) 17.4468 0.862691 0.431346 0.902187i \(-0.358039\pi\)
0.431346 + 0.902187i \(0.358039\pi\)
\(410\) 0 0
\(411\) −17.4054 −0.858543
\(412\) − 38.1122i − 1.87765i
\(413\) − 40.1213i − 1.97424i
\(414\) −14.7322 −0.724049
\(415\) 0 0
\(416\) −39.2675 −1.92525
\(417\) 6.81900i 0.333928i
\(418\) 30.2349i 1.47884i
\(419\) −26.0588 −1.27306 −0.636529 0.771253i \(-0.719630\pi\)
−0.636529 + 0.771253i \(0.719630\pi\)
\(420\) 0 0
\(421\) 2.66465 0.129867 0.0649337 0.997890i \(-0.479316\pi\)
0.0649337 + 0.997890i \(0.479316\pi\)
\(422\) − 60.1751i − 2.92928i
\(423\) 3.62785i 0.176392i
\(424\) 6.46704 0.314067
\(425\) 0 0
\(426\) 15.1767 0.735315
\(427\) 29.2007i 1.41312i
\(428\) 15.2779i 0.738485i
\(429\) −15.8226 −0.763925
\(430\) 0 0
\(431\) −0.150532 −0.00725086 −0.00362543 0.999993i \(-0.501154\pi\)
−0.00362543 + 0.999993i \(0.501154\pi\)
\(432\) − 8.28989i − 0.398848i
\(433\) 33.2461i 1.59770i 0.601527 + 0.798852i \(0.294559\pi\)
−0.601527 + 0.798852i \(0.705441\pi\)
\(434\) 27.0377 1.29785
\(435\) 0 0
\(436\) −1.14620 −0.0548931
\(437\) 21.5172i 1.02931i
\(438\) 18.2617i 0.872580i
\(439\) −18.1320 −0.865391 −0.432695 0.901540i \(-0.642437\pi\)
−0.432695 + 0.901540i \(0.642437\pi\)
\(440\) 0 0
\(441\) 15.0775 0.717978
\(442\) 18.3346i 0.872089i
\(443\) − 34.8312i − 1.65488i −0.561554 0.827440i \(-0.689796\pi\)
0.561554 0.827440i \(-0.310204\pi\)
\(444\) −26.9017 −1.27670
\(445\) 0 0
\(446\) −57.8108 −2.73742
\(447\) − 23.7335i − 1.12256i
\(448\) 15.7361i 0.743460i
\(449\) −36.1516 −1.70610 −0.853049 0.521830i \(-0.825249\pi\)
−0.853049 + 0.521830i \(0.825249\pi\)
\(450\) 0 0
\(451\) 33.3207 1.56901
\(452\) − 67.0225i − 3.15247i
\(453\) − 17.3095i − 0.813273i
\(454\) −10.5005 −0.492811
\(455\) 0 0
\(456\) −25.6779 −1.20248
\(457\) − 8.93775i − 0.418090i −0.977906 0.209045i \(-0.932964\pi\)
0.977906 0.209045i \(-0.0670356\pi\)
\(458\) − 40.5166i − 1.89322i
\(459\) −1.40020 −0.0653558
\(460\) 0 0
\(461\) 34.6733 1.61490 0.807449 0.589937i \(-0.200848\pi\)
0.807449 + 0.589937i \(0.200848\pi\)
\(462\) 37.7314i 1.75542i
\(463\) − 30.9412i − 1.43796i −0.695030 0.718981i \(-0.744609\pi\)
0.695030 0.718981i \(-0.255391\pi\)
\(464\) −8.28989 −0.384849
\(465\) 0 0
\(466\) −42.4237 −1.96524
\(467\) 5.40920i 0.250308i 0.992137 + 0.125154i \(0.0399425\pi\)
−0.992137 + 0.125154i \(0.960057\pi\)
\(468\) − 23.5967i − 1.09076i
\(469\) 65.3583 3.01797
\(470\) 0 0
\(471\) −10.0537 −0.463251
\(472\) 58.2341i 2.68044i
\(473\) 27.7091i 1.27406i
\(474\) −18.8617 −0.866348
\(475\) 0 0
\(476\) 30.5634 1.40087
\(477\) 0.948260i 0.0434179i
\(478\) 8.21578i 0.375781i
\(479\) −13.4270 −0.613494 −0.306747 0.951791i \(-0.599241\pi\)
−0.306747 + 0.951791i \(0.599241\pi\)
\(480\) 0 0
\(481\) −29.4145 −1.34119
\(482\) − 28.7389i − 1.30902i
\(483\) 26.8521i 1.22181i
\(484\) 6.02327 0.273785
\(485\) 0 0
\(486\) 2.57789 0.116936
\(487\) − 24.8746i − 1.12718i −0.826055 0.563589i \(-0.809420\pi\)
0.826055 0.563589i \(-0.190580\pi\)
\(488\) − 42.3834i − 1.91861i
\(489\) 12.2602 0.554424
\(490\) 0 0
\(491\) 20.6717 0.932902 0.466451 0.884547i \(-0.345532\pi\)
0.466451 + 0.884547i \(0.345532\pi\)
\(492\) 49.6921i 2.24029i
\(493\) 1.40020i 0.0630619i
\(494\) −49.3018 −2.21819
\(495\) 0 0
\(496\) −18.5045 −0.830878
\(497\) − 27.6623i − 1.24083i
\(498\) 35.2087i 1.57774i
\(499\) −21.2182 −0.949856 −0.474928 0.880025i \(-0.657526\pi\)
−0.474928 + 0.880025i \(0.657526\pi\)
\(500\) 0 0
\(501\) 13.5990 0.607557
\(502\) 8.33660i 0.372081i
\(503\) 35.9602i 1.60339i 0.597736 + 0.801693i \(0.296067\pi\)
−0.597736 + 0.801693i \(0.703933\pi\)
\(504\) −32.0445 −1.42737
\(505\) 0 0
\(506\) −45.8913 −2.04012
\(507\) − 12.8008i − 0.568504i
\(508\) 98.3492i 4.36354i
\(509\) −21.3861 −0.947924 −0.473962 0.880545i \(-0.657177\pi\)
−0.473962 + 0.880545i \(0.657177\pi\)
\(510\) 0 0
\(511\) 33.2853 1.47246
\(512\) 48.9860i 2.16489i
\(513\) − 3.76514i − 0.166235i
\(514\) 10.2281 0.451141
\(515\) 0 0
\(516\) −41.3233 −1.81915
\(517\) 11.3009i 0.497012i
\(518\) 70.1431i 3.08191i
\(519\) 8.35226 0.366624
\(520\) 0 0
\(521\) −6.56775 −0.287738 −0.143869 0.989597i \(-0.545954\pi\)
−0.143869 + 0.989597i \(0.545954\pi\)
\(522\) − 2.57789i − 0.112831i
\(523\) 21.1811i 0.926184i 0.886310 + 0.463092i \(0.153260\pi\)
−0.886310 + 0.463092i \(0.846740\pi\)
\(524\) 38.0466 1.66207
\(525\) 0 0
\(526\) −43.0160 −1.87559
\(527\) 3.12550i 0.136149i
\(528\) − 25.8233i − 1.12381i
\(529\) −9.65929 −0.419969
\(530\) 0 0
\(531\) −8.53886 −0.370555
\(532\) 82.1850i 3.56317i
\(533\) 54.3336i 2.35345i
\(534\) 20.5720 0.890239
\(535\) 0 0
\(536\) −94.8643 −4.09752
\(537\) − 26.5865i − 1.14729i
\(538\) 20.4769i 0.882824i
\(539\) 46.9670 2.02301
\(540\) 0 0
\(541\) −9.98542 −0.429307 −0.214653 0.976690i \(-0.568862\pi\)
−0.214653 + 0.976690i \(0.568862\pi\)
\(542\) 44.6199i 1.91659i
\(543\) 3.72547i 0.159875i
\(544\) −10.8245 −0.464097
\(545\) 0 0
\(546\) −61.5257 −2.63306
\(547\) − 1.01143i − 0.0432457i −0.999766 0.0216228i \(-0.993117\pi\)
0.999766 0.0216228i \(-0.00688330\pi\)
\(548\) − 80.8571i − 3.45404i
\(549\) 6.21467 0.265236
\(550\) 0 0
\(551\) −3.76514 −0.160401
\(552\) − 38.9745i − 1.65887i
\(553\) 34.3789i 1.46194i
\(554\) 26.4985 1.12581
\(555\) 0 0
\(556\) −31.6779 −1.34344
\(557\) 30.4618i 1.29071i 0.763885 + 0.645353i \(0.223290\pi\)
−0.763885 + 0.645353i \(0.776710\pi\)
\(558\) − 5.75432i − 0.243600i
\(559\) −45.1831 −1.91104
\(560\) 0 0
\(561\) −4.36167 −0.184150
\(562\) − 11.8034i − 0.497895i
\(563\) − 2.49954i − 0.105343i −0.998612 0.0526716i \(-0.983226\pi\)
0.998612 0.0526716i \(-0.0167736\pi\)
\(564\) −16.8533 −0.709651
\(565\) 0 0
\(566\) −49.6066 −2.08512
\(567\) − 4.69867i − 0.197326i
\(568\) 40.1505i 1.68468i
\(569\) 0.611166 0.0256214 0.0128107 0.999918i \(-0.495922\pi\)
0.0128107 + 0.999918i \(0.495922\pi\)
\(570\) 0 0
\(571\) −0.527376 −0.0220700 −0.0110350 0.999939i \(-0.503513\pi\)
−0.0110350 + 0.999939i \(0.503513\pi\)
\(572\) − 73.5046i − 3.07338i
\(573\) 6.76433i 0.282584i
\(574\) 129.566 5.40800
\(575\) 0 0
\(576\) 3.34905 0.139544
\(577\) 24.3938i 1.01553i 0.861496 + 0.507764i \(0.169528\pi\)
−0.861496 + 0.507764i \(0.830472\pi\)
\(578\) − 38.7700i − 1.61262i
\(579\) 0.140715 0.00584791
\(580\) 0 0
\(581\) 64.1742 2.66239
\(582\) 35.6633i 1.47829i
\(583\) 2.95386i 0.122336i
\(584\) −48.3120 −1.99917
\(585\) 0 0
\(586\) −37.6488 −1.55526
\(587\) 28.4529i 1.17438i 0.809450 + 0.587188i \(0.199765\pi\)
−0.809450 + 0.587188i \(0.800235\pi\)
\(588\) 70.0431i 2.88853i
\(589\) −8.40448 −0.346301
\(590\) 0 0
\(591\) 1.48273 0.0609913
\(592\) − 48.0058i − 1.97303i
\(593\) 2.96753i 0.121862i 0.998142 + 0.0609310i \(0.0194070\pi\)
−0.998142 + 0.0609310i \(0.980593\pi\)
\(594\) 8.03022 0.329484
\(595\) 0 0
\(596\) 110.255 4.51621
\(597\) − 25.8626i − 1.05849i
\(598\) − 74.8316i − 3.06009i
\(599\) −21.9546 −0.897040 −0.448520 0.893773i \(-0.648049\pi\)
−0.448520 + 0.893773i \(0.648049\pi\)
\(600\) 0 0
\(601\) −21.4446 −0.874745 −0.437372 0.899280i \(-0.644091\pi\)
−0.437372 + 0.899280i \(0.644091\pi\)
\(602\) 107.746i 4.39138i
\(603\) − 13.9099i − 0.566457i
\(604\) 80.4120 3.27192
\(605\) 0 0
\(606\) 32.8582 1.33477
\(607\) − 48.0114i − 1.94872i −0.224988 0.974361i \(-0.572234\pi\)
0.224988 0.974361i \(-0.427766\pi\)
\(608\) − 29.1071i − 1.18045i
\(609\) −4.69867 −0.190400
\(610\) 0 0
\(611\) −18.4275 −0.745496
\(612\) − 6.50468i − 0.262936i
\(613\) 37.9093i 1.53114i 0.643351 + 0.765571i \(0.277544\pi\)
−0.643351 + 0.765571i \(0.722456\pi\)
\(614\) 31.7917 1.28301
\(615\) 0 0
\(616\) −99.8195 −4.02184
\(617\) − 8.29772i − 0.334054i −0.985952 0.167027i \(-0.946583\pi\)
0.985952 0.167027i \(-0.0534166\pi\)
\(618\) 21.1492i 0.850745i
\(619\) 15.6135 0.627559 0.313779 0.949496i \(-0.398405\pi\)
0.313779 + 0.949496i \(0.398405\pi\)
\(620\) 0 0
\(621\) 5.71483 0.229328
\(622\) − 31.7296i − 1.27224i
\(623\) − 37.4962i − 1.50225i
\(624\) 42.1081 1.68567
\(625\) 0 0
\(626\) −43.1298 −1.72381
\(627\) − 11.7285i − 0.468393i
\(628\) − 46.7049i − 1.86373i
\(629\) −8.10841 −0.323303
\(630\) 0 0
\(631\) 10.7848 0.429336 0.214668 0.976687i \(-0.431133\pi\)
0.214668 + 0.976687i \(0.431133\pi\)
\(632\) − 49.8993i − 1.98489i
\(633\) 23.3428i 0.927791i
\(634\) −28.2097 −1.12035
\(635\) 0 0
\(636\) −4.40517 −0.174676
\(637\) 76.5856i 3.03443i
\(638\) − 8.03022i − 0.317919i
\(639\) −5.88726 −0.232897
\(640\) 0 0
\(641\) 16.1226 0.636805 0.318403 0.947956i \(-0.396854\pi\)
0.318403 + 0.947956i \(0.396854\pi\)
\(642\) − 8.47799i − 0.334599i
\(643\) − 25.0313i − 0.987137i −0.869707 0.493569i \(-0.835692\pi\)
0.869707 0.493569i \(-0.164308\pi\)
\(644\) −124.742 −4.91554
\(645\) 0 0
\(646\) −13.5906 −0.534713
\(647\) − 34.9798i − 1.37520i −0.726091 0.687599i \(-0.758665\pi\)
0.726091 0.687599i \(-0.241335\pi\)
\(648\) 6.81989i 0.267911i
\(649\) −26.5988 −1.04409
\(650\) 0 0
\(651\) −10.4883 −0.411068
\(652\) 56.9550i 2.23053i
\(653\) 22.0250i 0.861904i 0.902375 + 0.430952i \(0.141822\pi\)
−0.902375 + 0.430952i \(0.858178\pi\)
\(654\) 0.636049 0.0248715
\(655\) 0 0
\(656\) −88.6750 −3.46218
\(657\) − 7.08398i − 0.276372i
\(658\) 43.9430i 1.71308i
\(659\) 32.9279 1.28269 0.641345 0.767253i \(-0.278377\pi\)
0.641345 + 0.767253i \(0.278377\pi\)
\(660\) 0 0
\(661\) 9.78801 0.380710 0.190355 0.981715i \(-0.439036\pi\)
0.190355 + 0.981715i \(0.439036\pi\)
\(662\) 49.3488i 1.91799i
\(663\) − 7.11225i − 0.276217i
\(664\) −93.1457 −3.61475
\(665\) 0 0
\(666\) 14.9283 0.578459
\(667\) − 5.71483i − 0.221279i
\(668\) 63.1745i 2.44429i
\(669\) 22.4256 0.867025
\(670\) 0 0
\(671\) 19.3589 0.747342
\(672\) − 36.3239i − 1.40122i
\(673\) − 25.3634i − 0.977689i −0.872371 0.488844i \(-0.837419\pi\)
0.872371 0.488844i \(-0.162581\pi\)
\(674\) −43.8999 −1.69096
\(675\) 0 0
\(676\) 59.4665 2.28717
\(677\) 19.7896i 0.760578i 0.924868 + 0.380289i \(0.124175\pi\)
−0.924868 + 0.380289i \(0.875825\pi\)
\(678\) 37.1920i 1.42835i
\(679\) 65.0027 2.49458
\(680\) 0 0
\(681\) 4.07327 0.156088
\(682\) − 17.9249i − 0.686380i
\(683\) 44.9656i 1.72056i 0.509820 + 0.860281i \(0.329712\pi\)
−0.509820 + 0.860281i \(0.670288\pi\)
\(684\) 17.4911 0.668789
\(685\) 0 0
\(686\) 97.8406 3.73557
\(687\) 15.7170i 0.599640i
\(688\) − 73.7409i − 2.81134i
\(689\) −4.81664 −0.183499
\(690\) 0 0
\(691\) −30.7758 −1.17077 −0.585384 0.810756i \(-0.699056\pi\)
−0.585384 + 0.810756i \(0.699056\pi\)
\(692\) 38.8007i 1.47498i
\(693\) − 14.6365i − 0.555995i
\(694\) −44.4852 −1.68863
\(695\) 0 0
\(696\) 6.81989 0.258507
\(697\) 14.9776i 0.567318i
\(698\) 34.5357i 1.30720i
\(699\) 16.4568 0.622452
\(700\) 0 0
\(701\) −23.2459 −0.877984 −0.438992 0.898491i \(-0.644664\pi\)
−0.438992 + 0.898491i \(0.644664\pi\)
\(702\) 13.0943i 0.494212i
\(703\) − 21.8035i − 0.822335i
\(704\) 10.4324 0.393186
\(705\) 0 0
\(706\) −5.27422 −0.198498
\(707\) − 59.8899i − 2.25239i
\(708\) − 39.6675i − 1.49080i
\(709\) −7.86251 −0.295283 −0.147641 0.989041i \(-0.547168\pi\)
−0.147641 + 0.989041i \(0.547168\pi\)
\(710\) 0 0
\(711\) 7.31672 0.274398
\(712\) 54.4239i 2.03962i
\(713\) − 12.7565i − 0.477736i
\(714\) −16.9602 −0.634719
\(715\) 0 0
\(716\) 123.508 4.61572
\(717\) − 3.18702i − 0.119021i
\(718\) − 65.0495i − 2.42762i
\(719\) −35.0267 −1.30628 −0.653138 0.757239i \(-0.726548\pi\)
−0.653138 + 0.757239i \(0.726548\pi\)
\(720\) 0 0
\(721\) 38.5482 1.43561
\(722\) 12.4349i 0.462781i
\(723\) 11.1482i 0.414606i
\(724\) −17.3068 −0.643202
\(725\) 0 0
\(726\) −3.34243 −0.124049
\(727\) − 22.4518i − 0.832691i −0.909206 0.416346i \(-0.863311\pi\)
0.909206 0.416346i \(-0.136689\pi\)
\(728\) − 162.768i − 6.03259i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.4552 −0.460671
\(732\) 28.8704i 1.06708i
\(733\) − 15.0028i − 0.554140i −0.960850 0.277070i \(-0.910637\pi\)
0.960850 0.277070i \(-0.0893635\pi\)
\(734\) −23.5435 −0.869007
\(735\) 0 0
\(736\) 44.1795 1.62848
\(737\) − 43.3299i − 1.59608i
\(738\) − 27.5751i − 1.01505i
\(739\) 33.4801 1.23159 0.615793 0.787908i \(-0.288836\pi\)
0.615793 + 0.787908i \(0.288836\pi\)
\(740\) 0 0
\(741\) 19.1249 0.702569
\(742\) 11.4860i 0.421663i
\(743\) 6.75081i 0.247663i 0.992303 + 0.123832i \(0.0395183\pi\)
−0.992303 + 0.123832i \(0.960482\pi\)
\(744\) 15.2232 0.558111
\(745\) 0 0
\(746\) −13.9502 −0.510754
\(747\) − 13.6579i − 0.499718i
\(748\) − 20.2623i − 0.740863i
\(749\) −15.4527 −0.564628
\(750\) 0 0
\(751\) 28.0482 1.02349 0.511747 0.859136i \(-0.328999\pi\)
0.511747 + 0.859136i \(0.328999\pi\)
\(752\) − 30.0745i − 1.09670i
\(753\) − 3.23388i − 0.117849i
\(754\) 13.0943 0.476865
\(755\) 0 0
\(756\) 21.8278 0.793871
\(757\) − 33.1698i − 1.20558i −0.797901 0.602789i \(-0.794056\pi\)
0.797901 0.602789i \(-0.205944\pi\)
\(758\) 51.1155i 1.85660i
\(759\) 17.8019 0.646167
\(760\) 0 0
\(761\) −12.0982 −0.438560 −0.219280 0.975662i \(-0.570371\pi\)
−0.219280 + 0.975662i \(0.570371\pi\)
\(762\) − 54.5758i − 1.97707i
\(763\) − 1.15931i − 0.0419700i
\(764\) −31.4239 −1.13688
\(765\) 0 0
\(766\) −38.3897 −1.38708
\(767\) − 43.3727i − 1.56610i
\(768\) − 24.2996i − 0.876835i
\(769\) 42.5811 1.53551 0.767756 0.640742i \(-0.221373\pi\)
0.767756 + 0.640742i \(0.221373\pi\)
\(770\) 0 0
\(771\) −3.96761 −0.142890
\(772\) 0.653695i 0.0235270i
\(773\) 6.87342i 0.247220i 0.992331 + 0.123610i \(0.0394471\pi\)
−0.992331 + 0.123610i \(0.960553\pi\)
\(774\) 22.9311 0.824240
\(775\) 0 0
\(776\) −94.3483 −3.38691
\(777\) − 27.2095i − 0.976134i
\(778\) − 40.6482i − 1.45731i
\(779\) −40.2748 −1.44300
\(780\) 0 0
\(781\) −18.3390 −0.656222
\(782\) − 20.6281i − 0.737659i
\(783\) 1.00000i 0.0357371i
\(784\) −124.991 −4.46397
\(785\) 0 0
\(786\) −21.1128 −0.753068
\(787\) 4.51935i 0.161097i 0.996751 + 0.0805487i \(0.0256673\pi\)
−0.996751 + 0.0805487i \(0.974333\pi\)
\(788\) 6.88806i 0.245377i
\(789\) 16.6865 0.594056
\(790\) 0 0
\(791\) 67.7892 2.41031
\(792\) 21.2442i 0.754879i
\(793\) 31.5671i 1.12098i
\(794\) −68.3961 −2.42729
\(795\) 0 0
\(796\) 120.146 4.25845
\(797\) − 13.9670i − 0.494736i −0.968922 0.247368i \(-0.920434\pi\)
0.968922 0.247368i \(-0.0795656\pi\)
\(798\) − 45.6060i − 1.61443i
\(799\) −5.07972 −0.179708
\(800\) 0 0
\(801\) −7.98017 −0.281966
\(802\) − 25.0366i − 0.884074i
\(803\) − 22.0668i − 0.778722i
\(804\) 64.6191 2.27894
\(805\) 0 0
\(806\) 29.2288 1.02954
\(807\) − 7.94329i − 0.279617i
\(808\) 86.9273i 3.05809i
\(809\) −8.18148 −0.287646 −0.143823 0.989603i \(-0.545940\pi\)
−0.143823 + 0.989603i \(0.545940\pi\)
\(810\) 0 0
\(811\) −44.4011 −1.55913 −0.779566 0.626320i \(-0.784560\pi\)
−0.779566 + 0.626320i \(0.784560\pi\)
\(812\) − 21.8278i − 0.766007i
\(813\) − 17.3087i − 0.607042i
\(814\) 46.5021 1.62990
\(815\) 0 0
\(816\) 11.6075 0.406345
\(817\) − 33.4920i − 1.17174i
\(818\) − 44.9761i − 1.57255i
\(819\) 23.8667 0.833969
\(820\) 0 0
\(821\) 8.73119 0.304721 0.152360 0.988325i \(-0.451313\pi\)
0.152360 + 0.988325i \(0.451313\pi\)
\(822\) 44.8691i 1.56499i
\(823\) − 39.1844i − 1.36588i −0.730473 0.682942i \(-0.760700\pi\)
0.730473 0.682942i \(-0.239300\pi\)
\(824\) −55.9508 −1.94914
\(825\) 0 0
\(826\) −103.428 −3.59873
\(827\) − 6.33428i − 0.220264i −0.993917 0.110132i \(-0.964873\pi\)
0.993917 0.110132i \(-0.0351274\pi\)
\(828\) 26.5484i 0.922621i
\(829\) −1.36706 −0.0474798 −0.0237399 0.999718i \(-0.507557\pi\)
−0.0237399 + 0.999718i \(0.507557\pi\)
\(830\) 0 0
\(831\) −10.2791 −0.356579
\(832\) 17.0113i 0.589762i
\(833\) 21.1116i 0.731473i
\(834\) 17.5786 0.608699
\(835\) 0 0
\(836\) 54.4853 1.88441
\(837\) 2.23218i 0.0771554i
\(838\) 67.1769i 2.32059i
\(839\) 55.7902 1.92609 0.963046 0.269339i \(-0.0868051\pi\)
0.963046 + 0.269339i \(0.0868051\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 6.86919i − 0.236728i
\(843\) 4.57869i 0.157698i
\(844\) −108.439 −3.73264
\(845\) 0 0
\(846\) 9.35221 0.321536
\(847\) 6.09218i 0.209330i
\(848\) − 7.86098i − 0.269947i
\(849\) 19.2431 0.660421
\(850\) 0 0
\(851\) 33.0939 1.13444
\(852\) − 27.3495i − 0.936977i
\(853\) 6.42812i 0.220095i 0.993926 + 0.110047i \(0.0351003\pi\)
−0.993926 + 0.110047i \(0.964900\pi\)
\(854\) 75.2762 2.57590
\(855\) 0 0
\(856\) 22.4288 0.766600
\(857\) − 35.0274i − 1.19651i −0.801304 0.598257i \(-0.795860\pi\)
0.801304 0.598257i \(-0.204140\pi\)
\(858\) 40.7891i 1.39252i
\(859\) −18.4412 −0.629207 −0.314603 0.949223i \(-0.601872\pi\)
−0.314603 + 0.949223i \(0.601872\pi\)
\(860\) 0 0
\(861\) −50.2606 −1.71288
\(862\) 0.388055i 0.0132172i
\(863\) 7.23911i 0.246422i 0.992380 + 0.123211i \(0.0393192\pi\)
−0.992380 + 0.123211i \(0.960681\pi\)
\(864\) −7.73067 −0.263003
\(865\) 0 0
\(866\) 85.7048 2.91237
\(867\) 15.0394i 0.510766i
\(868\) − 48.7237i − 1.65379i
\(869\) 22.7918 0.773160
\(870\) 0 0
\(871\) 70.6549 2.39405
\(872\) 1.68269i 0.0569830i
\(873\) − 13.8343i − 0.468219i
\(874\) 55.4689 1.87626
\(875\) 0 0
\(876\) 32.9089 1.11189
\(877\) − 24.6324i − 0.831777i −0.909416 0.415889i \(-0.863471\pi\)
0.909416 0.415889i \(-0.136529\pi\)
\(878\) 46.7422i 1.57747i
\(879\) 14.6045 0.492597
\(880\) 0 0
\(881\) 26.2145 0.883190 0.441595 0.897214i \(-0.354413\pi\)
0.441595 + 0.897214i \(0.354413\pi\)
\(882\) − 38.8683i − 1.30876i
\(883\) 10.7656i 0.362290i 0.983456 + 0.181145i \(0.0579803\pi\)
−0.983456 + 0.181145i \(0.942020\pi\)
\(884\) 33.0402 1.11126
\(885\) 0 0
\(886\) −89.7911 −3.01659
\(887\) 6.27796i 0.210793i 0.994430 + 0.105397i \(0.0336112\pi\)
−0.994430 + 0.105397i \(0.966389\pi\)
\(888\) 39.4932i 1.32531i
\(889\) −99.4743 −3.33626
\(890\) 0 0
\(891\) −3.11503 −0.104358
\(892\) 104.179i 3.48817i
\(893\) − 13.6594i − 0.457094i
\(894\) −61.1824 −2.04625
\(895\) 0 0
\(896\) −32.0818 −1.07178
\(897\) 29.0282i 0.969223i
\(898\) 93.1949i 3.10995i
\(899\) 2.23218 0.0744474
\(900\) 0 0
\(901\) −1.32776 −0.0442340
\(902\) − 85.8973i − 2.86007i
\(903\) − 41.7960i − 1.39088i
\(904\) −98.3927 −3.27249
\(905\) 0 0
\(906\) −44.6221 −1.48247
\(907\) 21.7954i 0.723704i 0.932235 + 0.361852i \(0.117855\pi\)
−0.932235 + 0.361852i \(0.882145\pi\)
\(908\) 18.9225i 0.627966i
\(909\) −12.7461 −0.422763
\(910\) 0 0
\(911\) −5.56422 −0.184351 −0.0921753 0.995743i \(-0.529382\pi\)
−0.0921753 + 0.995743i \(0.529382\pi\)
\(912\) 31.2127i 1.03355i
\(913\) − 42.5449i − 1.40803i
\(914\) −23.0406 −0.762114
\(915\) 0 0
\(916\) −73.0136 −2.41244
\(917\) 38.4819i 1.27078i
\(918\) 3.60957i 0.119134i
\(919\) 7.76705 0.256211 0.128106 0.991761i \(-0.459110\pi\)
0.128106 + 0.991761i \(0.459110\pi\)
\(920\) 0 0
\(921\) −12.3324 −0.406368
\(922\) − 89.3841i − 2.94371i
\(923\) − 29.9041i − 0.984304i
\(924\) 67.9944 2.23685
\(925\) 0 0
\(926\) −79.7632 −2.62118
\(927\) − 8.20406i − 0.269457i
\(928\) 7.73067i 0.253772i
\(929\) 11.3588 0.372672 0.186336 0.982486i \(-0.440339\pi\)
0.186336 + 0.982486i \(0.440339\pi\)
\(930\) 0 0
\(931\) −56.7691 −1.86053
\(932\) 76.4503i 2.50421i
\(933\) 12.3084i 0.402957i
\(934\) 13.9443 0.456273
\(935\) 0 0
\(936\) −34.6413 −1.13229
\(937\) 32.7813i 1.07092i 0.844561 + 0.535460i \(0.179862\pi\)
−0.844561 + 0.535460i \(0.820138\pi\)
\(938\) − 168.487i − 5.50128i
\(939\) 16.7306 0.545984
\(940\) 0 0
\(941\) −13.3074 −0.433808 −0.216904 0.976193i \(-0.569596\pi\)
−0.216904 + 0.976193i \(0.569596\pi\)
\(942\) 25.9174i 0.844436i
\(943\) − 61.1302i − 1.99067i
\(944\) 70.7862 2.30390
\(945\) 0 0
\(946\) 71.4310 2.32242
\(947\) 31.9463i 1.03811i 0.854740 + 0.519057i \(0.173717\pi\)
−0.854740 + 0.519057i \(0.826283\pi\)
\(948\) 33.9901i 1.10395i
\(949\) 35.9827 1.16805
\(950\) 0 0
\(951\) 10.9429 0.354849
\(952\) − 44.8687i − 1.45420i
\(953\) 53.5304i 1.73402i 0.498292 + 0.867009i \(0.333961\pi\)
−0.498292 + 0.867009i \(0.666039\pi\)
\(954\) 2.44451 0.0791440
\(955\) 0 0
\(956\) 14.8054 0.478840
\(957\) 3.11503i 0.100695i
\(958\) 34.6133i 1.11831i
\(959\) 81.7821 2.64088
\(960\) 0 0
\(961\) −26.0174 −0.839270
\(962\) 75.8274i 2.44477i
\(963\) 3.28873i 0.105978i
\(964\) −51.7893 −1.66802
\(965\) 0 0
\(966\) 69.2219 2.22718
\(967\) 16.9490i 0.545044i 0.962150 + 0.272522i \(0.0878578\pi\)
−0.962150 + 0.272522i \(0.912142\pi\)
\(968\) − 8.84250i − 0.284209i
\(969\) 5.27196 0.169360
\(970\) 0 0
\(971\) −28.5476 −0.916135 −0.458067 0.888917i \(-0.651458\pi\)
−0.458067 + 0.888917i \(0.651458\pi\)
\(972\) − 4.64553i − 0.149005i
\(973\) − 32.0402i − 1.02716i
\(974\) −64.1242 −2.05467
\(975\) 0 0
\(976\) −51.5189 −1.64908
\(977\) − 30.8519i − 0.987040i −0.869734 0.493520i \(-0.835710\pi\)
0.869734 0.493520i \(-0.164290\pi\)
\(978\) − 31.6054i − 1.01063i
\(979\) −24.8585 −0.794481
\(980\) 0 0
\(981\) −0.246732 −0.00787755
\(982\) − 53.2895i − 1.70054i
\(983\) − 25.9915i − 0.829000i −0.910049 0.414500i \(-0.863956\pi\)
0.910049 0.414500i \(-0.136044\pi\)
\(984\) 72.9508 2.32559
\(985\) 0 0
\(986\) 3.60957 0.114952
\(987\) − 17.0461i − 0.542583i
\(988\) 88.8451i 2.82654i
\(989\) 50.8350 1.61646
\(990\) 0 0
\(991\) −3.17860 −0.100972 −0.0504858 0.998725i \(-0.516077\pi\)
−0.0504858 + 0.998725i \(0.516077\pi\)
\(992\) 17.2562i 0.547886i
\(993\) − 19.1431i − 0.607487i
\(994\) −71.3105 −2.26183
\(995\) 0 0
\(996\) 63.4484 2.01044
\(997\) 31.6331i 1.00183i 0.865496 + 0.500916i \(0.167003\pi\)
−0.865496 + 0.500916i \(0.832997\pi\)
\(998\) 54.6982i 1.73144i
\(999\) −5.79088 −0.183215
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.p.349.3 16
5.2 odd 4 2175.2.a.bd.1.7 yes 8
5.3 odd 4 2175.2.a.bc.1.2 8
5.4 even 2 inner 2175.2.c.p.349.14 16
15.2 even 4 6525.2.a.by.1.2 8
15.8 even 4 6525.2.a.bz.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.2 8 5.3 odd 4
2175.2.a.bd.1.7 yes 8 5.2 odd 4
2175.2.c.p.349.3 16 1.1 even 1 trivial
2175.2.c.p.349.14 16 5.4 even 2 inner
6525.2.a.by.1.2 8 15.2 even 4
6525.2.a.bz.1.7 8 15.8 even 4