Properties

Label 2175.2.c.p.349.2
Level $2175$
Weight $2$
Character 2175.349
Analytic conductor $17.367$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(349,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 308x^{12} + 1671x^{10} + 4568x^{8} + 5616x^{6} + 2105x^{4} + 256x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.2
Root \(-2.59587i\) of defining polynomial
Character \(\chi\) \(=\) 2175.349
Dual form 2175.2.c.p.349.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59587i q^{2} +1.00000i q^{3} -4.73855 q^{4} +2.59587 q^{6} +3.93826i q^{7} +7.10893i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-2.59587i q^{2} +1.00000i q^{3} -4.73855 q^{4} +2.59587 q^{6} +3.93826i q^{7} +7.10893i q^{8} -1.00000 q^{9} +2.24645 q^{11} -4.73855i q^{12} +2.09464i q^{13} +10.2232 q^{14} +8.97678 q^{16} -6.95310i q^{17} +2.59587i q^{18} -4.29591 q^{19} -3.93826 q^{21} -5.83149i q^{22} -5.19955i q^{23} -7.10893 q^{24} +5.43743 q^{26} -1.00000i q^{27} -18.6617i q^{28} -1.00000 q^{29} +2.25035 q^{31} -9.08471i q^{32} +2.24645i q^{33} -18.0494 q^{34} +4.73855 q^{36} +10.5280i q^{37} +11.1516i q^{38} -2.09464 q^{39} -2.66629 q^{41} +10.2232i q^{42} +6.03681i q^{43} -10.6449 q^{44} -13.4974 q^{46} +7.74829i q^{47} +8.97678i q^{48} -8.50991 q^{49} +6.95310 q^{51} -9.92559i q^{52} -1.41309i q^{53} -2.59587 q^{54} -27.9968 q^{56} -4.29591i q^{57} +2.59587i q^{58} -5.76800 q^{59} -10.9192 q^{61} -5.84162i q^{62} -3.93826i q^{63} -5.62918 q^{64} +5.83149 q^{66} +11.7471i q^{67} +32.9476i q^{68} +5.19955 q^{69} -4.55691 q^{71} -7.10893i q^{72} +12.3564i q^{73} +27.3294 q^{74} +20.3564 q^{76} +8.84710i q^{77} +5.43743i q^{78} -14.4098 q^{79} +1.00000 q^{81} +6.92135i q^{82} -3.81272i q^{83} +18.6617 q^{84} +15.6708 q^{86} -1.00000i q^{87} +15.9699i q^{88} +2.07340 q^{89} -8.24926 q^{91} +24.6383i q^{92} +2.25035i q^{93} +20.1136 q^{94} +9.08471 q^{96} -12.0068i q^{97} +22.0906i q^{98} -2.24645 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 24 q^{4} + 4 q^{6} - 16 q^{9} + 12 q^{11} - 18 q^{14} + 64 q^{16} - 4 q^{21} - 6 q^{24} + 36 q^{26} - 16 q^{29} + 16 q^{31} + 26 q^{34} + 24 q^{36} + 12 q^{39} + 4 q^{41} + 30 q^{44} + 48 q^{46} - 76 q^{49} + 24 q^{51} - 4 q^{54} + 116 q^{56} - 36 q^{59} + 24 q^{61} - 42 q^{64} - 6 q^{66} - 28 q^{69} + 48 q^{71} + 44 q^{74} - 20 q^{79} + 16 q^{81} + 28 q^{84} + 16 q^{86} - 68 q^{89} + 52 q^{91} + 86 q^{94} - 4 q^{96} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.59587i − 1.83556i −0.397090 0.917779i \(-0.629980\pi\)
0.397090 0.917779i \(-0.370020\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.73855 −2.36928
\(5\) 0 0
\(6\) 2.59587 1.05976
\(7\) 3.93826i 1.48852i 0.667888 + 0.744262i \(0.267198\pi\)
−0.667888 + 0.744262i \(0.732802\pi\)
\(8\) 7.10893i 2.51339i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.24645 0.677329 0.338665 0.940907i \(-0.390025\pi\)
0.338665 + 0.940907i \(0.390025\pi\)
\(12\) − 4.73855i − 1.36790i
\(13\) 2.09464i 0.580950i 0.956883 + 0.290475i \(0.0938133\pi\)
−0.956883 + 0.290475i \(0.906187\pi\)
\(14\) 10.2232 2.73227
\(15\) 0 0
\(16\) 8.97678 2.24420
\(17\) − 6.95310i − 1.68637i −0.537620 0.843187i \(-0.680676\pi\)
0.537620 0.843187i \(-0.319324\pi\)
\(18\) 2.59587i 0.611853i
\(19\) −4.29591 −0.985549 −0.492774 0.870157i \(-0.664017\pi\)
−0.492774 + 0.870157i \(0.664017\pi\)
\(20\) 0 0
\(21\) −3.93826 −0.859399
\(22\) − 5.83149i − 1.24328i
\(23\) − 5.19955i − 1.08418i −0.840320 0.542090i \(-0.817633\pi\)
0.840320 0.542090i \(-0.182367\pi\)
\(24\) −7.10893 −1.45111
\(25\) 0 0
\(26\) 5.43743 1.06637
\(27\) − 1.00000i − 0.192450i
\(28\) − 18.6617i − 3.52672i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 2.25035 0.404175 0.202087 0.979367i \(-0.435227\pi\)
0.202087 + 0.979367i \(0.435227\pi\)
\(32\) − 9.08471i − 1.60596i
\(33\) 2.24645i 0.391056i
\(34\) −18.0494 −3.09544
\(35\) 0 0
\(36\) 4.73855 0.789759
\(37\) 10.5280i 1.73079i 0.501086 + 0.865397i \(0.332934\pi\)
−0.501086 + 0.865397i \(0.667066\pi\)
\(38\) 11.1516i 1.80903i
\(39\) −2.09464 −0.335412
\(40\) 0 0
\(41\) −2.66629 −0.416405 −0.208202 0.978086i \(-0.566761\pi\)
−0.208202 + 0.978086i \(0.566761\pi\)
\(42\) 10.2232i 1.57748i
\(43\) 6.03681i 0.920605i 0.887762 + 0.460302i \(0.152259\pi\)
−0.887762 + 0.460302i \(0.847741\pi\)
\(44\) −10.6449 −1.60478
\(45\) 0 0
\(46\) −13.4974 −1.99008
\(47\) 7.74829i 1.13020i 0.825021 + 0.565102i \(0.191163\pi\)
−0.825021 + 0.565102i \(0.808837\pi\)
\(48\) 8.97678i 1.29569i
\(49\) −8.50991 −1.21570
\(50\) 0 0
\(51\) 6.95310 0.973629
\(52\) − 9.92559i − 1.37643i
\(53\) − 1.41309i − 0.194103i −0.995279 0.0970513i \(-0.969059\pi\)
0.995279 0.0970513i \(-0.0309411\pi\)
\(54\) −2.59587 −0.353253
\(55\) 0 0
\(56\) −27.9968 −3.74124
\(57\) − 4.29591i − 0.569007i
\(58\) 2.59587i 0.340855i
\(59\) −5.76800 −0.750929 −0.375465 0.926837i \(-0.622517\pi\)
−0.375465 + 0.926837i \(0.622517\pi\)
\(60\) 0 0
\(61\) −10.9192 −1.39806 −0.699030 0.715092i \(-0.746385\pi\)
−0.699030 + 0.715092i \(0.746385\pi\)
\(62\) − 5.84162i − 0.741887i
\(63\) − 3.93826i − 0.496174i
\(64\) −5.62918 −0.703647
\(65\) 0 0
\(66\) 5.83149 0.717807
\(67\) 11.7471i 1.43514i 0.696487 + 0.717569i \(0.254745\pi\)
−0.696487 + 0.717569i \(0.745255\pi\)
\(68\) 32.9476i 3.99549i
\(69\) 5.19955 0.625952
\(70\) 0 0
\(71\) −4.55691 −0.540806 −0.270403 0.962747i \(-0.587157\pi\)
−0.270403 + 0.962747i \(0.587157\pi\)
\(72\) − 7.10893i − 0.837796i
\(73\) 12.3564i 1.44621i 0.690740 + 0.723103i \(0.257285\pi\)
−0.690740 + 0.723103i \(0.742715\pi\)
\(74\) 27.3294 3.17698
\(75\) 0 0
\(76\) 20.3564 2.33504
\(77\) 8.84710i 1.00822i
\(78\) 5.43743i 0.615668i
\(79\) −14.4098 −1.62122 −0.810612 0.585584i \(-0.800865\pi\)
−0.810612 + 0.585584i \(0.800865\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.92135i 0.764335i
\(83\) − 3.81272i − 0.418501i −0.977862 0.209250i \(-0.932898\pi\)
0.977862 0.209250i \(-0.0671024\pi\)
\(84\) 18.6617 2.03615
\(85\) 0 0
\(86\) 15.6708 1.68982
\(87\) − 1.00000i − 0.107211i
\(88\) 15.9699i 1.70239i
\(89\) 2.07340 0.219780 0.109890 0.993944i \(-0.464950\pi\)
0.109890 + 0.993944i \(0.464950\pi\)
\(90\) 0 0
\(91\) −8.24926 −0.864757
\(92\) 24.6383i 2.56872i
\(93\) 2.25035i 0.233350i
\(94\) 20.1136 2.07456
\(95\) 0 0
\(96\) 9.08471 0.927204
\(97\) − 12.0068i − 1.21911i −0.792745 0.609553i \(-0.791349\pi\)
0.792745 0.609553i \(-0.208651\pi\)
\(98\) 22.0906i 2.23149i
\(99\) −2.24645 −0.225776
\(100\) 0 0
\(101\) −15.8642 −1.57855 −0.789276 0.614039i \(-0.789544\pi\)
−0.789276 + 0.614039i \(0.789544\pi\)
\(102\) − 18.0494i − 1.78715i
\(103\) − 10.3119i − 1.01606i −0.861339 0.508031i \(-0.830373\pi\)
0.861339 0.508031i \(-0.169627\pi\)
\(104\) −14.8907 −1.46015
\(105\) 0 0
\(106\) −3.66820 −0.356287
\(107\) − 4.47645i − 0.432755i −0.976310 0.216378i \(-0.930576\pi\)
0.976310 0.216378i \(-0.0694242\pi\)
\(108\) 4.73855i 0.455967i
\(109\) −13.4783 −1.29098 −0.645492 0.763767i \(-0.723348\pi\)
−0.645492 + 0.763767i \(0.723348\pi\)
\(110\) 0 0
\(111\) −10.5280 −0.999275
\(112\) 35.3529i 3.34054i
\(113\) − 11.4525i − 1.07736i −0.842511 0.538679i \(-0.818923\pi\)
0.842511 0.538679i \(-0.181077\pi\)
\(114\) −11.1516 −1.04445
\(115\) 0 0
\(116\) 4.73855 0.439964
\(117\) − 2.09464i − 0.193650i
\(118\) 14.9730i 1.37838i
\(119\) 27.3831 2.51021
\(120\) 0 0
\(121\) −5.95347 −0.541225
\(122\) 28.3449i 2.56622i
\(123\) − 2.66629i − 0.240411i
\(124\) −10.6634 −0.957602
\(125\) 0 0
\(126\) −10.2232 −0.910757
\(127\) 3.23499i 0.287059i 0.989646 + 0.143529i \(0.0458451\pi\)
−0.989646 + 0.143529i \(0.954155\pi\)
\(128\) − 3.55679i − 0.314378i
\(129\) −6.03681 −0.531511
\(130\) 0 0
\(131\) −13.3567 −1.16698 −0.583489 0.812121i \(-0.698313\pi\)
−0.583489 + 0.812121i \(0.698313\pi\)
\(132\) − 10.6449i − 0.926521i
\(133\) − 16.9184i − 1.46701i
\(134\) 30.4940 2.63428
\(135\) 0 0
\(136\) 49.4291 4.23851
\(137\) − 4.35642i − 0.372194i −0.982531 0.186097i \(-0.940416\pi\)
0.982531 0.186097i \(-0.0595839\pi\)
\(138\) − 13.4974i − 1.14897i
\(139\) 18.4171 1.56212 0.781061 0.624455i \(-0.214679\pi\)
0.781061 + 0.624455i \(0.214679\pi\)
\(140\) 0 0
\(141\) −7.74829 −0.652523
\(142\) 11.8292i 0.992681i
\(143\) 4.70551i 0.393495i
\(144\) −8.97678 −0.748065
\(145\) 0 0
\(146\) 32.0756 2.65460
\(147\) − 8.50991i − 0.701885i
\(148\) − 49.8876i − 4.10073i
\(149\) −17.6427 −1.44535 −0.722674 0.691189i \(-0.757087\pi\)
−0.722674 + 0.691189i \(0.757087\pi\)
\(150\) 0 0
\(151\) 4.02381 0.327453 0.163726 0.986506i \(-0.447649\pi\)
0.163726 + 0.986506i \(0.447649\pi\)
\(152\) − 30.5393i − 2.47707i
\(153\) 6.95310i 0.562125i
\(154\) 22.9659 1.85065
\(155\) 0 0
\(156\) 9.92559 0.794683
\(157\) 7.70119i 0.614622i 0.951609 + 0.307311i \(0.0994292\pi\)
−0.951609 + 0.307311i \(0.900571\pi\)
\(158\) 37.4059i 2.97585i
\(159\) 1.41309 0.112065
\(160\) 0 0
\(161\) 20.4772 1.61383
\(162\) − 2.59587i − 0.203951i
\(163\) − 13.6829i − 1.07173i −0.844303 0.535866i \(-0.819985\pi\)
0.844303 0.535866i \(-0.180015\pi\)
\(164\) 12.6344 0.986578
\(165\) 0 0
\(166\) −9.89734 −0.768183
\(167\) 24.9607i 1.93151i 0.259449 + 0.965757i \(0.416459\pi\)
−0.259449 + 0.965757i \(0.583541\pi\)
\(168\) − 27.9968i − 2.16000i
\(169\) 8.61246 0.662497
\(170\) 0 0
\(171\) 4.29591 0.328516
\(172\) − 28.6057i − 2.18117i
\(173\) 19.9187i 1.51439i 0.653191 + 0.757194i \(0.273430\pi\)
−0.653191 + 0.757194i \(0.726570\pi\)
\(174\) −2.59587 −0.196793
\(175\) 0 0
\(176\) 20.1659 1.52006
\(177\) − 5.76800i − 0.433549i
\(178\) − 5.38227i − 0.403418i
\(179\) −10.8816 −0.813329 −0.406664 0.913578i \(-0.633308\pi\)
−0.406664 + 0.913578i \(0.633308\pi\)
\(180\) 0 0
\(181\) −13.9372 −1.03594 −0.517972 0.855398i \(-0.673313\pi\)
−0.517972 + 0.855398i \(0.673313\pi\)
\(182\) 21.4140i 1.58731i
\(183\) − 10.9192i − 0.807171i
\(184\) 36.9632 2.72497
\(185\) 0 0
\(186\) 5.84162 0.428329
\(187\) − 15.6198i − 1.14223i
\(188\) − 36.7157i − 2.67777i
\(189\) 3.93826 0.286466
\(190\) 0 0
\(191\) 13.3458 0.965670 0.482835 0.875711i \(-0.339607\pi\)
0.482835 + 0.875711i \(0.339607\pi\)
\(192\) − 5.62918i − 0.406251i
\(193\) 15.6337i 1.12534i 0.826683 + 0.562668i \(0.190225\pi\)
−0.826683 + 0.562668i \(0.809775\pi\)
\(194\) −31.1681 −2.23774
\(195\) 0 0
\(196\) 40.3247 2.88033
\(197\) 20.1140i 1.43306i 0.697556 + 0.716530i \(0.254271\pi\)
−0.697556 + 0.716530i \(0.745729\pi\)
\(198\) 5.83149i 0.414426i
\(199\) 9.27232 0.657297 0.328649 0.944452i \(-0.393407\pi\)
0.328649 + 0.944452i \(0.393407\pi\)
\(200\) 0 0
\(201\) −11.7471 −0.828578
\(202\) 41.1816i 2.89752i
\(203\) − 3.93826i − 0.276412i
\(204\) −32.9476 −2.30680
\(205\) 0 0
\(206\) −26.7684 −1.86504
\(207\) 5.19955i 0.361394i
\(208\) 18.8032i 1.30376i
\(209\) −9.65053 −0.667541
\(210\) 0 0
\(211\) −0.228998 −0.0157649 −0.00788245 0.999969i \(-0.502509\pi\)
−0.00788245 + 0.999969i \(0.502509\pi\)
\(212\) 6.69600i 0.459883i
\(213\) − 4.55691i − 0.312235i
\(214\) −11.6203 −0.794348
\(215\) 0 0
\(216\) 7.10893 0.483702
\(217\) 8.86247i 0.601624i
\(218\) 34.9879i 2.36968i
\(219\) −12.3564 −0.834968
\(220\) 0 0
\(221\) 14.5643 0.979699
\(222\) 27.3294i 1.83423i
\(223\) − 25.1117i − 1.68160i −0.541342 0.840802i \(-0.682084\pi\)
0.541342 0.840802i \(-0.317916\pi\)
\(224\) 35.7780 2.39052
\(225\) 0 0
\(226\) −29.7292 −1.97756
\(227\) 4.98706i 0.331003i 0.986210 + 0.165501i \(0.0529242\pi\)
−0.986210 + 0.165501i \(0.947076\pi\)
\(228\) 20.3564i 1.34813i
\(229\) −1.60591 −0.106122 −0.0530608 0.998591i \(-0.516898\pi\)
−0.0530608 + 0.998591i \(0.516898\pi\)
\(230\) 0 0
\(231\) −8.84710 −0.582096
\(232\) − 7.10893i − 0.466724i
\(233\) 6.65588i 0.436041i 0.975944 + 0.218021i \(0.0699600\pi\)
−0.975944 + 0.218021i \(0.930040\pi\)
\(234\) −5.43743 −0.355456
\(235\) 0 0
\(236\) 27.3320 1.77916
\(237\) − 14.4098i − 0.936014i
\(238\) − 71.0831i − 4.60763i
\(239\) −2.87227 −0.185792 −0.0928959 0.995676i \(-0.529612\pi\)
−0.0928959 + 0.995676i \(0.529612\pi\)
\(240\) 0 0
\(241\) 15.2768 0.984068 0.492034 0.870576i \(-0.336254\pi\)
0.492034 + 0.870576i \(0.336254\pi\)
\(242\) 15.4545i 0.993450i
\(243\) 1.00000i 0.0641500i
\(244\) 51.7412 3.31239
\(245\) 0 0
\(246\) −6.92135 −0.441289
\(247\) − 8.99840i − 0.572554i
\(248\) 15.9976i 1.01585i
\(249\) 3.81272 0.241621
\(250\) 0 0
\(251\) 10.8782 0.686627 0.343314 0.939221i \(-0.388451\pi\)
0.343314 + 0.939221i \(0.388451\pi\)
\(252\) 18.6617i 1.17557i
\(253\) − 11.6805i − 0.734348i
\(254\) 8.39761 0.526913
\(255\) 0 0
\(256\) −20.4913 −1.28071
\(257\) 18.0748i 1.12748i 0.825953 + 0.563739i \(0.190637\pi\)
−0.825953 + 0.563739i \(0.809363\pi\)
\(258\) 15.6708i 0.975621i
\(259\) −41.4621 −2.57633
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 34.6722i 2.14206i
\(263\) − 18.4454i − 1.13739i −0.822547 0.568697i \(-0.807448\pi\)
0.822547 0.568697i \(-0.192552\pi\)
\(264\) −15.9699 −0.982876
\(265\) 0 0
\(266\) −43.9180 −2.69279
\(267\) 2.07340i 0.126890i
\(268\) − 55.6643i − 3.40024i
\(269\) −11.6702 −0.711544 −0.355772 0.934573i \(-0.615782\pi\)
−0.355772 + 0.934573i \(0.615782\pi\)
\(270\) 0 0
\(271\) 20.2501 1.23011 0.615054 0.788485i \(-0.289134\pi\)
0.615054 + 0.788485i \(0.289134\pi\)
\(272\) − 62.4165i − 3.78455i
\(273\) − 8.24926i − 0.499268i
\(274\) −11.3087 −0.683184
\(275\) 0 0
\(276\) −24.6383 −1.48305
\(277\) − 3.66952i − 0.220480i −0.993905 0.110240i \(-0.964838\pi\)
0.993905 0.110240i \(-0.0351620\pi\)
\(278\) − 47.8085i − 2.86737i
\(279\) −2.25035 −0.134725
\(280\) 0 0
\(281\) 22.8056 1.36047 0.680233 0.732996i \(-0.261879\pi\)
0.680233 + 0.732996i \(0.261879\pi\)
\(282\) 20.1136i 1.19775i
\(283\) − 2.38657i − 0.141867i −0.997481 0.0709335i \(-0.977402\pi\)
0.997481 0.0709335i \(-0.0225978\pi\)
\(284\) 21.5932 1.28132
\(285\) 0 0
\(286\) 12.2149 0.722282
\(287\) − 10.5006i − 0.619828i
\(288\) 9.08471i 0.535321i
\(289\) −31.3456 −1.84386
\(290\) 0 0
\(291\) 12.0068 0.703852
\(292\) − 58.5514i − 3.42646i
\(293\) 19.4843i 1.13828i 0.822239 + 0.569142i \(0.192725\pi\)
−0.822239 + 0.569142i \(0.807275\pi\)
\(294\) −22.0906 −1.28835
\(295\) 0 0
\(296\) −74.8430 −4.35016
\(297\) − 2.24645i − 0.130352i
\(298\) 45.7982i 2.65302i
\(299\) 10.8912 0.629855
\(300\) 0 0
\(301\) −23.7745 −1.37034
\(302\) − 10.4453i − 0.601059i
\(303\) − 15.8642i − 0.911377i
\(304\) −38.5634 −2.21176
\(305\) 0 0
\(306\) 18.0494 1.03181
\(307\) 0.527333i 0.0300965i 0.999887 + 0.0150482i \(0.00479018\pi\)
−0.999887 + 0.0150482i \(0.995210\pi\)
\(308\) − 41.9225i − 2.38875i
\(309\) 10.3119 0.586624
\(310\) 0 0
\(311\) −7.89624 −0.447755 −0.223877 0.974617i \(-0.571871\pi\)
−0.223877 + 0.974617i \(0.571871\pi\)
\(312\) − 14.8907i − 0.843019i
\(313\) 10.0064i 0.565597i 0.959179 + 0.282799i \(0.0912628\pi\)
−0.959179 + 0.282799i \(0.908737\pi\)
\(314\) 19.9913 1.12818
\(315\) 0 0
\(316\) 68.2814 3.84113
\(317\) − 32.5401i − 1.82763i −0.406125 0.913817i \(-0.633120\pi\)
0.406125 0.913817i \(-0.366880\pi\)
\(318\) − 3.66820i − 0.205702i
\(319\) −2.24645 −0.125777
\(320\) 0 0
\(321\) 4.47645 0.249851
\(322\) − 53.1562i − 2.96228i
\(323\) 29.8699i 1.66200i
\(324\) −4.73855 −0.263253
\(325\) 0 0
\(326\) −35.5192 −1.96723
\(327\) − 13.4783i − 0.745350i
\(328\) − 18.9545i − 1.04659i
\(329\) −30.5148 −1.68233
\(330\) 0 0
\(331\) 22.9411 1.26096 0.630480 0.776206i \(-0.282858\pi\)
0.630480 + 0.776206i \(0.282858\pi\)
\(332\) 18.0668i 0.991544i
\(333\) − 10.5280i − 0.576932i
\(334\) 64.7947 3.54541
\(335\) 0 0
\(336\) −35.3529 −1.92866
\(337\) − 16.0039i − 0.871789i −0.899998 0.435894i \(-0.856432\pi\)
0.899998 0.435894i \(-0.143568\pi\)
\(338\) − 22.3569i − 1.21605i
\(339\) 11.4525 0.622013
\(340\) 0 0
\(341\) 5.05529 0.273760
\(342\) − 11.1516i − 0.603011i
\(343\) − 5.94642i − 0.321076i
\(344\) −42.9153 −2.31384
\(345\) 0 0
\(346\) 51.7063 2.77975
\(347\) − 22.9990i − 1.23465i −0.786707 0.617326i \(-0.788216\pi\)
0.786707 0.617326i \(-0.211784\pi\)
\(348\) 4.73855i 0.254013i
\(349\) −24.3108 −1.30133 −0.650664 0.759366i \(-0.725509\pi\)
−0.650664 + 0.759366i \(0.725509\pi\)
\(350\) 0 0
\(351\) 2.09464 0.111804
\(352\) − 20.4083i − 1.08777i
\(353\) − 29.2685i − 1.55780i −0.627146 0.778902i \(-0.715777\pi\)
0.627146 0.778902i \(-0.284223\pi\)
\(354\) −14.9730 −0.795805
\(355\) 0 0
\(356\) −9.82490 −0.520719
\(357\) 27.3831i 1.44927i
\(358\) 28.2472i 1.49291i
\(359\) −18.5090 −0.976868 −0.488434 0.872601i \(-0.662432\pi\)
−0.488434 + 0.872601i \(0.662432\pi\)
\(360\) 0 0
\(361\) −0.545179 −0.0286936
\(362\) 36.1792i 1.90154i
\(363\) − 5.95347i − 0.312476i
\(364\) 39.0896 2.04885
\(365\) 0 0
\(366\) −28.3449 −1.48161
\(367\) − 0.896398i − 0.0467916i −0.999726 0.0233958i \(-0.992552\pi\)
0.999726 0.0233958i \(-0.00744779\pi\)
\(368\) − 46.6752i − 2.43311i
\(369\) 2.66629 0.138802
\(370\) 0 0
\(371\) 5.56511 0.288926
\(372\) − 10.6634i − 0.552872i
\(373\) 4.64559i 0.240540i 0.992741 + 0.120270i \(0.0383760\pi\)
−0.992741 + 0.120270i \(0.961624\pi\)
\(374\) −40.5469 −2.09663
\(375\) 0 0
\(376\) −55.0821 −2.84064
\(377\) − 2.09464i − 0.107880i
\(378\) − 10.2232i − 0.525826i
\(379\) 32.4863 1.66871 0.834356 0.551226i \(-0.185840\pi\)
0.834356 + 0.551226i \(0.185840\pi\)
\(380\) 0 0
\(381\) −3.23499 −0.165733
\(382\) − 34.6441i − 1.77254i
\(383\) 9.48311i 0.484564i 0.970206 + 0.242282i \(0.0778959\pi\)
−0.970206 + 0.242282i \(0.922104\pi\)
\(384\) 3.55679 0.181507
\(385\) 0 0
\(386\) 40.5830 2.06562
\(387\) − 6.03681i − 0.306868i
\(388\) 56.8949i 2.88840i
\(389\) −33.9509 −1.72138 −0.860689 0.509132i \(-0.829967\pi\)
−0.860689 + 0.509132i \(0.829967\pi\)
\(390\) 0 0
\(391\) −36.1530 −1.82833
\(392\) − 60.4964i − 3.05553i
\(393\) − 13.3567i − 0.673755i
\(394\) 52.2132 2.63047
\(395\) 0 0
\(396\) 10.6449 0.534927
\(397\) 25.0892i 1.25919i 0.776923 + 0.629596i \(0.216780\pi\)
−0.776923 + 0.629596i \(0.783220\pi\)
\(398\) − 24.0698i − 1.20651i
\(399\) 16.9184 0.846980
\(400\) 0 0
\(401\) −4.85814 −0.242604 −0.121302 0.992616i \(-0.538707\pi\)
−0.121302 + 0.992616i \(0.538707\pi\)
\(402\) 30.4940i 1.52090i
\(403\) 4.71368i 0.234805i
\(404\) 75.1736 3.74003
\(405\) 0 0
\(406\) −10.2232 −0.507370
\(407\) 23.6506i 1.17232i
\(408\) 49.4291i 2.44711i
\(409\) −14.6604 −0.724911 −0.362456 0.932001i \(-0.618062\pi\)
−0.362456 + 0.932001i \(0.618062\pi\)
\(410\) 0 0
\(411\) 4.35642 0.214886
\(412\) 48.8635i 2.40733i
\(413\) − 22.7159i − 1.11778i
\(414\) 13.4974 0.663359
\(415\) 0 0
\(416\) 19.0292 0.932985
\(417\) 18.4171i 0.901891i
\(418\) 25.0515i 1.22531i
\(419\) 18.4123 0.899502 0.449751 0.893154i \(-0.351513\pi\)
0.449751 + 0.893154i \(0.351513\pi\)
\(420\) 0 0
\(421\) 29.1489 1.42063 0.710316 0.703883i \(-0.248552\pi\)
0.710316 + 0.703883i \(0.248552\pi\)
\(422\) 0.594451i 0.0289374i
\(423\) − 7.74829i − 0.376735i
\(424\) 10.0456 0.487855
\(425\) 0 0
\(426\) −11.8292 −0.573125
\(427\) − 43.0027i − 2.08105i
\(428\) 21.2119i 1.02532i
\(429\) −4.70551 −0.227184
\(430\) 0 0
\(431\) −2.05315 −0.0988966 −0.0494483 0.998777i \(-0.515746\pi\)
−0.0494483 + 0.998777i \(0.515746\pi\)
\(432\) − 8.97678i − 0.431896i
\(433\) − 18.7820i − 0.902603i −0.892371 0.451302i \(-0.850960\pi\)
0.892371 0.451302i \(-0.149040\pi\)
\(434\) 23.0058 1.10432
\(435\) 0 0
\(436\) 63.8675 3.05870
\(437\) 22.3368i 1.06851i
\(438\) 32.0756i 1.53263i
\(439\) 33.7889 1.61266 0.806329 0.591467i \(-0.201451\pi\)
0.806329 + 0.591467i \(0.201451\pi\)
\(440\) 0 0
\(441\) 8.50991 0.405234
\(442\) − 37.8070i − 1.79830i
\(443\) 24.2962i 1.15435i 0.816622 + 0.577173i \(0.195844\pi\)
−0.816622 + 0.577173i \(0.804156\pi\)
\(444\) 49.8876 2.36756
\(445\) 0 0
\(446\) −65.1868 −3.08668
\(447\) − 17.6427i − 0.834472i
\(448\) − 22.1692i − 1.04740i
\(449\) 21.0976 0.995656 0.497828 0.867276i \(-0.334131\pi\)
0.497828 + 0.867276i \(0.334131\pi\)
\(450\) 0 0
\(451\) −5.98968 −0.282043
\(452\) 54.2682i 2.55256i
\(453\) 4.02381i 0.189055i
\(454\) 12.9458 0.607575
\(455\) 0 0
\(456\) 30.5393 1.43013
\(457\) − 8.70983i − 0.407429i −0.979030 0.203714i \(-0.934699\pi\)
0.979030 0.203714i \(-0.0653014\pi\)
\(458\) 4.16874i 0.194793i
\(459\) −6.95310 −0.324543
\(460\) 0 0
\(461\) 29.5424 1.37592 0.687962 0.725746i \(-0.258505\pi\)
0.687962 + 0.725746i \(0.258505\pi\)
\(462\) 22.9659i 1.06847i
\(463\) 37.3067i 1.73379i 0.498493 + 0.866894i \(0.333887\pi\)
−0.498493 + 0.866894i \(0.666113\pi\)
\(464\) −8.97678 −0.416737
\(465\) 0 0
\(466\) 17.2778 0.800379
\(467\) − 30.2144i − 1.39816i −0.715045 0.699079i \(-0.753594\pi\)
0.715045 0.699079i \(-0.246406\pi\)
\(468\) 9.92559i 0.458810i
\(469\) −46.2632 −2.13624
\(470\) 0 0
\(471\) −7.70119 −0.354852
\(472\) − 41.0043i − 1.88738i
\(473\) 13.5614i 0.623553i
\(474\) −37.4059 −1.71811
\(475\) 0 0
\(476\) −129.756 −5.94738
\(477\) 1.41309i 0.0647009i
\(478\) 7.45605i 0.341032i
\(479\) −39.1511 −1.78886 −0.894430 0.447209i \(-0.852418\pi\)
−0.894430 + 0.447209i \(0.852418\pi\)
\(480\) 0 0
\(481\) −22.0524 −1.00551
\(482\) − 39.6567i − 1.80632i
\(483\) 20.4772i 0.931744i
\(484\) 28.2108 1.28231
\(485\) 0 0
\(486\) 2.59587 0.117751
\(487\) 23.9182i 1.08384i 0.840430 + 0.541919i \(0.182302\pi\)
−0.840430 + 0.541919i \(0.817698\pi\)
\(488\) − 77.6239i − 3.51387i
\(489\) 13.6829 0.618764
\(490\) 0 0
\(491\) 4.40974 0.199009 0.0995044 0.995037i \(-0.468274\pi\)
0.0995044 + 0.995037i \(0.468274\pi\)
\(492\) 12.6344i 0.569601i
\(493\) 6.95310i 0.313152i
\(494\) −23.3587 −1.05096
\(495\) 0 0
\(496\) 20.2009 0.907047
\(497\) − 17.9463i − 0.805002i
\(498\) − 9.89734i − 0.443510i
\(499\) 37.0446 1.65834 0.829171 0.558995i \(-0.188813\pi\)
0.829171 + 0.558995i \(0.188813\pi\)
\(500\) 0 0
\(501\) −24.9607 −1.11516
\(502\) − 28.2385i − 1.26034i
\(503\) − 12.6691i − 0.564886i −0.959284 0.282443i \(-0.908855\pi\)
0.959284 0.282443i \(-0.0911448\pi\)
\(504\) 27.9968 1.24708
\(505\) 0 0
\(506\) −30.3211 −1.34794
\(507\) 8.61246i 0.382493i
\(508\) − 15.3292i − 0.680121i
\(509\) 11.7078 0.518939 0.259469 0.965751i \(-0.416452\pi\)
0.259469 + 0.965751i \(0.416452\pi\)
\(510\) 0 0
\(511\) −48.6627 −2.15271
\(512\) 46.0793i 2.03644i
\(513\) 4.29591i 0.189669i
\(514\) 46.9200 2.06955
\(515\) 0 0
\(516\) 28.6057 1.25930
\(517\) 17.4061i 0.765520i
\(518\) 107.630i 4.72900i
\(519\) −19.9187 −0.874332
\(520\) 0 0
\(521\) 0.0559550 0.00245143 0.00122572 0.999999i \(-0.499610\pi\)
0.00122572 + 0.999999i \(0.499610\pi\)
\(522\) − 2.59587i − 0.113618i
\(523\) − 0.256669i − 0.0112234i −0.999984 0.00561168i \(-0.998214\pi\)
0.999984 0.00561168i \(-0.00178626\pi\)
\(524\) 63.2913 2.76489
\(525\) 0 0
\(526\) −47.8819 −2.08775
\(527\) − 15.6469i − 0.681590i
\(528\) 20.1659i 0.877607i
\(529\) −4.03530 −0.175448
\(530\) 0 0
\(531\) 5.76800 0.250310
\(532\) 80.1688i 3.47576i
\(533\) − 5.58493i − 0.241910i
\(534\) 5.38227 0.232914
\(535\) 0 0
\(536\) −83.5095 −3.60706
\(537\) − 10.8816i − 0.469576i
\(538\) 30.2943i 1.30608i
\(539\) −19.1171 −0.823430
\(540\) 0 0
\(541\) 1.88887 0.0812090 0.0406045 0.999175i \(-0.487072\pi\)
0.0406045 + 0.999175i \(0.487072\pi\)
\(542\) − 52.5668i − 2.25794i
\(543\) − 13.9372i − 0.598102i
\(544\) −63.1669 −2.70826
\(545\) 0 0
\(546\) −21.4140 −0.916436
\(547\) 0.193341i 0.00826668i 0.999991 + 0.00413334i \(0.00131569\pi\)
−0.999991 + 0.00413334i \(0.998684\pi\)
\(548\) 20.6431i 0.881831i
\(549\) 10.9192 0.466020
\(550\) 0 0
\(551\) 4.29591 0.183012
\(552\) 36.9632i 1.57326i
\(553\) − 56.7494i − 2.41323i
\(554\) −9.52561 −0.404704
\(555\) 0 0
\(556\) −87.2706 −3.70110
\(557\) 26.4282i 1.11980i 0.828561 + 0.559899i \(0.189160\pi\)
−0.828561 + 0.559899i \(0.810840\pi\)
\(558\) 5.84162i 0.247296i
\(559\) −12.6450 −0.534825
\(560\) 0 0
\(561\) 15.6198 0.659467
\(562\) − 59.2003i − 2.49722i
\(563\) − 6.18961i − 0.260861i −0.991457 0.130430i \(-0.958364\pi\)
0.991457 0.130430i \(-0.0416359\pi\)
\(564\) 36.7157 1.54601
\(565\) 0 0
\(566\) −6.19523 −0.260405
\(567\) 3.93826i 0.165391i
\(568\) − 32.3948i − 1.35926i
\(569\) 15.9034 0.666705 0.333353 0.942802i \(-0.391820\pi\)
0.333353 + 0.942802i \(0.391820\pi\)
\(570\) 0 0
\(571\) −16.8555 −0.705380 −0.352690 0.935740i \(-0.614733\pi\)
−0.352690 + 0.935740i \(0.614733\pi\)
\(572\) − 22.2973i − 0.932297i
\(573\) 13.3458i 0.557530i
\(574\) −27.2581 −1.13773
\(575\) 0 0
\(576\) 5.62918 0.234549
\(577\) 23.1237i 0.962650i 0.876542 + 0.481325i \(0.159844\pi\)
−0.876542 + 0.481325i \(0.840156\pi\)
\(578\) 81.3692i 3.38451i
\(579\) −15.6337 −0.649713
\(580\) 0 0
\(581\) 15.0155 0.622948
\(582\) − 31.1681i − 1.29196i
\(583\) − 3.17443i − 0.131471i
\(584\) −87.8408 −3.63488
\(585\) 0 0
\(586\) 50.5787 2.08939
\(587\) 7.80902i 0.322313i 0.986929 + 0.161156i \(0.0515224\pi\)
−0.986929 + 0.161156i \(0.948478\pi\)
\(588\) 40.3247i 1.66296i
\(589\) −9.66730 −0.398334
\(590\) 0 0
\(591\) −20.1140 −0.827377
\(592\) 94.5077i 3.88424i
\(593\) 19.5804i 0.804069i 0.915625 + 0.402034i \(0.131697\pi\)
−0.915625 + 0.402034i \(0.868303\pi\)
\(594\) −5.83149 −0.239269
\(595\) 0 0
\(596\) 83.6009 3.42443
\(597\) 9.27232i 0.379491i
\(598\) − 28.2722i − 1.15614i
\(599\) −30.2322 −1.23525 −0.617627 0.786471i \(-0.711906\pi\)
−0.617627 + 0.786471i \(0.711906\pi\)
\(600\) 0 0
\(601\) 33.1180 1.35091 0.675457 0.737400i \(-0.263947\pi\)
0.675457 + 0.737400i \(0.263947\pi\)
\(602\) 61.7157i 2.51534i
\(603\) − 11.7471i − 0.478380i
\(604\) −19.0670 −0.775826
\(605\) 0 0
\(606\) −41.1816 −1.67289
\(607\) 23.4711i 0.952661i 0.879266 + 0.476330i \(0.158033\pi\)
−0.879266 + 0.476330i \(0.841967\pi\)
\(608\) 39.0271i 1.58276i
\(609\) 3.93826 0.159586
\(610\) 0 0
\(611\) −16.2299 −0.656592
\(612\) − 32.9476i − 1.33183i
\(613\) 24.1560i 0.975650i 0.872941 + 0.487825i \(0.162210\pi\)
−0.872941 + 0.487825i \(0.837790\pi\)
\(614\) 1.36889 0.0552439
\(615\) 0 0
\(616\) −62.8935 −2.53405
\(617\) 47.7509i 1.92238i 0.275890 + 0.961189i \(0.411027\pi\)
−0.275890 + 0.961189i \(0.588973\pi\)
\(618\) − 26.7684i − 1.07678i
\(619\) −0.779735 −0.0313402 −0.0156701 0.999877i \(-0.504988\pi\)
−0.0156701 + 0.999877i \(0.504988\pi\)
\(620\) 0 0
\(621\) −5.19955 −0.208651
\(622\) 20.4976i 0.821880i
\(623\) 8.16558i 0.327147i
\(624\) −18.8032 −0.752729
\(625\) 0 0
\(626\) 25.9754 1.03819
\(627\) − 9.65053i − 0.385405i
\(628\) − 36.4925i − 1.45621i
\(629\) 73.2023 2.91877
\(630\) 0 0
\(631\) 17.8120 0.709083 0.354542 0.935040i \(-0.384637\pi\)
0.354542 + 0.935040i \(0.384637\pi\)
\(632\) − 102.438i − 4.07476i
\(633\) − 0.228998i − 0.00910187i
\(634\) −84.4700 −3.35473
\(635\) 0 0
\(636\) −6.69600 −0.265514
\(637\) − 17.8252i − 0.706262i
\(638\) 5.83149i 0.230871i
\(639\) 4.55691 0.180269
\(640\) 0 0
\(641\) 29.7647 1.17563 0.587817 0.808994i \(-0.299987\pi\)
0.587817 + 0.808994i \(0.299987\pi\)
\(642\) − 11.6203i − 0.458617i
\(643\) − 41.4049i − 1.63285i −0.577451 0.816426i \(-0.695952\pi\)
0.577451 0.816426i \(-0.304048\pi\)
\(644\) −97.0322 −3.82361
\(645\) 0 0
\(646\) 77.5384 3.05071
\(647\) − 14.6074i − 0.574275i −0.957889 0.287137i \(-0.907296\pi\)
0.957889 0.287137i \(-0.0927036\pi\)
\(648\) 7.10893i 0.279265i
\(649\) −12.9575 −0.508627
\(650\) 0 0
\(651\) −8.86247 −0.347348
\(652\) 64.8374i 2.53923i
\(653\) 30.5647i 1.19609i 0.801462 + 0.598045i \(0.204056\pi\)
−0.801462 + 0.598045i \(0.795944\pi\)
\(654\) −34.9879 −1.36813
\(655\) 0 0
\(656\) −23.9347 −0.934493
\(657\) − 12.3564i − 0.482069i
\(658\) 79.2125i 3.08802i
\(659\) −22.1893 −0.864371 −0.432186 0.901785i \(-0.642257\pi\)
−0.432186 + 0.901785i \(0.642257\pi\)
\(660\) 0 0
\(661\) −9.85731 −0.383405 −0.191702 0.981453i \(-0.561401\pi\)
−0.191702 + 0.981453i \(0.561401\pi\)
\(662\) − 59.5523i − 2.31457i
\(663\) 14.5643i 0.565630i
\(664\) 27.1044 1.05185
\(665\) 0 0
\(666\) −27.3294 −1.05899
\(667\) 5.19955i 0.201327i
\(668\) − 118.277i − 4.57629i
\(669\) 25.1117 0.970875
\(670\) 0 0
\(671\) −24.5294 −0.946948
\(672\) 35.7780i 1.38016i
\(673\) − 25.3057i − 0.975463i −0.872994 0.487732i \(-0.837824\pi\)
0.872994 0.487732i \(-0.162176\pi\)
\(674\) −41.5441 −1.60022
\(675\) 0 0
\(676\) −40.8106 −1.56964
\(677\) 3.67306i 0.141167i 0.997506 + 0.0705836i \(0.0224862\pi\)
−0.997506 + 0.0705836i \(0.977514\pi\)
\(678\) − 29.7292i − 1.14174i
\(679\) 47.2860 1.81467
\(680\) 0 0
\(681\) −4.98706 −0.191104
\(682\) − 13.1229i − 0.502502i
\(683\) 17.3807i 0.665053i 0.943094 + 0.332527i \(0.107901\pi\)
−0.943094 + 0.332527i \(0.892099\pi\)
\(684\) −20.3564 −0.778346
\(685\) 0 0
\(686\) −15.4361 −0.589354
\(687\) − 1.60591i − 0.0612694i
\(688\) 54.1911i 2.06602i
\(689\) 2.95992 0.112764
\(690\) 0 0
\(691\) −28.5585 −1.08642 −0.543209 0.839598i \(-0.682791\pi\)
−0.543209 + 0.839598i \(0.682791\pi\)
\(692\) − 94.3856i − 3.58800i
\(693\) − 8.84710i − 0.336074i
\(694\) −59.7025 −2.26628
\(695\) 0 0
\(696\) 7.10893 0.269463
\(697\) 18.5390i 0.702214i
\(698\) 63.1078i 2.38866i
\(699\) −6.65588 −0.251749
\(700\) 0 0
\(701\) 21.5401 0.813557 0.406779 0.913527i \(-0.366652\pi\)
0.406779 + 0.913527i \(0.366652\pi\)
\(702\) − 5.43743i − 0.205223i
\(703\) − 45.2274i − 1.70578i
\(704\) −12.6457 −0.476601
\(705\) 0 0
\(706\) −75.9772 −2.85944
\(707\) − 62.4776i − 2.34971i
\(708\) 27.3320i 1.02720i
\(709\) 2.29948 0.0863587 0.0431793 0.999067i \(-0.486251\pi\)
0.0431793 + 0.999067i \(0.486251\pi\)
\(710\) 0 0
\(711\) 14.4098 0.540408
\(712\) 14.7396i 0.552391i
\(713\) − 11.7008i − 0.438199i
\(714\) 71.0831 2.66022
\(715\) 0 0
\(716\) 51.5630 1.92700
\(717\) − 2.87227i − 0.107267i
\(718\) 48.0470i 1.79310i
\(719\) −13.6814 −0.510232 −0.255116 0.966910i \(-0.582114\pi\)
−0.255116 + 0.966910i \(0.582114\pi\)
\(720\) 0 0
\(721\) 40.6110 1.51243
\(722\) 1.41521i 0.0526688i
\(723\) 15.2768i 0.568152i
\(724\) 66.0422 2.45444
\(725\) 0 0
\(726\) −15.4545 −0.573569
\(727\) − 50.0451i − 1.85607i −0.372492 0.928035i \(-0.621497\pi\)
0.372492 0.928035i \(-0.378503\pi\)
\(728\) − 58.6435i − 2.17347i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 41.9745 1.55248
\(732\) 51.7412i 1.91241i
\(733\) 38.7734i 1.43213i 0.698034 + 0.716065i \(0.254058\pi\)
−0.698034 + 0.716065i \(0.745942\pi\)
\(734\) −2.32694 −0.0858887
\(735\) 0 0
\(736\) −47.2364 −1.74116
\(737\) 26.3893i 0.972062i
\(738\) − 6.92135i − 0.254778i
\(739\) 18.0707 0.664742 0.332371 0.943149i \(-0.392151\pi\)
0.332371 + 0.943149i \(0.392151\pi\)
\(740\) 0 0
\(741\) 8.99840 0.330564
\(742\) − 14.4463i − 0.530341i
\(743\) − 20.9864i − 0.769917i −0.922934 0.384959i \(-0.874216\pi\)
0.922934 0.384959i \(-0.125784\pi\)
\(744\) −15.9976 −0.586500
\(745\) 0 0
\(746\) 12.0594 0.441525
\(747\) 3.81272i 0.139500i
\(748\) 74.0151i 2.70626i
\(749\) 17.6294 0.644166
\(750\) 0 0
\(751\) −20.3274 −0.741758 −0.370879 0.928681i \(-0.620944\pi\)
−0.370879 + 0.928681i \(0.620944\pi\)
\(752\) 69.5547i 2.53640i
\(753\) 10.8782i 0.396424i
\(754\) −5.43743 −0.198020
\(755\) 0 0
\(756\) −18.6617 −0.678718
\(757\) − 0.0654846i − 0.00238008i −0.999999 0.00119004i \(-0.999621\pi\)
0.999999 0.00119004i \(-0.000378801\pi\)
\(758\) − 84.3304i − 3.06302i
\(759\) 11.6805 0.423976
\(760\) 0 0
\(761\) −28.8872 −1.04716 −0.523580 0.851976i \(-0.675404\pi\)
−0.523580 + 0.851976i \(0.675404\pi\)
\(762\) 8.39761i 0.304213i
\(763\) − 53.0810i − 1.92166i
\(764\) −63.2399 −2.28794
\(765\) 0 0
\(766\) 24.6169 0.889446
\(767\) − 12.0819i − 0.436252i
\(768\) − 20.4913i − 0.739417i
\(769\) 10.0813 0.363541 0.181771 0.983341i \(-0.441817\pi\)
0.181771 + 0.983341i \(0.441817\pi\)
\(770\) 0 0
\(771\) −18.0748 −0.650949
\(772\) − 74.0809i − 2.66623i
\(773\) − 20.5353i − 0.738602i −0.929310 0.369301i \(-0.879597\pi\)
0.929310 0.369301i \(-0.120403\pi\)
\(774\) −15.6708 −0.563275
\(775\) 0 0
\(776\) 85.3556 3.06409
\(777\) − 41.4621i − 1.48744i
\(778\) 88.1321i 3.15969i
\(779\) 11.4541 0.410387
\(780\) 0 0
\(781\) −10.2369 −0.366304
\(782\) 93.8485i 3.35602i
\(783\) 1.00000i 0.0357371i
\(784\) −76.3916 −2.72827
\(785\) 0 0
\(786\) −34.6722 −1.23672
\(787\) 46.0601i 1.64186i 0.571026 + 0.820932i \(0.306545\pi\)
−0.571026 + 0.820932i \(0.693455\pi\)
\(788\) − 95.3110i − 3.39531i
\(789\) 18.4454 0.656674
\(790\) 0 0
\(791\) 45.1029 1.60367
\(792\) − 15.9699i − 0.567464i
\(793\) − 22.8718i − 0.812203i
\(794\) 65.1284 2.31132
\(795\) 0 0
\(796\) −43.9374 −1.55732
\(797\) − 37.4745i − 1.32742i −0.747992 0.663708i \(-0.768982\pi\)
0.747992 0.663708i \(-0.231018\pi\)
\(798\) − 43.9180i − 1.55468i
\(799\) 53.8746 1.90595
\(800\) 0 0
\(801\) −2.07340 −0.0732599
\(802\) 12.6111i 0.445314i
\(803\) 27.7580i 0.979558i
\(804\) 55.6643 1.96313
\(805\) 0 0
\(806\) 12.2361 0.430999
\(807\) − 11.6702i − 0.410810i
\(808\) − 112.778i − 3.96751i
\(809\) −29.9284 −1.05223 −0.526113 0.850414i \(-0.676351\pi\)
−0.526113 + 0.850414i \(0.676351\pi\)
\(810\) 0 0
\(811\) −49.1738 −1.72673 −0.863363 0.504583i \(-0.831646\pi\)
−0.863363 + 0.504583i \(0.831646\pi\)
\(812\) 18.6617i 0.654896i
\(813\) 20.2501i 0.710204i
\(814\) 61.3940 2.15186
\(815\) 0 0
\(816\) 62.4165 2.18501
\(817\) − 25.9336i − 0.907301i
\(818\) 38.0566i 1.33062i
\(819\) 8.24926 0.288252
\(820\) 0 0
\(821\) 33.9715 1.18561 0.592807 0.805345i \(-0.298020\pi\)
0.592807 + 0.805345i \(0.298020\pi\)
\(822\) − 11.3087i − 0.394437i
\(823\) 33.8272i 1.17914i 0.807716 + 0.589572i \(0.200703\pi\)
−0.807716 + 0.589572i \(0.799297\pi\)
\(824\) 73.3067 2.55376
\(825\) 0 0
\(826\) −58.9676 −2.05174
\(827\) − 35.1083i − 1.22083i −0.792080 0.610417i \(-0.791002\pi\)
0.792080 0.610417i \(-0.208998\pi\)
\(828\) − 24.6383i − 0.856241i
\(829\) −15.6701 −0.544245 −0.272122 0.962263i \(-0.587726\pi\)
−0.272122 + 0.962263i \(0.587726\pi\)
\(830\) 0 0
\(831\) 3.66952 0.127294
\(832\) − 11.7911i − 0.408784i
\(833\) 59.1702i 2.05013i
\(834\) 47.8085 1.65547
\(835\) 0 0
\(836\) 45.7296 1.58159
\(837\) − 2.25035i − 0.0777835i
\(838\) − 47.7961i − 1.65109i
\(839\) 16.5131 0.570095 0.285047 0.958513i \(-0.407991\pi\)
0.285047 + 0.958513i \(0.407991\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 75.6669i − 2.60765i
\(843\) 22.8056i 0.785466i
\(844\) 1.08512 0.0373514
\(845\) 0 0
\(846\) −20.1136 −0.691518
\(847\) − 23.4463i − 0.805626i
\(848\) − 12.6850i − 0.435604i
\(849\) 2.38657 0.0819069
\(850\) 0 0
\(851\) 54.7409 1.87649
\(852\) 21.5932i 0.739770i
\(853\) − 16.3926i − 0.561271i −0.959814 0.280636i \(-0.909455\pi\)
0.959814 0.280636i \(-0.0905452\pi\)
\(854\) −111.629 −3.81988
\(855\) 0 0
\(856\) 31.8228 1.08768
\(857\) − 9.83745i − 0.336041i −0.985784 0.168020i \(-0.946263\pi\)
0.985784 0.168020i \(-0.0537375\pi\)
\(858\) 12.2149i 0.417010i
\(859\) −39.8257 −1.35883 −0.679417 0.733752i \(-0.737767\pi\)
−0.679417 + 0.733752i \(0.737767\pi\)
\(860\) 0 0
\(861\) 10.5006 0.357858
\(862\) 5.32971i 0.181530i
\(863\) 15.6707i 0.533438i 0.963774 + 0.266719i \(0.0859395\pi\)
−0.963774 + 0.266719i \(0.914060\pi\)
\(864\) −9.08471 −0.309068
\(865\) 0 0
\(866\) −48.7556 −1.65678
\(867\) − 31.3456i − 1.06455i
\(868\) − 41.9953i − 1.42541i
\(869\) −32.3708 −1.09810
\(870\) 0 0
\(871\) −24.6060 −0.833744
\(872\) − 95.8162i − 3.24474i
\(873\) 12.0068i 0.406369i
\(874\) 57.9834 1.96132
\(875\) 0 0
\(876\) 58.5514 1.97827
\(877\) 21.2819i 0.718640i 0.933214 + 0.359320i \(0.116991\pi\)
−0.933214 + 0.359320i \(0.883009\pi\)
\(878\) − 87.7118i − 2.96013i
\(879\) −19.4843 −0.657189
\(880\) 0 0
\(881\) 29.1037 0.980529 0.490265 0.871574i \(-0.336900\pi\)
0.490265 + 0.871574i \(0.336900\pi\)
\(882\) − 22.0906i − 0.743830i
\(883\) − 4.03715i − 0.135861i −0.997690 0.0679305i \(-0.978360\pi\)
0.997690 0.0679305i \(-0.0216396\pi\)
\(884\) −69.0136 −2.32118
\(885\) 0 0
\(886\) 63.0698 2.11887
\(887\) 2.85498i 0.0958608i 0.998851 + 0.0479304i \(0.0152626\pi\)
−0.998851 + 0.0479304i \(0.984737\pi\)
\(888\) − 74.8430i − 2.51157i
\(889\) −12.7402 −0.427293
\(890\) 0 0
\(891\) 2.24645 0.0752588
\(892\) 118.993i 3.98419i
\(893\) − 33.2859i − 1.11387i
\(894\) −45.7982 −1.53172
\(895\) 0 0
\(896\) 14.0076 0.467960
\(897\) 10.8912i 0.363647i
\(898\) − 54.7666i − 1.82758i
\(899\) −2.25035 −0.0750534
\(900\) 0 0
\(901\) −9.82535 −0.327330
\(902\) 15.5485i 0.517707i
\(903\) − 23.7745i − 0.791167i
\(904\) 81.4150 2.70782
\(905\) 0 0
\(906\) 10.4453 0.347022
\(907\) 3.08757i 0.102521i 0.998685 + 0.0512605i \(0.0163239\pi\)
−0.998685 + 0.0512605i \(0.983676\pi\)
\(908\) − 23.6314i − 0.784237i
\(909\) 15.8642 0.526184
\(910\) 0 0
\(911\) 34.1306 1.13080 0.565398 0.824818i \(-0.308723\pi\)
0.565398 + 0.824818i \(0.308723\pi\)
\(912\) − 38.5634i − 1.27696i
\(913\) − 8.56508i − 0.283463i
\(914\) −22.6096 −0.747860
\(915\) 0 0
\(916\) 7.60970 0.251432
\(917\) − 52.6021i − 1.73707i
\(918\) 18.0494i 0.595718i
\(919\) −16.9603 −0.559468 −0.279734 0.960078i \(-0.590246\pi\)
−0.279734 + 0.960078i \(0.590246\pi\)
\(920\) 0 0
\(921\) −0.527333 −0.0173762
\(922\) − 76.6882i − 2.52559i
\(923\) − 9.54511i − 0.314181i
\(924\) 41.9225 1.37915
\(925\) 0 0
\(926\) 96.8433 3.18247
\(927\) 10.3119i 0.338688i
\(928\) 9.08471i 0.298220i
\(929\) −5.63831 −0.184987 −0.0924935 0.995713i \(-0.529484\pi\)
−0.0924935 + 0.995713i \(0.529484\pi\)
\(930\) 0 0
\(931\) 36.5578 1.19813
\(932\) − 31.5392i − 1.03310i
\(933\) − 7.89624i − 0.258511i
\(934\) −78.4328 −2.56640
\(935\) 0 0
\(936\) 14.8907 0.486718
\(937\) − 32.0790i − 1.04798i −0.851726 0.523988i \(-0.824444\pi\)
0.851726 0.523988i \(-0.175556\pi\)
\(938\) 120.093i 3.92119i
\(939\) −10.0064 −0.326548
\(940\) 0 0
\(941\) 31.2028 1.01718 0.508592 0.861008i \(-0.330166\pi\)
0.508592 + 0.861008i \(0.330166\pi\)
\(942\) 19.9913i 0.651352i
\(943\) 13.8635i 0.451458i
\(944\) −51.7781 −1.68523
\(945\) 0 0
\(946\) 35.2036 1.14457
\(947\) 27.7302i 0.901110i 0.892749 + 0.450555i \(0.148774\pi\)
−0.892749 + 0.450555i \(0.851226\pi\)
\(948\) 68.2814i 2.21768i
\(949\) −25.8822 −0.840173
\(950\) 0 0
\(951\) 32.5401 1.05519
\(952\) 194.665i 6.30913i
\(953\) 23.9481i 0.775755i 0.921711 + 0.387877i \(0.126792\pi\)
−0.921711 + 0.387877i \(0.873208\pi\)
\(954\) 3.66820 0.118762
\(955\) 0 0
\(956\) 13.6104 0.440192
\(957\) − 2.24645i − 0.0726173i
\(958\) 101.631i 3.28356i
\(959\) 17.1567 0.554020
\(960\) 0 0
\(961\) −25.9359 −0.836643
\(962\) 57.2453i 1.84566i
\(963\) 4.47645i 0.144252i
\(964\) −72.3902 −2.33153
\(965\) 0 0
\(966\) 53.1562 1.71027
\(967\) 43.6821i 1.40472i 0.711821 + 0.702361i \(0.247871\pi\)
−0.711821 + 0.702361i \(0.752129\pi\)
\(968\) − 42.3228i − 1.36031i
\(969\) −29.8699 −0.959559
\(970\) 0 0
\(971\) 1.12406 0.0360729 0.0180365 0.999837i \(-0.494259\pi\)
0.0180365 + 0.999837i \(0.494259\pi\)
\(972\) − 4.73855i − 0.151989i
\(973\) 72.5315i 2.32525i
\(974\) 62.0887 1.98945
\(975\) 0 0
\(976\) −98.0193 −3.13752
\(977\) 18.8819i 0.604086i 0.953294 + 0.302043i \(0.0976686\pi\)
−0.953294 + 0.302043i \(0.902331\pi\)
\(978\) − 35.5192i − 1.13578i
\(979\) 4.65778 0.148863
\(980\) 0 0
\(981\) 13.4783 0.430328
\(982\) − 11.4471i − 0.365292i
\(983\) − 23.5807i − 0.752109i −0.926598 0.376054i \(-0.877281\pi\)
0.926598 0.376054i \(-0.122719\pi\)
\(984\) 18.9545 0.604247
\(985\) 0 0
\(986\) 18.0494 0.574809
\(987\) − 30.5148i − 0.971296i
\(988\) 42.6394i 1.35654i
\(989\) 31.3887 0.998102
\(990\) 0 0
\(991\) −31.3818 −0.996877 −0.498438 0.866925i \(-0.666093\pi\)
−0.498438 + 0.866925i \(0.666093\pi\)
\(992\) − 20.4438i − 0.649090i
\(993\) 22.9411i 0.728015i
\(994\) −46.5864 −1.47763
\(995\) 0 0
\(996\) −18.0668 −0.572468
\(997\) − 45.3442i − 1.43606i −0.696010 0.718032i \(-0.745043\pi\)
0.696010 0.718032i \(-0.254957\pi\)
\(998\) − 96.1629i − 3.04398i
\(999\) 10.5280 0.333092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.c.p.349.2 16
5.2 odd 4 2175.2.a.bd.1.8 yes 8
5.3 odd 4 2175.2.a.bc.1.1 8
5.4 even 2 inner 2175.2.c.p.349.15 16
15.2 even 4 6525.2.a.by.1.1 8
15.8 even 4 6525.2.a.bz.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.1 8 5.3 odd 4
2175.2.a.bd.1.8 yes 8 5.2 odd 4
2175.2.c.p.349.2 16 1.1 even 1 trivial
2175.2.c.p.349.15 16 5.4 even 2 inner
6525.2.a.by.1.1 8 15.2 even 4
6525.2.a.bz.1.8 8 15.8 even 4